Supporting Information

An AIE active Y-shaped diimidazolylbenzene: aggregation and disaggregation for Cd²⁺ and Fe³⁺ sensing in aqueous solution

Chengming Li, Chao Gao, Jingbo Lan, Jingsong You and Ge Gao*

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, 29 Wangjiang Road, Chengdu 610064, PR China *E-mail:* gg2b@scu.edu.cn

Table of contents

1. General remarks	2
II. Synthesis of Y-dimb	2
III. Absorption and fluorescence emission spectra of Y-dimb	3
IV. Fluorescence spectra of Y-dimb in the MeCN/water mixtures	4
V. Fluorescence titration of Y-dimb with Cd ²⁺	4
VI. Competitive experiment for Cd ²⁺ sensing	5
VII. Fluorescence quenching of Y-dimb by Fe ³⁺	5
VIII. DLS measurements	6
IX. Copies of ¹ H NMR and ¹³ C NMR Spectra	7

I. General remarks.

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. *N*,*N*-dimethylformamide (DMF) and triethylamine (Et₃N) were heated under reflux with calcium hydride, then distilled prior to use. Double-distilled water was used in the experiments.

NMR spectra were obtained on a Bruker AV II-400 MHz spectrometer. The ¹H NMR (400 MHz) chemical shifts were measured relative to CDCl₃ as the internal reference (CDCl₃: δ = 7.26 ppm). The ¹³C NMR (100 MHz) chemical shifts were given using CDCl₃ as the internal standard (CDCl₃: δ = 77.16 ppm). Absorption spectrum was obtained on a HITACHI U-2910 spectrophotometer. Fluorescence spectra were collected on a Horiba Jobin Yvon-Edison Fluoromax-4 fluorescence spectrometer. The DLS measurements was conducted on a SEN 3690 instrument.

II. Synthesis of Y-dimb.

N-SiMe₃

N,*N*-dimethyl-4-[(trimethylsilyl)ethynyl]aniline (1): A mixture of 4-bromo-*N*,*N*-dimethylaniline (1.0 g, 5 mmol), Pd(dppf)Cl₂ (210.6 mg, 0.3 mmol), PPh₃ (131.2 mg, 0.5 mmol), CuI (95.2 mg, 0.5 mmol) and TMSA (2.14 mL 15.0 mmol) in Et₃N (10 mL) was reacted at 80 °C overnight under N₂. The system was concentrated using rotavapor. The residue was passed through a silica gel column (PE/CH₂Cl₂ = 6/1, v/v) to give 1 as a yellow solid (1.01 g, 89% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.24$ (s, 9H), 2.97 (s, 6H), 6.59 (d, *J* = 8.8 Hz, 2H), 7.34 (d, *J* = 8.8 Hz, 2H) ppm.

3,5-bis(1-imidazolyl)bromobenzene (2): A mixture of 1,3,5-tribromobenzene (5.25 g, 16.7 mmol), imidazole (2.25 g, 36.0 mmol), CuI (0.57 g, 3.3 mmol) and K₂CO₃ (8.29 g, 66.8 mmol) in DMF (50 mL) was reacted at 150 °C for 10 h under N₂. The precipitates (inorganic salts) were filtered off, and the filtrate was concentrated in vacuo. The solid was then dispersed in ethyl acetate. The organic phase was washed with brine, dried over Na₂SO₄, and concentrated using rotavapor. The residue was passed through a silica gel column (CH₂Cl₂/MeOH = 30/1, v/v) to give **2** as a pale white solid (2.40 g, 55% yield). M.p. 180-182 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.25 (s, 2H), 7.30 (s, 2H), 7.37 (t, *J* =

2.0 Hz, 1H), 7.56 (d, J = 2.0 Hz, 2H), 7.90 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 113.2$, 118.1, 123.3, 124.8, 131.5, 135.6, 139.7 ppm.

4-{[3,5-di(1*H***-imidazol-1-yl)phenyl]ethynyl}-***N***,***N***-dimethylaniline (Y-dimb): A mixture of compound 1** (0.96 g, 3.6 mmol), compound **2** (0.87 g, 3.0 mmol), Pd(PPh₃)₄ (0.21 g, 0.18 mmol), CuI (0.07 g, 0.36 mmol) and 50% KOH aqueous solution (1.6 mL) in Et₃N/THF (1:2, 13.5 mL) was reacted at 80 °C overnight under N₂. The system was concentrated using rotavapor, and then the residue was passed through a silica gel column (CH₂Cl₂/CH₃OH = 30/1, v/v) to give **Y-dimb** as a yellow solid (0.72 g, 68% yield). M.p. 202-204 °C. ¹H NMR (400 MHz, CDCl₃): δ = 6.68 (d, *J* = 8.8 Hz, 2H), 7.26 (s, 2H), 7.31 (s, 1H), 7.35 (s, 2H), 7.44 (d, *J* = 8.8 Hz, 2H), 7.50 (s, 2H), 7.94 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 40.2, 85.4, 94.8, 108.3, 111.9, 118.2, 122.5, 128.2, 131.2, 133.2, 138.8, 150.8 ppm. HRMS (ESI⁺): calcd for C₂₂H₂₀N₅ [M+H]⁺ 354.1713, found 354.1707.

III. Absorption and fluorescence emission spectra of Y-dimb.

Fig. S1 Normalized absorption (black line) and fluorescence emission (red line) spectra of **Y-dimb** (20 μM) in MeCN.

IV. Fluorescence spectra of Y-dimb in the MeCN/water mixtures.

Fig. S2 The fluorescence spectra of Y-dimb (20 μ M) in MeCN/water mixtures with different fractions of water. Excited at 359 nm. Inset: photos of a) Y-dimb in MeCN and CH₃CN/water (1:99, v/v) under UV light and b) the Tyndall phenomenon.

V. Fluorescence titration of Y-dimb with Cd²⁺.

Fig. S3 The fluorescence spectra of **Y-dimb** (20 μ M) in MeCN/water (2:8, v/v) upon addition of Cd²⁺ from 0 to 50 equiv. Inset: photos of a) **Y-dimb** in the presence of 50 equiv. of Cd²⁺ under UV light and b) the Tyndall phenomenon.

VI. Competitive experiment for Cd²⁺ sensing.

Fig. S4 The histogram of the fluorescence intensities of **Y-dimb** (20 μ M) in MeCN/water (2:8, v/v) upon addition of 50 equiv. of blank, Na⁺, K⁺, Ca²⁺, Mg²⁺, Mn²⁺, Ni²⁺, Co²⁺, Cu²⁺, Cr³⁺, Zn²⁺, Fe³⁺, Fe²⁺ and Hg²⁺ (white bar), and the subsequent addition of 50 equiv. of Cd²⁺ (black bar).

Fig. S5 The fluorescence spectra of **Y-dimb** (20 μ M) in MeCN/water (1:99, v/v) upon addition of 10 equiv. of Fe³⁺ and a) 50 equiv. of Fe²⁺, Cd²⁺, Zn²⁺, Cu²⁺, Co²⁺, Ca²⁺, Mg²⁺, Mn²⁺, Cr³⁺, Ag⁺, K⁺ and Hg²⁺; and b) 50, 100 and 200 equiv. of Cu²⁺, respectively.

VIII. DLS measurements.

Fig. S6 DLS profiles of Y-dimb (20 μ M) in MeCN/water mixtures with water fractions of a) 80%; b) 85%; and c) 92%, respectively.

Fig. S7 DLS profile of Y-dimb (20 µM) in 2:8 (v:v) MeCN/water mixture with 50 equiv of Cd²⁺.

Size Distribution by Intensity

Fig. S8 DLS profiles of Fe³⁺ (1 mM) in 2:8 (v:v) MeCN/water mixture a) without and b) with **Ydimb** (20 μ M), respectively.

IX. Copies of ¹H NMR and ¹³C NMR Spectra.

