Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Supporting Information

for

Catalytic Asymmetric Synthesis of Pentacyclic Core of (–)-Nakadomarin A *via* Oxazolidine as an Iminium Cation Equivalent

Nobuya Tsuji, Michael Stadler, Naoya Kazumi, Tsubasa Inokuma, Yusuke Kobayashi and Yoshiji Takemoto*

Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

CONTENTS

1. General informationS3
2. Preparation of substratesS3
3. Determination of the relative configuration of 11, 12 and 11' by NOESY experiment S11
4. Epimerization experiment of 11/11' in acidic conditionsS12
5. Optimization of the diastereoselective allylic aminationS12
6. References S14
7. Copies of ¹ H and ¹³ C NMR, NOESY charts
8. Copies of HPLC charts S26

1. General informaiton

All non-aqueous reactions were carried out under a positive atmosphere of argon in dried glassware unless otherwise noted. Solvents and materials were obtained from commercial suppliers and used without further purification. Column chromatography was performed on Cica silica gel 60 (230-400 mesh) or Fuji Silysia silica gel (NH, 100-200 mesh), gel permeation chromatography was performed with LC-9201 and flash column chromatography was performed on Cica silica gel 60 (spherical/40-100 µm). Reactions and chromatography fractions were analyzed employing pre-coated silica gel plate (Merck Silica Gel 60 F₂₅₄). All melting points were measured on BÜCHI M-565 melting point apparatus and are uncorrected. IR spectra were measured on JASCO FT/IR-4100. Unless otherwise noted, NMR spectra were obtained in CDCl₃. ¹H NMR (500 MHz) spectra were recorded with JEOL ECP-500 spectrometers and chemical shifts are reported in δ (ppm) relative to TMS (in CDCl₃) as internal standard. Unless otherwise noted, ¹³C NMR (126 MHz) spectra were also recorded using JEOL ECP-500 spectrometers and referenced to the residual CHCl₃ signals. ¹H NMR multiplicities are reported as follows: br = broad; m = multiplet; s = singlet; d = doublet; t = triplet; q = quartet; sep = septet. Low-resolution mass spectra were recorded on a JMS-HX/HX 110A or MS700 mass spectrometer. High-resolution mass spectra were obtained on a JMS-HX/MS700 (FAB) or a Shimazu LCMS-IT-TOF fitted with an ESI. Optical rotations were recorded on a JASCO P-2200 polarimater with a path length of 1 cm; concentrations are quoted in grams per 100 mL. $[\alpha]_D$ values are measured in 10^{-1} deg cm²g⁻¹. Enantiomeric excess was determined by high performance liquid chromatography (HPLC) analyses. Unless otherwise noted, all materials and solvent were purchased from Tokyo Kasei Co., Aldrich Inc., and other commercial suppliers and were used without purification. All non-commercially available substrates were prepared according to the literature procedure as indicated below.

2. Preparation of substrates

Dimethyl (R)-2-(1-(furan-3-yl)-3-oxopropyl)malonate (3)

To a mixture of (*E*)-3-(furan-3-yl)acrylaldehyde **1** (8.8 g, 72 mmol), catalyst **2** (0.92 g, 2 mol %) and dimethylmalonate (24.8 mL, 3 equiv) was added H₂O (40 mL) and AcOH (0.9 mL, 5 mol %). After stirring at 45 °C for 24 h, the reaction mixture was cooled to room temperature and extracted with chloroform three times. The combined organic layer was dried over Na₂SO₄, and then evaporated *in vacuo*. Purification by column chromatography on SiO₂ (10–50% EtOAc in hexane) gave **3** as yellow oil (78 %, er = 98.5:1.5).

 $[\alpha]^{24}_{D}$ (*c* 1.46, CHCl₃) –29.1; IR(ATR): 3134, 2955, 2841, 2733, 1752,1731, 1637, 1556, 1510, 1436, 1248, 1197, 1160, 1024, 874 cm⁻¹; ¹H NMR(CDCl₃, 500MHz); δ = 9.64 (m, 1H), 7.34 (m, 1H), 7.31 (m, 1H), 6.30 (m, 1H), 3.99 (td, 1H, *J* = 8.8, 4.9 Hz), 3.74 (s, 3H), 3.69 (d, 1H, *J* = 8.3 Hz), 3.64 (s, 3H), 2.85 (m, 2H); ¹³C NMR (100 MHz, CDCl₃); δ = 200.1, 168.4, 168.1, 143.4, 140.2, 123.9, 109.6, 56.4, 52.8, 52.6, 46.6, 30.2; LRMS (CI⁺) : *m/z* 255 [M+H⁺]; HRMS (CI⁺) calcd for C₁₂H₁₅O₆ [M+H⁺] 255.0869, found 255.0861.

Catalyst **2** was prepared by the reported procedure¹ from (*L*)-proline. Spectra were accorded to those of the enantiomer. $[\alpha]^{28}{}_{D}$ (*c* 1.15, CHCl₃) +1.82

• For the determination of ee

Ee of **3** was determined after conversion into unsaturated ketone **S-3**. HPLC separation condition for **S-3**: Chiralpak IC, *i*-PrOH/Hex = 15/85, 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 27.1$ min, $t_{minor} = 23.9$ min, 30 deg]

• For the determination of the absolute configuration

The absolute configuration of **3** was determined after conversion into unsaturated ester **S-3**'. In analogy to the related esters², the configuration was determined to be (*R*). HPLC separation condition for **S-3'**: [Chiralpak AD, *i*-PrOH/Hex = 5/95, 0.5 mL/min, $\lambda = 220$ nm, t_{major} = 23.5 min, t_{minor} = 21.8 min, 40 deg]

Methyl-(3*R*,4*S*)-1-benzyl-4-(furan-3-yl)-3-((*E*)-4-hydroxybut-2-en-1-yl)-2-oxopiperidine-3-carboxylate (7)

To the solution of aldehyde **3** (12.5 g, 49 mmol) in anhydrous dichloromethane (180 mL) was added $BnNH_2$ (5.9 mL, 1.1 equiv) and MS 4Å (11.5 g). After stirring for 24 h, MS was removed by filtration, and subsequently the reaction mixture was evaporated *in vacuo*. The resulting crude imine was dissolved in MeOH (150 mL), and NaBH₄ (2.2 g, 1.2 equiv) was added at 0 °C. After stirring at room temperature overnight, the reaction mixture was concentrated *in vacuo*. The residue was extracted with chloroform three times, and the combined organic layer was evaporated *in vacuo*. The crude mixture was filtered through a pad of silica gel, and the resulting lactam was directly used for the next reaction without further purification.

To the solution of the crude lactam in THF was added NaH ($\approx 60\%$, 2.45 g, 1.2 equiv) at 0 °C. After stirring at room temperature for 5 min, acetate **5** (18.1 g, 1.5 equiv)³ and Pd(PPh₃)₄ (2.77 g, 5 mol %) was added. After stirring at room temperature for three hours, water was added to the reaction mixture, which was extracted with chloroform. The organic layer was dried over sodium sulfate, and then evaporated *in vacuo*. The crude mixture was filtered through a pad of silica gel, and the obtained silylether was used for the next reaction without further purification.

To the solution of crude silylether in MeOH was added DOWEX 50WX8 (10.8 g). After gentle stirring at 25 °C overnight, the reaction mixture was filtered through Celite. Purification by column chromatography (50–100 % EtOAc in hexane) gave 9.1 g of alcohol **7** (48 % over four steps).

 $[\alpha]^{28}{}_{D}$ (*c* 0.96, CHCl₃) +104.5; IR (ATR): 3426, 2932, 2860, 1743,1635, 1495, 1450, 1354, 1239, 1209, 1172, 1083, 1026, 984, 874, 811, 770, 700 cm⁻¹; ¹H NMR: 7.33–7.23 (m, 7H), 6.17 (s, 1H), 5.81(m, 1H), 5.48 (m, 1H), 4.65 (dd, 2H, *J* = 12.4, 11.6), 4.05 (m, 2H), 3.58 (s, 3H), 3.37–3.23 (m, 2H), 3.18 (dd, 1H, *J* = 2.9, 10.6 Hz), 3.14–3.03 (m, 1H), 2.59–2.49 (m, 1H), 2.49–2.42 (m, 1H), 1.7 (d, 1H, *J* = 13.3 Hz); ¹³C NMR: 171.6, 168.3, 143.1, 139.8, 136.8, 134.9, 128.7, 128.1, 127.6, 126.5, 123.8, 109.6, 63.2, 58.8, 52.3, 51.1, 46.8, 36.2, 35.4, 25.4; FAB-LRMS: 384, 366, 327, 307, 289, 282, 154, 136, 91, 89, 57, 43; FAB-HRMS calcd for C₂₂H₂₆NO₅ [M+H⁺] 384.1805, found 384.1815.

(E)-4-((3S,4S)-1-benzyl-3-formyl-4-(furan-3-yl)-2-oxopiperidin-3-yl)but-2-en-1-yl acetate (8)

To the solution of ester **6** (2.1 g, 5.49 mmol) in dichloromethane (60 mL) was added 3.0 M DIBAL-H in toluene (16.8 mL, 3 equiv) at -78 °C. After stirring at the same temperature for 4 h, MeOH was added at -78 °C. The reaction mixture was warmed to room temperature, and then aqueous rochelle salt solution was added. After stirring at room temperature for 3 hours, the reaction mixture was extracted with chloroform three times, and the combined organic layer was evaporated *in vacuo*. This residue was directly used for the next reaction without further purification. To the crude aldehyde in dichloromethane (60 mL) was added acetic anhydride (1.0 mL, 2.0 equiv), triethylamine (3 mL, 4.0 equiv) and DMAP (62 mg, 10 mol %). After stirring at room temperature for 18 h, the reaction was quenched with water, and extracted with chloroform for three times. The combined organic layer was concentrated *in vacuo*, and purification by column chromatography gave the title compound (1.87 g, 90 %, 2 steps) as yellowish oil.

[α]²⁵_D (*c* 0.82, CHCl₃) +29.8; IR (CHCl₃): 2937, 1730, 1633, 1495, 1453, 1362, 1236, 1163, 1075, 1027, 966, 874, 702 cm⁻¹; ¹H NMR (500MHz, CDCl₃): δ = 9.50 (s, 1H), 7.37–7.22 (m, 7H), 6.18 (m, 1H), 5.80–5.66 (m, 2H), 4.70–4.64 (m, 2H), 4.58–4.51 (m, 2H), 3.36–3.28 (m, 2H), 3.19–3.15 (m, 2H), 2.55–2.50 (m, 1H), 2.34–2.25 (m, 1H), 1.96–1.91 (m, 1H); ¹³C NMR: δ = 201.1, 170.7, 167.4, 143.4, 140.2, 136.7, 129.5, 129.4, 128.8, 128.1, 127.7, 122.4, 110.4, 64.7, 60.7, 50.9, 46.1, 34.8, 34.5, 25.7, 21.0; HRMS (ESI): calcd. for C₂₃H₂₆NO₅ ([M+H]+): 396.1805, Found: 396.1800.

(3S,4S,5'R,7a'S)-1-benzyl-4-(furan-3-yl)-5'-vinyltetrahydro-7a'H-spiro[piperidine-3,7'-pyrrolo[2,1-b]ox azol]-2-one (11)

To the aldehyde **8** (412 mg, 1.04 mmol) in CH_2Cl_2 (16 mL) was added NaOAc (342 mg, 4.0 equiv) and 2-aminoethanol (0.13 mL, 2.0 equiv). After stirring at room temperature for 13 h, the reaction was quenched with water, and the product was extracted with chloroform three times. The combined organic layer was dried over sodium sulfate followed by concentration *in vacuo* to afford imine/hemiaminal mixture, which was used for the next reaction without further purification.

To the solution of crude imine mixture in 1,4-dioxane (30 mL) was added $Pd(PPh_3)_4$ (245 mg, 20 mol %) and DBN (0.26 mL, 2.1 equiv) at room temperature. After vigorous stirring at 60 °C for 20 h, the reaction mixture was evaporated *in vacuo*. Purification by column chromatography (40% acetone in hexane) gave title compound (317 mg, 80 % in two steps, single diastereoisomer) as a pale yellow solid.

Mp: 49–52 °C; $[\alpha]^{22}{}_{D}$ (*c* 1.07, CHCl₃) –13.7; IR (ATR): 2926, 1643, 1493, 1451, 1029, 748, 715, 673 cm⁻¹; ¹H NMR (500MHz, CDCl₃): δ = 7.33–7.24 (m, 6H), 7.15 (s, 1H), 6.20 (s, 1H), 5.93–5.85 (ddd, 1H, *J* = 17.1, 9.9, 8.3 Hz), 5.12–5.05 (m, 2H), 4.93 (s, 1H), 4.84 (d, 1H, *J* = 14.2 Hz), 4.29 (d, 1H, *J* = 14.2 Hz), 3.70–3.66 (m, 1H), 3.55 (td, 1H, *J* = 8.0, 3.2 Hz), 3.30 (t, 1H, *J* = 3.9 Hz), 3.30–3.00 (m, 5H), 2.24–2.10 (m, 3H), 1.87 (m, 1H); ¹³C NMR: δ = 173.3, 142.6, 141.0, 139.7, 137.6, 129.0, 128.8, 127.8, 125.4, 116.4, 111.1, 100.9, 66.8, 62.1, 54.6, 50.8, 50.5, 45.7, 44.0, 36.6, 26.8; FAB-LRMS: *m*/*z* 379 [M+H⁺]; FAB-HRMS calcd for C₂₃H₂₇N₂O₃[M+H⁺] 379.2016, found 379.2018.

(2*R*,3a*S*,7a*S*,10b*R*)-5-benzyl-1-(2-hydroxyethyl)-2-vinyl-1,2,3,5,6,7,7a,10b-octahydro-4*H*-furo[3',2':3,4]p yrrolo[3',2':1,5]cyclopenta[1,2-*c*]pyridin-4-one (12)

To the solution of hemiaminalether **11** (184 mg, 0.487 mmol) in anhydrous CH_2Cl_2 (12 mL) was added TfOH (52 µL,1.2 equiv) at room temperature. After stirring at 35 °C for 24 h, the reaction mixture was cooled to room temperature, and quenched with saturated aqueous NaHCO₃ solution. The organic layer was separated, and aqueous layer was extracted with chloroform. The combined organic layer was dried over Na₂SO₄, and then evaporated *in vacuo*. Purification by silica gel chromatography (EtOAc) gave the title compound (186.2 mg, 90 %) as colorless oil.

[α]²³_D (*c* 0.79, CHCl₃) +26.5; IR(CHCl₃): 3405, 2925, 1627, 1489, 1450,1059, 926, 753 cm⁻¹; ¹H NMR (500MHz, CDCl₃): δ = 7.42 (d, 1H, J = 1.9 Hz), 7.34–7.20 (m, 5H), 6.21 (d, 1H, J = 1.9 Hz), 5.74(dt, 1H, J = 18.2, 9.0 Hz), 5.17–5.13 (m, 2H), 4.76 (s, 1H), 4.71 (d, 1H, J = 14.7 Hz), 4.54 (d, 1H, J = 14.6 Hz), 3.89 (td, 1H, J = 10.5, 3.3 Hz), 3.67 (dt, 1H, J = 11.0, 4.1 Hz), 3.26–3.06 (m, 4H), 2.87 (ddd, 1H, J = 12.7, 9.9, 4.7 Hz), 2.71 (dt, 1H, J = 2.8, 3.3 Hz), 2.56 (t, 1H, J = 11.5 Hz), 2.13–2.06 (m, 1H), 1.98 (dd, 1H, J = 12.0, 5.0 Hz), 1.69–1.63 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 173.1, 155.8, 148.3, 139.4, 137.1, 129.9, 128.7, 127.9, 127.4, 118.1, 106.3, 68.1, 66.3, 64.1, 59.3, 51.4, 49.6, 46.0, 44.0 (2C), 29.7; FAB-LRMS: m/z 379 [M+H⁺]; FAB-HRMS: calcd for C₂₃H₂₇N₂O₃[M+H⁺] 379.2016, found 379.2011

(2*R*,3a*S*,7a*S*,10b*R*)-5-benzyl-1-(hex-5-enoyl)-2-vinyl-1,2,3,5,6,7,7a,10b-octahydro-4*H*-furo[3',2':3,4]pyrr olo[3',2':1,5]cyclopenta[1,2-*c*]pyridin-4-one (15)

Oxalyl dichloride (0.24 mL, 2.5 equiv) was dissolved in dry dichloromethane (10 mL) under argon atmosphere, and the solution was cooled to -78 °C and kept for 15 min. To the solution was added DMSO (0.24 mL, 3.0 equiv) dropwise at -78 °C, and the reaction mixture was stirred at the same temperature for 10 min. After dropwise addition of alcohol **12** (418 mg, 1.1 mmol) in dry dichloromethane (10 mL) at -78 °C, the reaction mixture was stirred at -78 °C for 50 min, and treated with triethylamine (0.93 mL, 6 equiv) dropwise. The solution was stirred for 5 min at -78 °C, then allowed to warm to room temperature, and stirred for 45 min before being poured into water. The organic layers were separated, and the aqueous layer was extracted with chloroform. The combined organic phase was dried over sodium sulfate and concentrated *in vacuo* to give unstable aldehyde (yellow oil), which was used for the next reaction without further purification.

To this crude aldehyde in ethanol (10 mL) was added Et_2NH (0.24 mL, 2.1 equiv) at room temperature. After 24 hours, 1N HCl aqueous solution (10 mL) was added and heated to 70 °C. The reaction mixture was stirred at 70 °C for 14 h before being quenched with sodium carbonate. The solution was evaporated *in vacuo*, and then the residue was dissolved to chloroform and water. The layers were separated, and the aqueous layer was extracted with chloroform. The combined organic phase was dried over sodium sulfate and concentrated *in vacuo*. Secondary amine was obtained as yellow oil, and the crude was used for the next reaction without further purification.

To the above obtained amine in dry dichloromethane (11 mL) was added 5-hexenoic acid (261 μ L, 2.0 equiv), EDCI (276 mg, 1.3 equiv) and DMAP (7.1 mg, 5 mol %) at room temperature under argon atmosphere. The reaction mixture was stirred at room temperature for 4 h before being poured into water. The layers were separated, and the aqueous layer was extracted with chloroform. The combined organic phase was dried over sodium sulfate and concentrated *in vacuo*. Purification by silica gel chromatography (EtOAc-Hexane, 1:1) gave the title compound (408 mg, 83 %, three steps) as colorless oil.

[α]²⁶_D (*c* 0.43, CHCl₃) +45.8; IR (ATR): 2928, 1634, 1486, 1406, 1346, 1271, 1201, 1128, 994, 913, 729, 670 cm⁻¹; ¹H NMR (500MHz, CDCl₃, mixture of amide rotamers): δ = 7.40 (d, 3/5H), 7.36 (d, 2/5H) 7.35–7.15 (m, 5H), 6.43–6.36 (m, 3/5H), 6.20–6.07 (m, 7/5H), 5.88–5.72 (m, 1H), 5.57 (s, 3/5H), 5.39 (s, 2/5 H) 5.16–4.90 (m, 4H), 4.73–4.39 (m, 3H), 3.23–3.08 (m, 3H), 2.74–2.67 (m, 1H), 2.61–2.54 (m, 3/5H), 2.49–2.45 (m, 3/5H), 2.42–2.33 (m, 4/5H), 2.27–1.96 (m, 3H), 1.84–1.62 (m, 3H); ¹³C NMR (100 MHz, CDCl₃, mixture of amide rotamer): δ = 173.1, 172.8, 172.6, 172.1, 157.3, 155.8, 148.2, 148.1, 141.2, 139.8, 138.6, 137.0, 136.8, 128.8, 128.8, 128.1, 128.0, 128.0, 127.9, 127.7, 127.6, 127.4, 115.3, 115.0, 114.9, 113.9, 107.0, 106.6, 66.2, 65.7, 65.2, 62.5, 62.4, 62.2, 51.3, 51.1 (2C), 45.1, 44.5, 44.3, 44.1, 43.4, 42.6, 34.3, 33.4, 33.3, 29.8 (2C), 28.2, 24.2; HRMS (ESI): calcd. for C₂₇H₃₁N₂O₃ ([M+H]+): 431.2329, Found: 430.2320.

(4a*S*,7b*R*,14a*R*,15a*S*,*Z*)-2-benzyl-3,4,4a,7b,11,12,14a,15-octahydrofuro[2'',3'':3',4']pyrido[3'',4'':1',5']cy clopenta[1',2':4,5]pyrrolo[1,2-*a*]azocine-1,9(2*H*,10*H*)-dione (16)

To the dinene **15** (85.1 mg, 0.198 mmol) in dry dichloromethane (200 mL, 1 mM) was added Grubbs 2nd generation catalyst (14.9 mg, 9 mol%). The reaction mixture was heated under reflux (oil bath temp. 50 °C) condition for 13 h. The mixture was evaporated *in vacuo*, and purification by silica gel chromatography (EtOAc) gave the title compound containing Ru residue. This mixture was dissolved in chloroform and QuadraSil AP was added in order to remove the Ru impurities. The suspension was stirred at room temperature for 24 h, and then filtration over Celite gave the pure **16** (74.4 mg, 90 %) as colorless powder. Mp: 178 °C (decomp.); $[\alpha]^{25}_{D}$ (*c* 0.63, CHCl₃) +106.3; IR (ATR): 2941, 2873, 2364, 2340, 1634, 1486, 1455, 1421, 1352, 1210, 1158, 1128, 771, 748, 701 cm⁻¹; ¹H NMR (500MHz, CDCl₃): δ = 7.40 (d, 1H, *J* = 1.9 Hz), 7.32–7.22 (m, 3H), 7.20–7.14 (m, 2 H), 6.17 (d, 1H, *J* = 1.9 Hz), 5.68–5.61(m, 2H), 5.54 (s, 1H), 4.62–4.58 (m, 2H), 4.54 (dd, 1H, *J* = 13.5, 6.1 Hz), 3.19 (dt, 1H, *J* = 1.2, 5.3 Hz), 3.14–3.11 (m, 2H), 2.77 (dd, 1H, *J* =

12.8, 7.8 Hz), 2.70 (ddd, 1H, J = 18.7, 12.6, 6.4 Hz), 2.56 (tt, 1H, J = 12.8, 6.2 Hz), 2.34–2.29 (m, 2H), 2.08– 1.91 (m, 3H), 1.78–1.74 (m, 1H), 1.59–1.52 (m, 1H); ¹³C NMR (100MHz, CDCl₃): $\delta = 172.8$, 157.1, 148.2, 137.0, 131.4, 128.8, 128.2, 128.0, 127.6, 126.6, 106.3, 66.5, 61.9, 59.8, 51.2, 45.0, 44.0, 42.5, 32.8, 28.4, 23.9, 23.6; HRMS (ESI): calcd. for C₂₇H₂₇N₂O₃ ([M+H]⁺): 403.2016, Found: 403.2009.

3. Determination of the relative configuration of <u>11</u>, <u>12</u> and <u>11'</u> by NOESY experiment

- Major isomer

12

(in CDCI₃)

- Minor isomer

HO

ΝBn

4. Epimerization experiment of 11/11' in acidic conditions

Judging from these experiments, 11' turned out to be the thermodynamically favored product.

5. Optimization of the diastereoselective allylic amination

Entry	Pd source	Ligand	Base	Solvent	Temp. (°C)	conv (%)	d.r.
							$(11:11')^{*a}$
1	Pd(PPh ₃) ₄	-	NaOAc	DMF	60	100	1:3.1
2	Pd(PPh ₃) ₄	-	-	THF	60	100	1:2.0
3	$Pd(PPh_3)_4$	-	K_2CO_3	THF	60	63	1:2.0
4	$Pd(PPh_3)_4$	-	NEt ₃	THF	60	73	1:1.2
5	$Pd(PPh_3)_4$	-	DBU	THF	60	100	1.5:1
6	Pd(PPh ₃) ₄	-	-	1,4-dioxane	60	87	1:2.0
7	$Pd(PPh_3)_4$	-	NEt ₃	1,4-dioxane	60	73	1:1.2
8	$Pd(PPh_3)_4$	-	DBU	1,4-dioxane	60	100	1.5:1
9	$Pd(PPh_3)_4$	-	DBN	1,4-dioxane	60	100	4.8:1
10	$Pd(OAc)_2$	Xantphos	-	1,4-dioxane	60	93	1:3.0
11	$Pd(OAc)_2$	-	DBN	1,4-dioxane	60	0	-
12	-	-	DBN	1,4-dioxane	60	0	-
13	$Pd(dba)_2$	-	DBN	1,4-dioxane	60	93	2.8:1
14	$Pd(dba)_2$	DPPP*	DBN	1,4-dioxane	60	100	1.7:1
15	Pd(dba) ₂	DPEPhos*	DBN	1,4-dioxane	60	100	3.3:1
16	[Pd(allyl)Cl] ₂	DPEPhos*	DBN	1,4-dioxane	r.t.	100	2.0:1

17	[Pd(allyl)Cl] ₂	DPPM*	DBN	1,4-dioxane	r.t.	100	1.2:1
18	[Pd(allyl)Cl] ₂	DPPB*	DBN	1,4-dioxane	r.t.	100	4.0:1
19	[Pd(allyl)Cl]2	Xantphos*	DBN	1,4-dioxane	r.t.	100	1.1:1
20	[Pd(allyl)Cl] ₂	$P(p-tol)_3$	DBN	1,4-dioxane	r.t.	100	4.3:1
21	[Pd(allyl)Cl] ₂	P(4-methoxyphenyl) ₃	DBN	1,4-dioxane	r.t.	100	3.3:1
22	[Pd(allyl)Cl] ₂	P(4-chlorophenyl) ₃	DBN	1,4-dioxane	r.t.	100	1:1.1
23	[Pd(allyl)Cl] ₂	$P(C_6F_5)_3$	DBN	1,4-dioxane	r.t.	66	1:2
24	[Pd(allyl)Cl] ₂	$P(p-tol)_3$	DBN	THF	r.t.	100	2.5:1
25	[Pd(allyl)Cl] ₂	DPPB*	DBN	THF	r.t.	100	3.3:1
26	[Pd(allyl)Cl] ₂	DPPB*	DBN	Toluene	r.t.	100	2.7:1
27	[Pd(allyl)Cl] ₂	DPPB*	DBN	MeCN	r.t.	100	1:1.8
28	[Pd(allyl)Cl] ₂	DPPB*	DBN	CH_2Cl_2	r.t.	100	1:1.8
29	Pd(dba) ₂	DPPP*	DBN	Toluene	60	100	1.4:1
30	Pd(dba) ₂	DPPB*	DBN	Toluene	60	100	2.0:1
31	Pd(dba) ₂	DPPF*	DBN	Toluene	60	100	1.6:1
32	Pd(dba) ₂	DPEPhos*	DBN	Toluene	60	100	1:1.1
33	$Pd(dba)_2$	Xantophos*	DBN	Toluene	60	100	1:2.0
34	Pd(dba) ₂	$P(n-Bu)_3$	DBN	Toluene	60	100	1:2.0
35	Pd(dba) ₂	PCy ₃	DBN	Toluene	60	0	-
36	Pd(dba) ₂	$P(2-furyl)_3$	DBN	Toluene	60	70	2.8:1
37	Pd(dba) ₂	P(2-furyl) ₃	DBN	Toluene	60	100	2.4:1
38	Pd(dba) ₂	P(o-tol) ₃	DBN	Toluene	60	100	1.9:1

*20 mol% of ligand was employed.

Solvent effects

- The ratio between 17 and 17' is irrelevant to the diastereoselectivity

6. references

- 1. Q. Lin, D. Meloni, Y. Pan, M. Xia, J. Rodgers, S. Shepard, M. Li, L. Galya, B. Metcalf, T-Y. Yue, P. Liu and J. Zhou, Org. Lett., 2009, 11, 1999.
- 2. S. Brandau, A. Landa, J. Franzøn, M. Marigo and K. A. Jørgensen, Angew. Chem. Int. Ed., 2006. 45, 4305.
- 3. A. M. Zawisza and J. Muzart, J. Organomet. Chem., 2010, 695, 62

7. Copies of ¹H and ¹³C NMR charts

Figure S1. ¹H NMR of **3**

Figure S2. ¹³C NMR of **3**

Figure S3. ¹H NMR of **6**

Figure S4. ¹³C NMR of **6**

Figure S5. ¹H NMR of 8

Figure S6. ¹³C NMR of **8**

Figure S7. ¹H NMR of **11**

Figure S8. ¹³C NMR of **11**

Figure S9. ¹H NMR of **12**

Figure S10. ¹³C NMR of **12**

Figure S11. ¹H NMR of **15**

Figure S12. ¹³C NMR of **15**

Figure S13. ¹H NMR of **16**

Figure S14. ¹³C NMR of **16**

Figure S15. NOESY of **11** in CDCl₃

Figure S16. NOESY of $\mathbf{11}$ in acetone- d_6

Figure S17. NOESY of **12** in CDCl₃

Figure S18. NOESY of **11'** in CDCl₃

8. Copies of HPLC charts

Figure S19. HPLC chart of S-3

==== Shimadzu LCsolution Analysis Report ====

sample ID method name acquisition date modified date	C:¥data_131217¥tsuji¥110422_NT_0010 IC (001).lcd : 110422_NT_0010 IC (001) : method1.lcm : 2011/04/22 18:53:30 : 2011/04/22 19:42:32
---	--

<Chromatogram>

使山谷A OTT 234TITT						
peak#	retention time (min)	area	area (%)			
1	24.512	6275589	50.170			
2	28.344	6232961	49.830			

Figure S19. HPLC chart of (rac)-S-3