Supporting Information

A Short Designed Semi-Aromatic Organic Nanotube

- synthesis, chiroptical characterization, and host properties

Torbjörn Wixe^{*a*}, Niels Johan Christensen^{*b*}, Sven Lidin^{*a*}, Peter Fristrup^{*b*} and Kenneth Wärnmark^{*a*}

Table of Contents

S 1	$^{1}\mathrm{H}$	and ¹³ C NMR spectra of:	
	S1.1	Compound 7	S3-S5
	S1.2	Compound 8	S6-S7
	S1.3	Compound 9	
	S1.4	Compound 10	S10-S12
	S1.5	Compound 12	S13-S14
	S1.6	Compound 13	S15-S16
	S1.7	Compound 14	S17-S18
	S1.8	Compound 15	S19-S20
	S1.9	Compound 16	S21-S22
	S1.10	Compound 2 (¹⁹ F NMR)	S23
	S1.11	Compound 2	S24-S27
S 2	NM	IR Titrations	S28-S31
S 3	Mo	lecular Dynamics Simulations	S32
	S3.1	Host-Guest Interactions	S32
	S3.	1.1 Initial Structures of Heptamer 2 - Guanidinium Complexes	S32
	S3.	1.2 Heptamer 2 - Acetylcholine Interatomic Distances in MD Simulations	S33
	S3.	1.3 Heptamer 2 - Guanidinium Interatomic Distances in MD Simulations	S34
	S3.	1.4 Snapshots from Heptamer 2 - Guanidinium Simulations	S35
	S3.	1.5 MD Snapshot of Heptamer 2 - Guanidinium Bridging Interaction	S38
	S3.2	MD Simulations of the Free Heptamer 2	S39
	S3.	2.1 Heptamer 2 MD Snapshots from 300 K and 400 K Simulations	S39
S4	Hej	ptamer 2 Molecular Models	S40
	S4.1 14	Heptamer 2 Molecular Models and Comparison with the Crystal Structure of S40	f
S5	Cal	culated Heptamer ECD/UV Spectra	S41
,	S5.1 Theor	ECD/UV Spectra for Different Heptamer Models at Different Levels of y	S42

S5.2	Heptamer ECD Spectra at Different Bandwidths	S43
S6 Co	ordinates for Optimized Structures	S44
S6.1	B3LYP/6-31G(d) Optimized Geometry of Heptamer 2	S44
S6.2	OPLS_2005 Optimized Geometry of Heptamer 2	S48
S6.3	B3LYP-D3/6-31G(d,p) Optimized Geometry of Heptamer 2	S52
S7 Cry	stallographic details of compound 14	S57
S8 RE	FERENCES	S58

NAME TW938a EXPNO 2 PROCNO 1 Date_ 20121002 Time 21.15 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zgdc30 TD 48074	213.675					159.094	CON.CC1	139.179	135.293	126.370 119.060	107 280			77.479	76.843				34.126		
SOLVENT CDC13 NS 4000 DS 4 SWH 24038.461 Hz FIDRES 0.500030 Hz AQ 0.9999892 sec RG 57 DW 20.800 usec DE 6.00 usec TE 295.9 K D1 0.00100000 sec D11 0.03000000 sec TD0 1		Comp	ound	7	0																
Employee CHANNEL f1 Employee NUC1 13C 13C P1 8.50 usec 100.00 dB PL1 -3.00 dB 100.6328298 MHz																					
===== CHANNEL f2 ===== === = =																					
***	aliyotaa waxayaa ahaa haa	neniste algeballationstead	bilaninanin aithe ann	hinne kan i kantesti	hadromaterandutting	adatudunad pumilaju	and here the state of the state	******	"non-spread board	ergtustersad tideo	manaterrational h	sanagatan (gest-saturater)(daters	holden and a state of the state	nunderskyndersk	ajiminaanjinjintaalijaija	ad descentering and the	tingtaaringtaaringtaaringt	er Laustucisensaaren Va	wheist magazistenis	numerum natalalada S	uphennikassentimen 4
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10 ppm

NAME TW938c EXPNO 3 PROCNO 1 Date_ 20121004 Time 15.59 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zgdc30		139.192 136.100 129.175 128.687 125.871		77.477 77.159 76.841	56.174		
1D 480/4 SOLVENT CDCl3 NS 512 DS 4 SWH 24038.461 Hz FIDRES 0.500030 Hz AQ 0.9999892 sec RG 57 DW 20.800 usec DE 6.00 usec TE 295.5 K D1 0.00100000 sec D11 0.3000000 sec TD0 1						Compound 8	
======================================							
====== CHANNEL f2 ===== CPDPRG2 waltz16 NUC2 1H PCPD2 80.00 usec PL2 -4.00 dB PL12 14.06 dB PL2W 21.45254898 W PL12W 0.33533499 W SFO2 400.1316005 MHz SI 32768 SF 100.6127592 MHz							
ununderstelen in sunderstelen in der einer sterken in der	edayaran yarayida ada yariya tarihin yaradada	udhigadaddaa aasaa naaqaa kiyyit Viisa maasiyid dada waxaa	disalaran perintakan kerekaran perintakan perintakan perintakan perintakan perintakan perintakan perintakan per	akkeputerosponia velinepitusi ¹ esen setingetarispitation en	nafinahlarnah kaplandan kabuta kabuta ka	ubbannisabilan tari asinan dilamit na mulaita na yani ina Al	s7
210 200 190 180 1	70 160 150	140 130 120	110 100	90 80 70	60 50	40 30 20	10 ppm

NAME TW1099_2a EXPNO 4 PROCNO 1 Date_ 20130629 Time 2.34 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zgdc30 TD 48074 SOLVENT C6D6 NS 4000	164.526 160.757 150.551 156.089 155.608	139.516 139.516 137.424 135.659 135.659 135.659 135.659 128.972 128.364 128.364 128.301	107.368	77.801	55.382 38.665 38.198 36.106 28.564
$\begin{array}{cccc} DS & 4 \\ SWH & 24038.461 \ Hz \\ FIDRES & 0.500030 \ Hz \\ AQ & 0.9999892 \ sec \\ RG & 57 \\ DW & 20.800 \ usec \\ DE & 6.00 \ usec \\ TE & 295.6 \ K \\ D1 & 0.00100000 \ sec \\ D11 & 0.03000000 \ sec \\ TD0 & 1 \\ \end{array}$					
====== CHANNEL f1 ====== NUC1 13C P1 8.00 usec PL1 -4.00 dB PL1W 73.82200623 W SFO1 100.6228298 MHz				Co	mpound 9
CHANNEL f2 CPDPRG2 waltz16 NUC2 1H PCPD2 80.00 usec PL2 -5.00 dB PL12 13.88 dB PL2W 27.00716019 W PL12W 0.34952554 W SFO2 400.1316005 MHz SI 131072 SF 100.6127443 MHz					
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				nenne fersen for serier	
210 200 190 180	170 160 150	0 140 130 1	120 110 100 90	80 70 60	50 40 30 20 10 ppm



NAME         TW955           EXPNO         2           PROCNO         1           Date_         20130110           Time         17.27           INSTRUM         spect           PROBHD         5 mm PABBO BB/           PULPROG         zgdc30           TD         48074			149.720 149.720 139.067 138.097 135.29 133.529 133.529 133.529 128.685 128.685 128.685	119.038	77.480	76.844	30.108 38.498 37.761 35.824	- 34,707 
SOLVENT         CDCl3           NS         512           DS         4           SWH         24038.461 Hz           FIDRES         0.500030 Hz           AQ         0.9999892 sec           RG         57           DW         20.800 usec           DE         6.00 usec           TE         295.7 K           D1         0.00100000 sec           D11         0.0300000 sec           TD0         1			N O $NH_2$					
====== CHANNEL f1 ====		Compound	10					
P1 8.50 usec PL1 -3.00 dB PL1W 58.63890457 W SFO1 100.6228298 MHz ====== CHANNEL f2 ==== CPDPRG2 walt16 NUC2 1H PCPD2 80.00 usec PL2 -4.00 dB PL12 14.06 dB PL12 14.06 dB PL2W 21.45254898 W PL12W 0.33533499 W SFO2 400.1316005 MHz SI 32768 SF 100.6127621 MHz								
a de la tradición de la constante de la constan	enilitistastivadatoisettisivästistopaistatutata	ing a finite in a principal data to the advection of the principal of the	nen bont syn llibydd yn freffi Nedeland yn ffedd a llyn ferdd d	qeallinnid haddadd	horis and the state of the stat	er fillen filler fil	na na sharan na shara	halige for the sector of the
				·				S11
21	10 200 190	180 170 160	150 140 130 120	) 110 10	0 90 80	70 60	50 40	30 20 10 ppm





NAME         TW1020a           EXPNO         2           PROCNO         1           Date_         20130303           Time         18.31           INSTRUM         spect           PROBHD         5 mm PABBO BB/           PULPROG         zgdc30           TD         48074           SOLVENT         CDC13           NS         2048           DS         4           SWH         24038.461 Hz           FIDRES         0.500030 Hz           AQ         0.9999892 sec           RG         57           DW         20.800 usec           DE         6.00 usec           TE         295.7 K           D1         0.00100000 sec	164.554 162.769 160.769 160.769 160.769 160.769 151.92 155.192 141.437 139.234 139.234 139.234 136.149 135.915 135.915 135.915 135.915 135.691 135.613 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615 135.615	77.477		38.806 38.682 38.682 38.776 38.7762 36.412 36.412 36.029 35.762 28.640 28.640
D11         0.03000000 sec           TD0         1           =======         CHANNEL f1 ======           NUC1         13C           P1         8.50 usec           PL1         -3.00 dB           PL1W         58.63890457 W           SFO1         100.6228298 MHz				Compound 12
ETERCIENCE CHANNEL f2 ETERCE CPDPRG2 waltz16 NUC2 1H PCPD2 80.00 usec PL2 -4.00 dB PL12 14.06 dB PL2W 21.45254898 W PL12W 0.33533499 W SFO2 400.1316005 MHz SI 32768 SF 100.6127604 MHz		haddaaaayaanadaaayaaaa kirjadayaatay jirayaaaaa digaanada jiraa	en fina de la companya de la company	ngisea pilona kulik kulik kulik kunik k
210 200 190 180	170 160 150 140 130 120 110	100 90 80 70	0 60 5	S14

NAME         TW1009a           EXPNO         1           PROCNO         1           Date_         20130219           Time         17.05           INSTRUM         spect           PROBHD         5 mm PABBO BB/           PULPROG         zg30           TD         57690           SOLVENT         CDCl3           NS         32           DS         2           SWH         7211.539 Hz           FIDRES         0.125005 Hz           AQ         3.9998901 sec           RG         203           DW         69.333 usec           DE         6.00 usec           TE         294.6 K           D1         0.00100000 sec           TD0         1           ========         CHANNEL f1 =====           NUC1         1H	9.971	7.902 7.825 7.535 7.535 7.237 7.237 7.247 7.103 7.103 7.103 7.081 6.926 6.926 6.926 6.906	$ \underbrace{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
P1 10.00 usec PL1 -4.00 dB PL1W 21.45254898 W SFO1 400.1334011 MHz SI 131072 SF 400.1300058 MHz WDW EM SSB 0 LB 0.20 Hz GB 0 PC 4.00			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
11.5 11.0 10.5	10.0 9.5 9.0 8.5	8.0         7.5         7.0         6.33         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0 <td>5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm 0 1 1 1 1 1 1 1 1 1 1 1 1 1</td>	5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm 0 1 1 1 1 1 1 1 1 1 1 1 1 1

NAME       TW1009a         EXPNO       7         PROCNO       1         Date_       20130220         Time       3.26         INSTRUM       spect         PROBHD       5 mm PABBO BB/         PULPROG       zgdc30         TD       48074         SOLVENT       CDCl3         NS       2048         DS       4         SWH       24038.461 Hz         FIDRES       0.500030 Hz         AQ       0.9999892 sec         RG       57         DW       20.800 usec         DE       6.00 usec         TE       296.0 K         D1       0.00100000 sec         D11       0.03000000 sec         TD0       1	162.135 161.624 161.624 154.945 154.945 139.269 136.007 136.007 136.007 136.007 136.007 131.731 131.731 131.731 131.97 131.997 131.997 131.997 131.997 131.28.683 131.997 131.28.683 131.997 124.200 118.969	77.482 77.163 76.847	$\int_{N}^{38.33} \frac{100}{100000000000000000000000000000000$
======         CHANNEL f1           NUC1         13C           P1         8.50 usec           PL1         -3.00 dB           PL1W         58.63890457 W           SFO1         100.6228298 MHz           ======         CHANNEL f2           CPDPRG2         waltz16           NUC2         1H           PCPD2         80.00 usec           PL2         -4.00 dB           PL12         14.66 dB           PL2W         21.45254898 W           PL12W         0.33533499 W           SFO2         400.1316005 MHz           SI         32768           SF         100.6127581 MHz			
			S16



$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	77.475 77.158 76.840	56.211 38.748 38.631 38.631 38.631 38.216 38.328 36.163 36.163 36.025 35.731 28.992 28.892 28.892
	Compound 14		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		entrestyrmentetet leyteranentetigeneristerentete	ren na se de la contraction
·····			S18
210 200 190	180 170 160 150 140 130 120 110 100 90	80 70	60 50 40 30 20 10 ppm

TW1163b NAME **EXPNO** 7 PROCNO 20131103 Date 16.48 Time INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zgdc30 TD 48074 SOLVENT CDCl3+MeOD NS 32768 DS 4 SWH 24038.461 Hz FIDRES 0.500030 Hz 0.9999892 sec AQ RG 57 DW 20.800 usec DE 6.00 usec ΤE 296.0 K D1 0.00100000 sec D11 0.03000000 sec TD0 1 ====== CHANNEL f1 ======== NUC1 13C **P**1 8.00 usec PL1 -4.00 dB PL1W 73.82200623 W 100.6228298 MHz SFO1 ====== CHANNEL f2 ======= CPDPRG2 waltz16 1HNUC2 PCPD2 80.00 usec PL2 -5.00 dB PL12 13.88 dB 27.00716019 W PL2W PL12W 0.34952554 W SFO2 400.1316005 MHz SI 262144 SF 100.6127663 MHz

210

200

190

180

170

160

150

130

140

120

Compound 2 13C data in the paper is a combination of this and the previous 13C spectra

77.480 77.161 76.843 19.0 ĝ 18 8 8 8 Зö. 36.

498 õ 84

936 8

90 80 70 60 50 30 110 100 40 20

S27

10

ppm

NMR Titrations

[H]₀ is the concentration of the host and it remains constant during the titration.

[G]₀ is the concentration of the stock solution of the guest.

The guest solution is prepared in the host solution. This solution is then added in portions (V_{add}) to the NMR sample. This solution also serves as the final data-point in each measurement. Noted as "Max conc." in the tables below.

[G] is the concentration of the guest in the NMR sample in each measurement.

 $\Delta \delta = \delta_{obs} - \delta_0$

 δ_{obs} is the observed chemical shift of the host for each measurement in the presence of guest.

 δ_0 is the observed chemical shift of the host without any guest present.

 $\Delta \delta_{\text{calc}}$ is fitted to $\Delta \delta$ according to Eq. 1. using Kaleidagraph.

$$\Delta \delta_{\text{calc}} = \frac{\Delta \delta_{\text{max}}}{[H]_0} \left(\left(\frac{1}{2} [H]_0 + [G]_0 + \frac{1}{K_a} \right) - \sqrt{\frac{1}{4} \left([H]_0 + [G]_0 + \frac{1}{K_a} \right)^2 - [H]_0 [G]_0} \right) \quad \text{Eq. 1}$$

 $\Delta \delta_{\text{max}} = \delta_0 - \delta_{\text{max}}$; δ_{max} is the chemical shift at 100% complexation.

V_{add} and V_{tot} is the added volume of guest and the total volume in the NMR sample respectively.

The resonance used in the fit is from the proton shown in the structures below.

Solvent: MeOH-d₄ 10%v/v in CDCl₃

Host: 1

[H]₀: 0.8 mM

Guest: GndBPh₄

[G]₀: 68.5 mM

Initial Volume: 0.50 mL

V _{add} (mL)	V _{tot} (mL)	[G] / M	$\Delta\delta$	$\Delta \delta_{ m calc}$	[HG]/[H] ₀
0	0.5	0.000	0.000	0.000	0.0
0.02	0.52	0.003	-0.002	-0.002	1.2
0.03	0.55	0.006	-0.004	-0.004	2.7
0.05	0.6	0.011	-0.007	-0.007	4.9
0.07	0.67	0.017	-0.011	-0.010	7.2
0.1	0.77	0.024	-0.014	-0.014	9.7
0.15	0.92	0.031	-0.017	-0.018	12.3
0.25	1.17	0.039	-0.022	-0.022	15.0
0.4	1.57	0.047	-0.025	-0.025	17.3
	Max.	0.069	-0.034	-0.034	23.5

Solvent: MeOH-d₄ 10%v/v in CDCl₃

Host: 16

[H]₀: 1.1 mM

Guest: GndBPh₄

[G]₀: 63.4 mM

Initial Volume: 0.50 mL

V _{add} (mL)	V _{tot} (mL)	[G] / M	$\Delta\delta$	$\Delta \delta_{ m calc}$	[HG]/[H] ₀
0	0.5	0.000	0.000	0.000	0.0
0.02	0.52	0.002	-0.001	-0.001	2.0
0.03	0.55	0.006	-0.003	-0.002	4.6
0.05	0.6	0.011	-0.004	-0.004	8.1
0.07	0.67	0.016	-0.006	-0.006	11.8
0.1	0.77	0.022	-0.008	-0.008	15.6
0.15	0.92	0.029	-0.009	-0.009	19.3
0.25	1.17	0.036	-0.010	-0.011	23.1
	Max conc.	0.063	-0.017	-0.017	34.4

 $\overline{K_{a}}$: 8.1±2.2 M⁻¹ $\Delta \delta_{max}$: -0.05 R² = 0.991

Solvent: MeOH-d₄ 10%v/v in CDCl₃

Host: 8-Methoxyquinoline [H]₀: 0.8 mM

Guest: GndBPh₄

[G]₀: 61.8 mM

Initial Volume: 0.50 mL

V _{add} (mL)	V _{tot} (mL)	[G] / M	$\Delta\delta$	$\Delta \delta_{ m calc}$	[HG]/[H] ₀
0	0.5	0.000	0.000	0.000	0.0
0.02	0.52	0.002	-0.001	-0.001	3.5
0.03	0.55	0.006	-0.003	-0.003	7.9
0.05	0.6	0.010	-0.005	-0.005	13.6
0.07	0.67	0.016	-0.007	-0.008	19.3
0.1	0.77	0.022	-0.010	-0.010	24.9
0.15	0.92	0.028	-0.012	-0.012	30.1
0.25	1.17	0.035	-0.014	-0.014	35.1
0.4	1.57	0.042	-0.016	-0.016	39.2
	Max	0.062	-0.019	-0.019	48.6

 K_{a} : 15.6±1.2M⁻¹ $\Delta \delta_{max}$: -0.04 $R^{2} = 0.998$

S3 Molecular Dynamics Simulations

S3.1Host-Guest Interactions

S3.1.1 Initial Structures of Heptamer 2 - Guanidinium Complexes

The initial structures used as starting points for MD simulations (prepared as described in the Methods section of the article) are shown in Figure S1.

Figure S1. Initial geometry of 2•Gnd complexes A, B and C used as starting points for 250 ns MD simulations.

S3.1.2 Heptamer 2 - Acetylcholine Interatomic Distances in MD Simulations

MD time series for the minimum distances between any atom in acetylcholine (ACh) and heptamer 2 are shown in Figure S2.

Figure S2. Minimum distance between any atom in heptamer 2 and acetylcholine (ACh) during three 250 ns MD simulations. Simulations were carried out in chloroform and started from different the geometries (A, B, C in Figure S1) corresponding to "top", "middle" or "bottom" initial positioning of Ach along the heptamer axis.

S3.1.3 Heptamer 2 - Guanidinium Interatomic Distances in MD Simulations

MD time series for the minimum distances between any atom in guanidinium (Gnd) and heptamer **2** are shown in Figure S3. Snapshots are shown in Figure S4 - Figure S6.

Figure S3. Minimum distance between any atom in heptamer 2 and guanidinium (Gnd) during three 250 ns MD. Simulations were carried out in chloroform started from different geometries (A, B, C), see Figure S1.

S3.1.4. Snapshots from Heptamer 2 - Guanidinium Simulations

Figure S4. Snapshots extracted from the 250 ns MD simulation of heptamer 2 - guanidinium complex A.

Figure S5. Snapshots extracted from the 250 ns MD simulation of heptamer 2 - guanidinium complex B.

Figure S6. Snapshots extracted from the 250 ns MD simulation of heptamer 2 - guanidinium complex C.

S3.1.5 MD Snapshot of Heptamer 2 - Guanidinium Bridging Interaction

In the MD simulation started with Gnd positioned near the middle of heptamer **2**, i.e. geometry B (Figure S1b), Gnd occasionally bridged two 1,5-naphthyridine nitrogen atoms, which caused axial contraction of the heptamer, see Figure S7.

Figure S7. Snapshot from the MD simulation started from geometry B in Figure S1b, showing bridging of two 1,5-naphthyridine nitrogen atoms by guanidinium. The chloride counterion is shown as a yellow sphere.

S3.2MD Simulations of the Free Heptamer 2

S3.2.1 Heptamer 2 MD Snapshots from 300 K and 400 K Simulations

Snapshots extracted at t = 0, 25, 50, 75 and 100 ns are shown in Figure S8 for the 300 K (top panel) and 400 K (bottom panel) simulations of the free heptamer **2** in explicit chloroform.

The simulations at 400 K caused visible perturbations of the heptamer, such as the longitudinal compression seen in Figure S8 at t = 50 ns. In contrast, the simulation at 300 K did not produce substantial perturbations. The structural conservation in this simulation was also evident from the high similarity between the averaged MD heptamer structure (Figure 4b) and the single OPLS_2005 optimized heptamer structure (Figure 4a).

Figure S8. Snapshots from the isolated heptamer 2 simulations extracted at 25 ns intervals at 300 K (top panel) and 400 K (bottom panel).

S4 Heptamer 2 Molecular Models

S4.1 Heptamer 2 Molecular Model from B3LYP-D3/6-31G(d) Optimization

Figure S9. Heptamer 2 structure optimized at the B3LYP-D3/6-31G(d) level of theory. The structure deviated significantly from other models of the heptamer 2 (see Figure 4) and produced poor overlays with the crystal structure of 14. For these reasons, the model was not considered further in the study.

S5 Calculated Heptamer ECD/UV Spectra

S5.1ECD/UV Spectra for Different Heptamer Models at Different Levels of Theory

Figure S10. Calculated (b - d) and experimental (a) ECD/UV spectra for the heptamer 2. A

bandwidth of 0.1 eV was used for calculated ECD curves. **a**, Experimental ECD and UV spectra. **b**, B3LYP/6-31G(d) geometry, B3LYP/6-31G(d,p) spectra. **c**. OPLS_2005 geometry, B3LYP/6-31G(d,p) spectra.

S5.2 Heptamer ECD Spectra at Different Bandwidths

Calculated ECD spectra are influenced considerably by the choice of bandwidth (σ) as more spectral details are revealed at narrow bandwidths [13]. For the heptamer **2**, the spectra calculated at the B3LYP/6-31G(d,p) level for the B3LYP/6-31G(d) geometry (Figure S11 left panel, top), and at the CAM-B3LYP/6-31G(d,p) level for the OPLS_2005 geometry (Figure S11 left panel, bottom) contain approximately the same level of detail at $\sigma = 0.1$ eV. A bandwidth of $\sigma = 0.2$ eV causes peak attenuation and broadening, as shown in Figure S11, right panel.

Figure S11. Influence of bandwidth on calculated ECD spectra. Simulated ECD spectra of heptamer **2** calculated at the B3LYP/6-31G(d,p) level (top panel) and the CAM-B3LYP/6-31G(d,p) level (bottom panel), using two different bandwidths (0.1 and 0.2 eV).

S6 Coordinates for Optimized Structures

S6.1B3LYP/6-31G(d) Optimized Geometry of Heptamer 2

С	3.27614600	-5.29972400	2.65349100
С	3.39768400	-4.85278500	1.17955500
С	4.78513500	-4.35513400	0.81915400
С	5.91549300	-4.65410100	1.64844900
С	5.74305000	-5.40620300	2.96234600
С	5.71879600	-4.42189500	4.15335500
С	4.44974400	-6.23289500	2.98242400
С	5.00512700	-3.62211800	-0.32765600
С	6.31234900	-3.19952500	-0.66416600
С	7.36552200	-3.56140800	0.22496400
Ν	7.14983600	-4.27385600	1.36390400
С	7.76140900	-2.10490300	-2.08707800
С	8.89543700	-2.42232100	-1.26897100
С	8.67398300	-3.14605900	-0.11651100
Ν	6.52567400	-2.47624500	-1.79651700
С	-7.50336600	-3.53372600	0.28292500
С	-6.47320400	-3.06017000	1.14624400
Ν	-7.26874200	-4.42769300	-0.71533100
С	-6.03709600	-4.87856500	-0.88467900
С	-4.92823200	-4.47355300	-0.07201000
С	-5.16794500	-3.56230000	0.93476600
С	-5.84285000	-5.84284800	-2.04849000
С	-5.76194000	-5.07226800	-3.38498900
С	-3.38536700	-5.72555300	-1.67870100
С	-3.54145600	-5.04612300	-0.29997300
С	-4.56735800	-6.68230500	-1.88927400
Ν	-6.70537500	-2.15704000	2.13698700
С	-7.93758200	-1.70837300	2.30827900
С	-9.04919900	-2.12248400	1.50265500
С	-8.80878800	-3.03166700	0.49452800
С	-3.05904900	-2.70690700	-4.70045700
С	-1.98166000	-3.12308500	-3.86561300
Ν	-2.92506500	-1.72812700	-5.63584500
С	-1.74534700	-1.14788000	-5.78013400
С	-0.59400300	-1.49276700	-4.99917900
С	-0.73541900	-2.47873700	-4.04565800
С	-1.67995700	-0.03475800	-6.81847800
С	-2.25805800	1.28037700	-6.24944400
С	-1.32651900	1.97112400	-5.27021300
С	0.06069100	1.61728400	-5.19650600
С	0.62764600	0.49155800	-6.05199900
С	0.74261400	-0.81382500	-5.23380300
С	-0.24158900	0.22249400	-7.28851500
С	-1.77896600	2.97649700	-4.44183300
С	-0.88611700	3.63077300	-3.56081400
С	0.47193300	3.19887600	-3.56847900
Ν	0.91984300	2.20252900	-4.37903100
Ν	-1.33243500	4.62898400	-2.75096900
С	-0.46903200	5.22447600	-1.94518900
С	0.91736100	4.86772000	-1.87038500

С	1.36499900	3.85131800	-2.68723300
С	-1.04572200	6.31431300	-1.04900600
С	-1.77387400	5.69850300	0.16645000
С	-0.82463100	5.15148000	1.21629900
С	0.56176400	5.51463400	1.22058600
С	1.13518800	6.42608700	0.14234900
Ċ	1.86531500	5.60145500	-0.94002000
C	0.04350200	7 26627800	-0 53593800
C	-1 27070000	4 30411000	2 20827500
C	-0 37377700	3 81837000	3 18805500
C	0.98635600	4 23268300	3 09128900
N	1 / 2906100	5 07016900	2 11/88/00
N	-0.81822500	2 98600000	<i>1</i> 16789800
C	0.01022300	2.50000000	5.06332600
C	1 44034100	2.34284100	5.05376100
C	1.44034100	2.88559800	1.05270100
C	1.88/12300	5.75140200	4.03994000
C	-0.314/2300	1.38908200	0.1100/400 5.52250200
C	-0.07040000	0.17001100	5.52259200
C	0.04427300	-0.55810400	5.55656000
C	1.82527800	-0.11166900	6.03523600
C	1.80591500	1.14880300	6.89162200
C	2.38633300	2.34921300	6.11112500
C	0.38515800	1.50561700	7.35106300
C	0.74340300	-1.68243800	4.56480300
C	1.97695900	-2.36376200	4.44561500
C	3.08/51300	-1.83642900	5.16629100
N õ	2.99472200	-0.72243400	5.94185300
C	3.23696900	-4.09073900	3.57915000
С	4.41628900	-3.65094600	4.26533700
C	4.32044200	-2.52023800	5.04872200
N	2.07053300	-3.47346500	3.66451500
N õ	-2.11814600	-4.094/3100	-2.92320700
C	-3.29556200	-4.68062600	-2.78404900
C	-4.44368500	-4.34485900	-3.57417700
C	-4.30450100	-3.35360700	-4.52245100
Н	9.48875500	-3.41198500	0.55274100
H	2.31883400	-5.81887300	2.76697700
Н	3.14920700	-5.71161800	0.53848400
Н	2.65107600	-4.07984100	0.96534100
Н	6.62142400	-6.04940300	3.07897700
Н	6.56329500	-3.72782500	4.07581700
Н	5.87260600	-4.99747300	5.07827600
Н	4.31973800	-6.69451100	3.96962600
Н	4.49341300	-7.04830900	2.24916000
Н	4.19011600	-3.35265400	-0.99524500
Н	-4.36939100	-3.20708200	1.58177700
Н	-6.73097700	-6.48224200	-2.08471900
Н	-5.89425000	-5.79207900	-4.20643200
Н	-6.59648100	-4.36546300	-3.45390900
Н	-2.43544800	-6.27019000	-1.67699200
Н	-2.78535100	-4.26096300	-0.18774700
Н	-3.33100000	-5.79482700	0.47815700
Н	-4.64919900	-7.36402900	-1.03318600
Н	-4.41737700	-7.30297700	-2.78185600
Н	-9.60569300	-3.37988500	-0.15827500
Н	5.17889400	-2.12877600	5.58937900

Н	0.09618700	-2.78245300	-3.41424200
Н	-2.31582100	-0.34335000	-7.65474100
Н	-2.45733100	1.96070100	-7.09069800
Н	-3.22598500	1.08257100	-5.77511100
Н	1.63944300	0.79274000	-6.34250000
Н	1.23517600	-0.60716100	-4.27694800
Н	1.40204700	-1.50456300	-5.77996500
Н	0.15250300	-0.64147600	-7.83859000
Н	-0.22260000	1.07771300	-7.97612100
Н	-2.82041400	3.28938200	-4.44442200
Н	2.40314300	3.52791200	-2.67575900
Н	-1.78910800	6.85442800	-1.64453700
Н	-2.40121400	6.47836000	0.62309500
Н	-2.45578200	4.91035300	-0.17245900
Н	1.87642800	7.06771300	0.63008700
Н	2.55034700	4.89193000	-0.46231400
Н	2.48905300	6.28701000	-1.53276500
Н	0.47951500	7.84561800	-1.35971100
Н	-0.39369000	7.98625700	0.16760300
Н	-2.30959100	3.98712000	2.26063100
Н	2.93114600	4.02825200	3.99327900
Н	-1.51175400	1.95759600	6.37309800
Н	-1.32253300	-0.41056000	6.19771900
Н	-1.20122200	0.22554800	4.56228200
Н	2.45974500	0.96107800	7.74959100
Н	3.34080200	2.06477000	5.65401800
Н	2.61157100	3.15088600	6.83003500
Н	0.39876400	2.46011900	7.89261200
Н	-0.00655300	0.74900700	8.04282400
Н	-0.11264500	-2.06891500	4.01687700
Н	-5.13823900	-3.04450000	-5.14842700
С	7.91734600	-1.26255500	-3.34701600
С	7.53242700	0.20814300	-3.06951000
С	8.58293500	0.95514100	-2.26943700
С	9.91476700	0.45303200	-2.14679400
С	10.30476000	-0.89010000	-2.75195300
С	10.29476700	-1.99588500	-1.67330400
С	9.35458000	-1.30100900	-3.88525900
С	8.29795200	2.15370400	-1.65039200
С	9.29143000	2.86053800	-0.93322100
С	10.58932400	2.26580300	-0.88281800
Ν	10.86880400	1.08188900	-1.48122200
С	10.06792900	4.72554600	0.38965600
С	11.36469800	4.15715900	0.45224500
С	11.63422400	2.95002400	-0.16766600
С	9.04725100	4.10081700	-0.28369800
Н	9.89160300	5.67459100	0.88897700
Н	12.14042900	4.68467700	0.99481200
Н	7.21142400	-1.65917200	-4.08416900
Н	7.39065700	0.71379300	-4.03628800
Н	6.56523700	0.24463400	-2.55521500
Н	11.33173100	-0.78965300	-3.11787200
Н	10.85563900	-1.65755400	-0.79483900
Н	10.83273100	-2.87012100	-2.06937700
Н	9.61338200	-2.30619500	-4.24207000
Н	9.44808500	-0.62173200	-4.74221600

Н	7.29391100	2.57173500	-1.70807500
С	-10.53500100	2.47114300	0.24770000
С	-9.21672700	3.02144100	0.25602400
Ν	-10.88768300	1.42013400	1.02776800
С	-9.98870300	0.88548600	1.83684300
С	-8.64386800	1.35719300	1.93537900
С	-8.28403000	2.41860600	1.13221100
С	-10.45760600	-0.32055100	2.64143000
С	-10.44690900	-1.59378500	1.76729400
С	-8.11288500	-0.66314600	3.40288500
С	-7.65973700	0.72693100	2.90260600
С	-9.57164800	-0.56449400	3.87151300
С	-8.89425000	4.11844800	-0.58788500
С	-9.85906900	4.64827900	-1.40885100
С	-11.17490100	4.12224900	-1.43304300
С	-11.52013800	3.05376400	-0.62489000
Н	-7.26673100	2.80621600	1.16443600
Н	-11.49385300	-0.12571100	2.93625500
Н	-11.03075800	-2.37152400	2.28208400
Н	-10.96115300	-1.39437400	0.82042500
Н	-7.45433500	-0.95249100	4.22856400
Н	-6.66955500	0.64694300	2.43962500
Н	-7.54325000	1.38500600	3.77658300
Н	-9.67312000	0.25244000	4.59740500
Н	-9.88466400	-1.48620700	4.37856200
Н	-9.62264200	5.48737100	-2.05778400
Н	-11.90482800	4.57134100	-2.09641100
Н	8.05382300	4.53925600	-0.32942900
Н	-7.88608500	4.52406200	-0.57177900
0	12.84037000	2.32887500	-0.16263700
0	-12.75014600	2.48324600	-0.57846400
С	13.91033200	2.95559500	0.52406700
Н	14.77109100	2.29624300	0.39900700
Н	14.14167800	3.94095000	0.09755300
Н	13.69200400	3.06986300	1.59442300
С	-13.76516400	3.01872700	-1.41046100
Н	-14.65753200	2.42215800	-1.21279200
Н	-13.97010400	4.07086400	-1.17089200
Н	-13.50135600	2.93752700	-2.47357400

S6.20PLS_2005 Optimized Geometry of Heptamer 2

С	3.79006300	-3.50397400	-5.19691500
С	3.94357600	-1.98862700	-4.94065300
С	5.36799200	-1.56653000	-4.58599200
С	6.46184800	-2.44234800	-4.77301300
С	6.26201500	-3.86689500	-5.29550300
С	6.23697800	-4.89205600	-4.14066200
С	4.94949100	-3.97802500	-6.08873800
С	5.62188600	-0.27464500	-4.08177900
С	6.94164700	0.11815500	-3.77677600
С	7.97354600	-0.84383400	-4.00298900
Ν	7.73173100	-2.08575400	-4.48583800
С	8.45488100	1.71977400	-3.01536800
C	9.54838100	0.84389200	-3.20388800
Č	9.29387600	-0.44956200	-3.70359400
N	7.18396600	1.36093400	-3.29613200
C	-7.97409000	0.80574800	-4.01023900
Č	-6.94225600	-0.15425000	-3.77495600
N	-7 73195700	2.04312600	-4 50448000
C	-6 46182300	2 39687800	-4 79449800
Č	-5 36821800	1 52276200	-4 59902200
C	-5 62237800	0.23549000	-4 08294600
C	-6 26171700	3 81640900	-5 33039600
C	-6 23690500	4 85243200	-4 18536200
C	-3 78978900	3 45412100	-5 22778400
C	-3 94355600	1 94137900	-4 95695300
C C	-4 94901400	3 91962700	-6 12/13/100
N	-7.18502500	-1 39255800	-3 28311100
C C	-7.18502500 8.45605900	1 74856600	2 00028200
C C	0 5/031800	-1.74830000	3 10585000
C C	9.04951800	0.41448600	3 70744200
C	3 58667000	5 66023600	1 52063000
C	-3.38007900	4.08252100	-1.52005900
N N	2.47820300	6 3 4 5 5 8 4 0 0	-2.11519700
N C	-3.49400700	6 40480600	0.27742600
C	-2.30332200	5 77185800	0.27742000
C	-1.14440200	5.77163600	-0.22044400 1 43547100
C	-1.24400700	7 19571000	-1.4334/100
C	-2.27003800	6 22707400	1.39310300
C	-2.79123000	5 22/0/400	2.70903800
C	-1./039/300	5.32420200	3.29332700
C	-0.40000000	5.59052500	2.91072900
C	0.09013800	0.43233200 5 97022900	1.92072700
C	0.19098000	3.67922600	1.0105/100
C	-0.83134100	1.00//2000	1.91034100
C	-2.15//8600	4.314/8000	4.19820500
C	-1.20105500	3.41093600	4.70602900
C N	0.14625100	3.57396400	4.26100400
IN N	0.52343500	4.53844600	5.58843900
IN C	-1.5/822500	2.44850300	5.58118500
C	-0.64502700	1.60362200	6.06893200
C	0.71636800	1.68081300	5.69621200
C	1.10485500	2.67872000	4.77918800
C	-1.14453000	0.53456700	7.04309600

С	-1.75527400	-0.67028200	6.29388400
С	-0.71516000	-1.62549000	5.71173500
С	0.64631400	-1.54492800	6.08310700
С	1.14638800	-0.46686300	7.04712300
С	1.75675900	0.73091000	6.28645100
С	0.00118700	0.03807500	7.94019900
Č	-1.10403200	-2.63195600	4.80407900
Ċ	-0.14560900	-3.53186900	4.29377400
C	1 20240200	-3 36470200	4 73673900
N	1 57933300	-2 39419400	5 60276500
N	-0 52304300	-4 50444300	3 43025800
C	0.32304300	-5 36688400	2 96627800
C	1 76631700	-5 29113600	3 3/387300
C	2 158/1500	-4 27302500	1 23697400
C C	2.13841300	-4.27302300 6 43240100	4.23097400
C	-0.09010400	-0.43240100 5 97212000	1.98030300
C	-0.19/14100	-3.87313000	0.33003800
C	1.14423300	-3.77270400	-0.1/51/500
C	2.30339400	-0.4008/900	0.33004400
C	2.27033300	-7.10901100	1.03977000
C	2.79138700	-6.29905400	2.82777300
C	0.85150400	-/.04/82400	1.98188900
C	1.24449500	-5.06614100	-1.38921900
C	2.4/822800	-5.00189300	-2.06967700
C	3.58661000	-5.6/380400	-1.46844900
N	3.4939/100	-6.34/80100	-0.29/55900
C	5./56/0/00	-4.29281600	-3.88558500
C	4.91401700	-4.92653200	-3.3/834000
C	4.81/46300	-5.61980600	-2.15455900
N	2.57034000	-4.33052000	-3.24235500
N	-2.5/025600	4.29973900	-3.28129200
C	-3./5661400	4.25562300	-3.92414500
C	-4.91398400	4.89435100	-3.42320200
C	-4.81/48600	5.59951500	-2.20621300
н	10.10620800	-1.14341000	-3.80380000
Н	2.84556900	-3.0/808100	-5./1516500
H	3.00005500	-1.44958000	-5.84/39100
H	3.24/0/800	-1.66210200	-4.16695500
п	7.09903400	-4.10150500	-3.93403900
н	7.00007200	-4./1158/00	-3.454/3/00
п	0.39438900	-3.88923300	-4.33327800
Н	4.78839500	-5.00784100	-0.40838000
Н	4.99930900	-3.3/3/2400	-0.99489500
Н	4.81063600	0.42251200	-3.93092900
H	-4.81128900	-0.46035600	-3.92549900
H	-/.09918400	4.04460900	-5.99184500
H	-6.39439000	5.84558900	-4.60743700
H	-/.06594600	4.6/843000	-3.49/80300
H	-2.84523600	3.62307600	-5./4/52200
H	-3.24/45300	1.62236300	-4.1/9/6900
н	-3.00000/00	1.39353100	-3.85819400
н	-4.998/6100	5.50664700	-/.02466300
H	-4./8//6000	4.94630300	-0.45408500
H	-10.10666700	1.10/02600	-5.8/42/300
H	5.68058500	-0.11962900	-1./3963400
н	-0.3//9/600	4.56142000	-1.85239300
н	-2.93023700	8.05224000	1.4/9/0/00

Η	-3.04593400	6.98733400	3.59944900
Н	-3.71461000	5.81651500	2.49197500
Н	1.08186700	6.77296100	2.25068300
Н	0.69894500	4.91060600	0.51194800
Н	0.82818500	6.53981800	-0.09923500
Н	-0.51940400	8.39212300	1.16630900
Н	-0.83213600	8.17804000	2.87384800
Н	-3.18779900	4.23292900	4.51343300
Н	2.13750800	2.77007900	4.47551500
Н	-1.91703200	0.98721100	7.66710200
Н	-2.36134700	-1.24690600	6.99363100
Н	-2.43529100	-0.32695600	5.51288600
Н	1.91912000	-0.91369400	7.67500400
Н	2.43617700	0.38026600	5.50816700
Н	2.36334100	1.31388900	6.98039000
Н	0.35409500	0.84132500	8.58751100
Н	-0.35144700	-0.75903400	8.59527300
Н	-2.13680000	-2.72612700	4.50185900
Н	3.18854300	-4.18825300	4.55103800
Н	-1.08178500	-6.74958100	2.31373900
Н	-0.82816100	-6.53951300	-0.03838600
Н	-0.69914700	-4.90449600	0.55681700
Н	2.93023600	-8.03660300	1.55463500
Н	3.71476800	-5.79126600	2.54504300
Н	3.04616200	-6.95115400	3.66394300
Н	0.83214300	-8.14900200	2.95016100
Н	0.51923800	-8.37924700	1.24473800
Н	0.37801300	-4.57811300	-1.81088800
Н	-5.68062500	6.10335300	-1.79634700
С	8.65096100	3.13018200	-2.45271000
С	8.34992000	3.18110800	-0.93892100
С	9.46823500	2.60785500	-0.07085600
C	10.75193500	2.35036200	-0.60239900
C	11.06449000	2.59173800	-2.08166400
С	10.97871600	1.28317000	-2.89760800
С	10.09071300	3.61677200	-2.68645900
C	9.23867800	2.34144900	1.29082300
C	10.29339100	1.82824600	2.06880700
C	11.55575800	1.59718900	1.45843900
N A	11.76168200	1.86037400	0.14427700
C	11.13849800	1.04300000	4.20999500
C	12.39503400	0.80/6/500	3.62404800
C	12.61/80/00	1.08060700	2.24883900
C	10.08477100	1.553/9000	3.43442200
H	10.9853/500	0.82939800	5.26081800
H	13.1/4/3500	0.41449000	4.25977600
Н	7.95898900	3.79598200	-2.9/112400
Н	8.21518800	4.22169900	-0.04101200
п u	12 09152200	2.0/13/000	-0.72271200
л U	12.08132300	2.70103000	-2.14984000
л U	11.32073200	0.40303300	-2.39010000
л Ц	11.48038000	1.45211000	-3.03444000
и П	10.26443900	3.73709300	-3.73204300
н	8 26967400	4.37011400 2 52000000	-2.2300/100
C	0.2070/400	2.32333000	1 /73/1900
C	-11.55571000	-1.56505600	1.4/341000

С	-10.29359500	-1.81150600	2.08574200
Ν	-11.76211900	-1.85952000	0.16170300
С	-10.75269500	-2.35661900	-0.58090300
С	-9.46917500	-2.61031300	-0.04715300
С	-9.23929800	-2.33207300	1.31204400
С	-11.06578600	-2.61139400	-2.05770800
С	-10.97981900	-1.31024300	-2.88564700
С	-8.65257500	-3.15394900	-2.42445100
С	-8.35136600	-3.19195800	-0.91026700
С	-10.09255200	-3.64196600	-2.65370000
С	-10.08460400	-1.52531000	3.44880100
С	-11.13791400	-1.00717800	4.22001100
С	-12.39440500	-0.77621300	3.63216600
С	-12.61750900	-1.06088500	2.25939900
Н	-8.27035800	-2.51739800	1.75448400
Н	-12.08306500	-3.00147200	-2.12213300
Н	-11.48166600	-1.46770500	-3.84109700
Н	-11.52154400	-0.50628500	-2.38540600
Н	-7.96091700	-3.82448000	-2.93722600
Н	-7.40753600	-2.68715600	-0.69857800
Н	-8.21727200	-4.22995600	-0.60398100
Н	-10.23839600	-4.61734200	-2.18859600
Н	-10.28649700	-3.77161000	-3.71869400
Н	-10.98458500	-0.78462500	5.26896900
Н	-13.17374300	-0.37709000	4.26462400
Н	9.12014500	1.73316900	3.89052000
Н	-9.11999900	-1.70124000	3.90629700
0	13.83666900	0.86616000	1.62799500
0	-13.83620500	-0.85085200	1.63685100
С	14.91543200	0.35366300	2.40067400
Н	15.79505800	0.24702500	1.76563500
Н	15.18159600	1.02794900	3.21579800
Н	14.68543400	-0.63224200	2.80723000
С	-14.91448700	-0.33041300	2.40495100
Н	-15.79381600	-0.22827000	1.76899700
Н	-15.18146500	-0.99747600	3.22591100
Н	-14.68322400	0.65861200	2.80318900

S6.3B3LYP-D3/6-31G(d,p) Optimized Geometry of Heptamer 2

С	3.45600	6.11680	-0.10330
С	3.06320	5.29290	1.13870
С	4.05030	4.17700	1.40140
С	5.38120	4.24140	0.87720
С	5.83810	5.42300	0.02300
С	5.88620	4.98840	-1.45620
С	4.88780	6.62520	0.11840
С	3.66740	3.04680	2.09220
С	4.57490	1.97070	2.22910
С	5.87180	2.12830	1.65340
Ν	6.25810	3.26060	1.00550
С	5.02160	-0.20630	2.85540
С	6.34180	-0.15650	2.30020
С	6.75140	1.02320	1.71890
Ν	4.17970	0.81460	2.83050
С	-4.50820	4.01960	-0.31570
С	-3.44770	3.44180	-1.07350
Ν	-4.28480	4.86330	0.72840
С	-3.03480	5.12570	1.07220
С	-1.89960	4.54530	0.41850
С	-2.12880	3.71120	-0.65160
С	-2.85810	6.00930	2.30260
С	-3.21420	5.20020	3.56630
С	-0.47090	5.30630	2.36160
С	-0.49070	4.80280	0.90380
С	-1.41590	6.51260	2.45590
Ν	-3.66380	2.61020	-2.12570
С	-4.90760	2.27110	-2.41750
С	-6.04250	2.71990	-1.66530
С	-5.82480	3.61890	-0.64260
С	-1.60280	1.95670	4.77750
С	-0.31060	2.11730	4.19190
Ν	-1.96340	0.84980	5.48020
С	-1.07650	-0.11960	5.62240
С	0.24420	-0.06200	5.07360
С	0.61530	1.06140	4.36360
С	-1.57170	-1.35950	6.35950
С	-2.47230	-2.20710	5.43410
С	-1.68690	-2.92860	4.35570
С	-0.26490	-3.07620	4.45510
С	0.50310	-2.52450	5.64930
С	1.21010	-1.21260	5.25570
С	-0.41440	-2.24210	6.84580
С	-2.31760	-3.46240	3.25140
С	-1.56130	-4.10620	2.24340
С	-0.14420	-4.13130	2.40710

Ν	0.47380	-3.63790	3.51300
Ν	-2.18080	-4.66120	1.16530
С	-1.43830	-5.20560	0.21470
С	-0.00490	-5.18780	0.23540
С	0.62150	-4.67020	1.34850
С	-2.20080	-5.84480	-0.94490
С	-2.84280	-4.76960	-1.84090
С	-1.79820	-3.98610	-2.60850
С	-0.46460	-4.48700	-2.76530
С	-0.06130	-5.85110	-2.20710
С	0.80090	-5.70540	-0.93780
С	-1.28530	-6.70020	-1.83370
С	-2.10330	-2.76580	-3.17050
С	-1.11130	-2.01690	-3.84370
С	0.19420	-2.58660	-3.90810
Ν	0.48880	-3.80750	-3.38160
N	-1.41750	-0.81110	-4.39730
C	-0.46500	-0.14070	-5.02510
C	0.88300	-0.62000	-5.13890
С	1.19370	-1.83600	-4.56860
С	-0.88220	1.18610	-5.65360
Č	-0.93070	2.34780	-4.63220
С	0.44430	2.86940	-4.25590
С	1.60930	2.47470	-4.98860
С	1.49970	1.59910	-6.22890
С	1.93160	0.15490	-5.91150
С	0.07160	1.58110	-6.79000
С	0.61880	3.74720	-3.20440
С	1.91850	4.14770	-2.81390
С	3.01190	3.61310	-3.55730
Ν	2.83910	2.81800	-4.64560
С	3.33100	5.25000	-1.35550
С	4.49720	4.71730	-2.00020
С	4.31590	3.92010	-3.10800
Ν	2.09620	4.97300	-1.74360
Ν	0.02660	3.21730	3.46210
С	-0.88050	4.16490	3.28620
С	-2.20560	4.09960	3.83050
С	-2.54320	2.99180	4.57480
Η	7.73510	1.12070	1.26620
Н	2.75220	6.95040	-0.20430
Η	3.00700	5.96500	2.00750
Н	2.07170	4.86330	1.00030
Η	6.85170	5.69320	0.33800
Н	6.50500	4.09080	-1.55780
Н	6.37030	5.78210	-2.04380
Н	5.16840	7.37470	-0.63190
Н	4.95400	7.11040	1.09990
Н	2.66000	2.95330	2.49490
Н	-1.31040	3.20940	-1.15780
Н	-3.56090	6.84500	2.21790

Η	-3.24860	5.88520	4.42620
Н	-4.21540	4.76970	3.45920
Н	0.55330	5.59220	2.61960
Н	0.09450	3.88090	0.81950
Η	-0.00050	5.53660	0.24950
Н	-1.16210	7.23580	1.67110
Н	-1.30790	7.02800	3.41840
Н	-6.64490	3.99830	-0.03800
Н	5.15960	3.48580	-3.63850
Н	1.60490	1.13590	3.91480
Н	-2.18280	-1.01390	7.19970
Н	-3.00660	-2.94620	6.04870
Н	-3.23480	-1.56780	4.97550
Н	1.27130	-3.26120	5.90790
Н	1.77150	-1.36220	4.33180
Н	1.94150	-0.95780	6.03640
Н	0.15750	-1.74250	7.63750
Н	-0.81120	-3.17320	7.26950
Н	-3.39460	-3.38100	3.12500
Н	1.70590	-4.64720	1.42260
Н	-3.00300	-6.45040	-0.50950
Н	-3.52790	-5.26360	-2.54480
Н	-3.45510	-4.09380	-1.23770
Н	0.54370	-6.34680	-2.97370
Н	1.65270	-5.04620	-1.12570
Н	1.22370	-6.68990	-0.69120
Н	-0.95660	-7.60770	-1.31280
Н	-1.83740	-7.02130	-2.72550
Н	-3.10600	-2.36110	-3.10280
Н	2.20140	-2.24150	-4.62170
Н	-1.89990	1.04010	-6.03080
Н	-1.51190	3.16580	-5.08200
Н	-1.48820	2.04880	-3.73710
Н	2.20190	2.00530	-6.96480
Η	2.87840	0.16660	-5.36020
Н	2.12560	-0.36860	-6.85900
Η	0.00930	0.87040	-7.62380
Н	-0.20810	2.56730	-7.18080
Η	-0.22870	4.13210	-2.64680
Η	-3.53790	2.87340	4.99720
С	4.46450	-1.50260	3.42480
С	3.51500	-2.14770	2.39130
С	4.26660	-2.71790	1.20510
С	5.66340	-3.01400	1.28720
С	6.46450	-2.68560	2.54180
С	7.24850	-1.37180	2.33410
С	5.56330	-2.51550	3.77120
С	3.63600	-2.96440	0.00330
С	4.34630	-3.50510	-1.09540
С	5.73510	-3.77260	-0.89270
Ν	6.36060	-3.51580	0.28260

С	4.49650	-4.31450	-3.36400
С	5.87640	-4.58690	-3.19070
С	6.49680	-4.32420	-1.98160
С	3.73900	-3.77980	-2.35040
Η	4.03200	-4.54030	-4.32070
Н	6.43580	-5.00480	-4.01940
Н	3.88560	-1.24550	4.31580
Н	2.93630	-2.93980	2.88630
Н	2.78480	-1.40570	2.04830
Н	7.18820	-3.49360	2.69010
Н	7.82670	-1.43280	1.40570
Н	7.97340	-1.26320	3.15450
Н	6.16190	-2.17240	4.62470
Н	5.10300	-3.46870	4.05950
Н	2.57820	-2.73460	-0 11490
C	-7 18930	-1 66870	-0.05510
C	-5 83780	-2 13250	-0.05100
N	-7 63780	-0.73770	-0.03100
C	-6.80850	-0.26050	-0.93500
C	5 44120	-0.20030	1 05170
C	-3.44120	-0.00780	-1.95170
C	-4.97700	-1.37770	-1.02030
C	-7.37110	0.84490	-2.73920
C	-7.42800	2.17400	-1.93400
C	-5.05570	0.10540	-3.33990
C	-4.34070	-0.10340	-3.03070
C	-0.51000	1.07780	-3.98990
C	-5.41050	-3.10720	0.89170
C	-0.31310	-3.59700	1.80470
C	-7.65690	-3.14640	1.83130
U U	-8.10050	-2.20110	0.92260
п	-3.92960	-1.87050	-1.02860
H	-8.39430	0.56420	-3.00900
H	-8.00340	2.90540	-2.54150
H	-/.96960	2.02280	-1.01460
H	-4.41580	1.5/160	-4.3/210
H	-3.51460	-0.00130	-2.66840
H	-4.49550	-0.79630	-3.88400
H	-6.57910	0.23070	-4.68360
H	-6.87240	1.96440	-4.52580
H	-6.00140	-4.35220	2.52210
Н	-8.33180	-3.55910	2.57200
Н	2.68220	-3.58510	-2.50140
Н	-4.38710	-3.47270	0.87110
0	7.80970	-4.54820	-1.71780
0	-9.36580	-1.71300	0.86510
С	8.61570	-5.08350	-2.75340
Η	9.61870	-5.17680	-2.33260
Η	8.26160	-6.07400	-3.07200
Η	8.64830	-4.41730	-3.62690
С	-10.31250	-2.20030	1.80100
Η	-11.24600	-1.68000	1.57890

Η	-10.46600	-3.28340	1.69550
Н	-10.01090	-1.98060	2.83480

S7 Crystallographic details of compound 14

The crystals show a curious habit where individual crystallites with tetragonal shape form hexagonal, snow-flake like aggregates. A single tetragonal crystal was chosen for the x-ray diffraction experiment. The crystal diffracts well, but due to the small size, quite weakly. The diffraction pattern can be indexed in a tetragonal unit cell, a=13.4835 b=23.3611 Å and the systematic absences are consistent with the symmetry $P4_12_12$. Given the relative sizes of the molecule (ca. 60 non-hydrogen atoms) and the volume of the unit cell ca. 4250\AA^3 , Z is expected to be 4, and therefore a sub group of P41212 is expected. Further, the molecule exhibits a pronounced pseudo symmetry, the violation of which would be consistent with lowering the symmetry from $P4_12_12$ to one of the two maximal subgroups that split the orbit of the 2-fold axes along [110], P4₁ or P2₁2₁2₁. The crystal structure was solved using direct methods (Shelxs-97, REF) and a solution featuring fragments of the expected molecule sitting on the diagonal 2-fold axis was chosen as a starting point for refinements. The structure was refined using JANA2006, and positions of non-hydrogen atoms were added with the help of direct inspection of electron density maps. The asymmetric methoxy group was clearly visible in the electron density, but had to be modelled as half occupied. The structure was completed by adding hydrogen positions constrained in a riding model, and because of numerical instabilities, all inter-atomic distances were constrained to standard values. In the final stage of the refinement, some solvent positions were identified. These were best understood in terms of an ethanol molecule encased in the fold of the molecule sandwiched between two water molecules. The agreement factors for observed reflections remained above 10%. Anisotropic thermal displacement parameters could not be refined.

In the next step, the symmetry of the model was reduced to either of the two maximal subgroups $P2_12_12_1$ and $P4_1$. Symmetry reduction was seeded by removing one of the half occupied methoxy groups. Both models contain a single, independent molecule in the unit cell and the fit is improved to R₁=8% in two more or less indistinguishable fits between model and data. Thermal parameters were constrained so that sites related by the pseudo 2-fold symmetry were kept equal. For both models twinning according to the original super group symmetry is important. This result is unsurprising given that the expected intramolecular interaction is very weak, and the crystallization basically represents a packing of objects with pseudo 2-fold symmetry. Indeed, it may even be assumed that the sample in question constitutes an intergrowth between the two structural models. To investigate this, a new compound model was constructed using the solutions from $P2_12_12_1$ and $P4_1$ and the same interatomic distances as for the individual models and thermal parameters were constrained to be equal for corresponding sites in the two models. This compound model refined to an R₁ of 6.11 for 2405 observed reflections (a total of 14987 independent reflections were measured) and 426 parameters. All data pertaining to the refinement of the individual structures are given in the respective cif files, as there is no agreed format for cif files for multiple structures from one data set.

S8 REFERENCES

- [1] Schrödinger Release 2013-3: Maestro, version 9.6, Schrödinger, LLC, New York, NY, 2013.
- [2] MacroModel, Schrödinger Release 2013-3: MacroModel, version 10.2, Schrödinger, LLC, New York, NY, 2013.
- [3] J. L. Banks, H. S. Beard, Y. Cao, A. E. Cho, W. Damm, R. Farid, A. K. Felts, T. A. Halgren, D. T. Mainz, J. R. Maple, R. Murphy, D. M. Philipp, M. P. Repasky, L. Y. Zhang, B. J. Berne, R. A. Friesner, E. Gallicchio, and R. M. Levy, "Integrated Modeling Program, Applied Chemical Theory (IMPACT)," J. Comput. Chem., vol. 26, no. 16, pp. 1752–1780, 2005.
- [4] Schrödinger Release 2014-1: Jaguar, version 8.3, Schrödinger, LLC, New York, NY, 2014.
- [5] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- [6] J. P. Perdew, "Density-functional approximation for the correlation energy of the inhomogeneous electron gas," Phys. Rev. B, vol. 33, no. 12, pp. 8822–8824, Jun. 1986.
- [7] A. D. Becke, "Density-functional exchange-energy approximation with correct asymptotic behavior," Phys. Rev. A, vol. 38, no. 6, pp. 3098–3100, Sep. 1988.
- [8] A. D. Becke, "Density functional thermochemistry. III. The role of exact exchange," J. Chem. Phys., vol. 98, no. 7, pp. 5648–5652, 1993.
- [9] C. Lee, W. Yang, and R. G. Parr, "Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density," Phys. Rev. B, vol. 37, no. 2, pp. 785–789, Jan. 1988.
- [10] S. H. Vosko, L. Wilk, and M. Nusair, "Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis," Can. J. Phys., vol. 58, no. 8, pp. 1200–1211, Aug. 1980.
- [11] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, "Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields," J. Phys. Chem., vol. 98, no. 45, pp. 11623–11627, Nov. 1994.
- [12] T. Yanai, D. P. Tew, and N. C. Handy, "A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP)," Chem. Phys. Lett., vol. 393, no. 1– 3, pp. 51–57, Jul. 2004.
- [13] P. J. Stephens and N. Harada, "ECD cotton effect approximated by the Gaussian curve and other methods," Chirality, vol. 22, no. 2, pp. 229–233, 2010.