Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Synthesis of fully functionalized aglycon of lycoperdinoside A

By Balla Chandrasekhar, Sudhakar Athe, P. Purushotham Reddy, Subhash Ghosh*

Table of Contents

Page S2- S7	:	¹ H NMR & ¹³ C NMR spectra of Compounds 13-18
Page S8	:	¹ H NMR & ¹³ C NMR spectra of Compound 7
Page S9-S17	:	¹ H NMR & ¹³ C NMR spectra of Compound 19-27
Page S18	:	¹ H NMR & ¹³ C NMR spectra of Compound 9
Page S19	:	¹ H NMR & ¹³ C NMR spectra of Compound 28
Page S20	:	¹ H NMR & ¹³ C NMR spectra of Compound 6
Page S21-S24	:	Chemical shift Assignment, coupling constant and
		NOESY spectrum with expansion of compound 29
Page S25-26	:	¹ H NMR & ¹³ C NMR spectra of Compound 29
Page S27-S28	:	¹ H NMR & ¹³ C NMR spectra of Compound 30

¹³C NMR Spectrum of Compound 14 (CDCl₃, 75 MHz)

¹³C NMR Spectrum of Compound 15 (CDCl₃, 75 MHz)

¹³C NMR Spectrum of Compound 16 (CDCl₃, 75 MHz)

¹³C NMR Spectrum of Compound 17 (CDCl₃, 75 MHz)

¹³C NMR Spectrum of Compound 18 (CDCl₃, 75 MHz)

¹³C NMR Spectrum of Compound 7 (CDCl₃, 75 MHz)

¹³C NMR Spectrum of Compound 20 (CDCl₃, 75 MHz)

¹³C NMR Spectrum of Compound 21 (CDCl₃, 75 MHz)

¹³C NMR Spectrum of Compound 22 (CDCl₃, 75 MHz)

¹³C NMR Spectrum of compound 23 (CDCl₃, 75 MHz)

¹³C NMR Spectrum of Compound 24 (CDCl₃, 125 MHz)

¹³C NMR Spectrum of Compound 25 (CDCl₃, 75 MHz)

¹³C NMR Spectrum of Compound 26 (CDCl₃, 75 MHz)

¹H NMR Spectrum of Compound 27 (CDCl₃, 300 MHz)

.511	.182	176 204 982 897 272	186	783	956	499	276 571	209	771	057 487	441
3	9	000000									
2	4	NNNNN	9	0	5	2	r m	5	0	40	4
	-	\neg		5	9	2	44	3	\sim	50	-
		$ \vee / /$									

¹³C NMR Spectrum of Compound 27 (CDCl₃, 75 MHz)

¹³C NMR Spectrum of Compound 9 (CDCl₃, 125 MHz)

¹³C NMR Spectrum of Compound 28 (CDCl₃, 125 MHz)

¹³C NMR Spectrum of Compound 6 (CDCl₃, 125 MHz)

Table S1: Chemical shifts and coupling constant for compound 29					
Proton S.No	Chemical shift ∆ppm	Coupling constant <i>j</i>			
1	6.69(dd)	9.8, 2.2			
2	5.99(dd)	9.8, 2.4			
3	2.50(dqt)	10.0, 7.0, 2.5			
4	4.80(t)	10.0			
5	5.38(dd)	10.0, 10.7			
6	5.54(t)	10.7			
7	2.67(ddqd)	10.7,8.6, 7.0, 6.0			
8	2.15(dd)	13.5, 6.0			
8'	1.95(dd)	13.5, 8.6			
9	-	-			
10	5.61(d)	1.3			
11	-	-			
12	5.53(t)	6.7			
13(2H)	2.40 (m)				
14	3.86(m)				
15	1.68(m)				
16	3.56(dd)	1.8, 6.8			
17	1.68(m)				
18					
19	1.59(m), 1.51(m)				
20(2H)	3.62(m)				
21(3H)	0.90(d)	6.5			
22(3H)	1.72(d)	1.3			

23H	4.56(d)	12.5
23'Н	4.65(d)	12.5
24(3H)	0.85(d)	6.9
25(3H)	0.84(d)	6.7

The structure of the compound **29** was characterized by extensive NMR experiment including 2-D double quantum filtered correlation spectroscopy (DQFCOSY) and nuclear Overhauser effect spectroscopy (NOESY). The assignments of the protons were initiated with the olefinic protons **1** and **2**, which are both doublet of doublets (dd), around 6-7 ppm. The coupling of the two major fragments, resulting in the formation of *trans*-olefinic bonds was supported by the NOESY correlations, H10/H12, CH₃(22)/H23 and CH₃(22)/H23'. Additionally, nOe correlations, H7/CH₃(22), H8/H10 and H8'/H10, further support the *trans* disposition of bond.

NOESY Spectrum of Compound 29 (CDCl₃, 600 MHz)

Expansions of NOESY spectra for compound 29

¹H NMR Spectrum of Compound 29 (CDCl₃, 600 MHz)

¹³C NMR Spectrum of Compound 29 (CDCl₃, 75 MHz)

¹H NMR Spectrum of Compound 30 (CDCl₃, 500 MHz)

