Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Decarboxylative Allylations of Ester Enolate Equivalents

Yamuna Ariyarathna and Jon A. Tunge*

Department of Chemistry, University of Kansas, 2010 Malott Hall, 1251 Wescoe Hall Drive, Lawrence, KS 66045

Table of Contents

General Experimental	S2
Procedure for the synthesis of α , α -disubstituted di-ester equivalents	S3
Procedure for the synthesis of α , α -disubstituted phenolic esters	S4
Representative procedure for palladium-catalyzed decarboxylative allylation	S4
Transformations of Acyl pyrrole	S4
Spectral Characterization of 1a	S7
Spectral Characterization of 1b	S7
Spectral Characterization of 1c	S 8
Spectral Characterization of 1d	S9
Spectral Characterization of 2a	S9
Spectral Characterization of 2b	S9
Spectral Characterization of 2c	S10
Spectral Characterization of 2d	S10
Spectral Characterization of 2e	S10
Spectral Characterization of 2f	S11
Spectral Characterization of 2g	S11

Spectral Characterization of 2h	S11
Spectral Characterization of 2i	S11
Spectral Characterization of 3a	S12
Spectral Characterization of 3b	S12
Spectral Characterization of 3c	S12
Spectral Characterization of 3d	S13
Spectral Characterization of 3e	S13
Spectral Characterization of 3f	S13
Spectral Characterization of 3g	S14
Spectral Characterization of 3h	S14
¹ H and ¹³ C NMR spectra	S15
Crystal structure	S39

General experimental:

All reactions were run in flame-dried glassware under Argon atmosphere. Commercially available reagents and anhydrous benzene were used without further treatment. Compound purification was effected by flash chromatography using 230x400 mesh, 60Å porosity, silica obtained from Sorbent Technologies. The ¹H and ¹³C NMR spectra were obtained on a Bruker Avance 400 or Bruker Avance 500 DRX spectrometer and were referenced to residual protio solvent signals. Structural assignments were based on ¹H, ¹³C, DEPT-135, COSY, HSQC, and FT-IR spectroscopies. Mass spectrometery was run using ESI techniques.

Procedure for the synthesis of α , α -disubstituted di-ester equivalents:

2,2-dimethyl-5-phenyl-1,3-dioxane-4,6-dione (II)¹ and 2,2,5-trimethyl-5-phenyl-1,3-dioxane-4,6-dione (III)² were prepared according to the literature procedures, starting from commercially available 2-phenylmalonic acid (I). Synthesis of 3-(allyloxy)-2-methyl-3-oxo-2-phenylpropanoic acid (IV) was carried out according to the literature procedure³ and characterization data were identical to reported data.³ (IV) converted to the acid chloride (V) in refluxing SOCl₂ and treatment of the acid chloride with suitable amine^{6, 7}, Lithium pyrrolide⁴, phenol⁵ or thio-phenol⁵ provided the required diester compounds.

Synthesis of Lithium Pyrrolide

In a flame–dried Schlenk tube under argon, freshly distilled pyrrole (1g, 14.9 mmol, 1.0 eq.) in 25 mL of anhydrous ether was cooled to -20°C and n-BuLi (9.3 mL, 14.9 mmol, 1.0 eq.) was added in batches of 0.5 ml. The resulting solution was warmed to room temperature and stirring was continued for 4 hours. The white precipitate of lithium pyrollide was filtered, washed with ether, dried under an inert atmosphere and stored in a glove box. Same procedure was followed to prepare lithium indolide except the indolide was prepared at -78°C. Characterization data were identical to previously reported data in literature.⁴

General procedure for the synthesis of α , α -disubstituted phenolic esters.

A solution of Meldrum's acid (I) in Toluene was refluxed for 2 hours with 2,5-dimethylphenol⁸ to obtain required propanoic acid (II) and used in standard DCC, DMAP coupling⁹ with corresponding allyl alcohol to obtain α mono-substituted di-ester (III). Additional α -alkylation was carried out according to the literature procedure to obtain (IV).¹⁰

Representative procedure for Palladium catalyzed decarboxylative allylation.

In a flame-dried schlenk flask under argon, $Pd(PPh_3)_4$ (40.8 mg, 0.035 mmol, 0.10 eq.) and 9 mL anhydrous benzene (0.04M w.r.t. the ester) was added to allyl 2-methyl-3-oxo-2-phenyl-3-(1H-pyrrol-1-yl)propanoate (100

mg, 0.35 mmol, 1.0 eq.) and stirred for 25 minutes at room temperature. Reaction was concentrated *in-vacuo* and purified *via* flash chromatography using 5% EtOAc and Hexane to obtain colorless oil (81 mg, 97%).

Transformations of Acyl pyrrole

2-methyl-2-phenylpent-4-en-1-ol.

HO Ph In a flame-dried schlenk flask under argon, NaBH₄ (9.5 mg, 0.25 mmol, 2.0 eq.) was added to a solution of 2-methyl-2-phenyl-1-(1H-pyrrol-1-yl)pent-4en-1-one(acyl pyrrole) (30 mg, 0.13 mmol, 1.0 eq.) in 1 mL of THF at 0°C. Solution was stirred 4 hours at 0°C and overnight at room temperature. Saturated K_2CO_3 (10 mL) was added and extracted with EtOAc (3x10mL). Dried over anhyd. MgSO₄ and concentrated *in-vacuo* and purified *via* flash chromatography using 5% EtOAc and Hexane to obtain colorless oil (17 mg, 76%). ¹H NMR (500 MHz, CDCl₃) δ 7.35 – 7.24 (m, 4H), 7.18 – 7.14 (m, 1H), 5.52 (m, 1H), 4.95 (dddt, *J* = 24.0, 10.1, 2.0, 1.2 Hz, 2H), 3.68 (dd, *J* = 10.9, 2.1 Hz, 1H), 3.54 (dd, *J* = 10.8, 5.4 Hz, 1H), 2.49 (dd, *J* = 13.9, 6.6 Hz, 1H), 2.34 – 2.25 (m, 1H), 1.27 (s, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 144.6, 134.5, 128.5, 126.7, 126.3, 117.6, 71.8, 43.2, 42.9, 21.9 FT-IR (CH₂Cl₂) ν_{max} cm⁻¹ 3396, 2920, 1027, 906, 692 Calcd. HRMS for C₁₂H₁₇O (M+H) – 177.1279, found 177.1333

2,3-dimethyl-3-phenylhex-5-en-2-ol.

HO HO In a flame-dried schlenk flask under argon, MeLi (1 mL, excess) was added to a solution of 2-methyl-2-phenyl-1-(1H-pyrrol-1-yl)pent-4-en-1-one (acyl pyrrole) (50 mg, 0.21 mmol, 1.0 eq.) in 1 mL of THF at 0°C. The reaction mixture was stirred overnight at room temperature. Quenched with water and extracted with EtOAc (3x10 mL). Dried over anhyd. MgSO₄ and concentrated *in-vacuo* and purified *via* flash chromatography using 5% EtOAc and Hexane to obtain colorless oil (40 mg, 93%).

¹H NMR (500 MHz, CDCl₃) δ 7.33 (dt, *J* = 8.4, 1.7 Hz, 2H), 7.28 – 7.23 (m, 2H), 7.18 – 7.13 (m, 1H), 5.41 (m, 1H), 4.98 (ddd, *J* = 17.0, 3.0, 2.1 Hz, 1H), 4.84 (dd, *J* = 10.2, 0.8 Hz, 1H), 3.09 (dd, *J* = 14.2, 5.0 Hz, 1H), 2.25 (dd, *J* = 14.3, 8.5 Hz, 1H), 1.30 (d, *J* = 0.6 Hz, 3H), 1.12 (s, 3H), 1.02 (s, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 143.1, 135.9, 128.9, 127.7, 126.1, 117.1, 74.7, 48.3, 39.7, 25.9, 25.5, 21.2 FT-IR (CH₂Cl₂) υ_{max} cm⁻¹ 3366, 3448, 2985, 1637, 1375, 908, 702 Calcd. HRMS for C₁₄H₂₀OLi (M+Li) – 211.1674, found 211.0926

2-methyl-2-phenylpent-4-enoic acid.

A Flame dried-schlenk flask under argon, was charged with 2-methyl-2phenyl-1-(1H-pyrrol-1-yl)pent-4-en-1-one (acyl pyrrole) (50 mg, 0.21 mmol, 1.0 eq.) in THF (2mL) and H₂O (0.5 mL). The solution was cooled to 0°C and was added H₂O₂ (30% in H₂O, 0.1 mL) followed by LiOH•H₂O (44 mg, 1 mmol, 5.0 eq.) Reaction mixture was stirred overnight at room temperature. Na₂S₂O₃ (0.7 M, 1mL) and NaHCO₃ (0.5 N, 2 mL) were added and THF was removed *in-vacuo*. The aqueous layer was acidified with 2M HCl (monitored by pH papers) and extracted with EtOAc (3x10mL). Solvent was removed in-vacuo and purified *via* flash chromatography using 5%-15% EtOAc and Hexane to obtain colorless oil (34 mg, 85%). ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.33 (m, 4H), 7.29 (dd, J = 8.4, 4.6, 1.4 Hz, 1H), 5.64 (ddt, J = 17.3, 10.1, 7.2 Hz, 1H), 5.16 – 5.04 (m, 2H), 2.84 (dd, J = 13.8, 7.4 Hz, 1H), 2.71 (dd, J = 13.8, 7.1 Hz, 1H), 1.59 (s, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 181.8, 142.4, 133.7, 128.5, 127.1, 126.2, 118.7, 49.7, 43.5, 22.2 FT-IR (CH₂Cl₂) v_{max} cm⁻¹ 3076, 1697, 1446, 1277, 918 Calcd. HRMS for C₁₂H₁₄O₂Na (M+Na) 213.0892, found 213.0823

- 1. Loev, B.; Macko, E.; Fried, I. M. J. Med. Chem. 1969, 12, 854.
- 2. Fillion, E.; Dumas, A. M. J. Org. Chem. 2008, 73, 2920.
- Imao, D.; Itoi, A.; Yamazaki, A.; Shirakura, M.; Ohtoshi, R.; Ogata, K.; Ohmori, Y.; Ohta, T.; Ito, Y. J. Org. Chem. 2007, 72, 1652.
- 4. Franzel, A.; Gluth, M.; Herbst-Irmer, R.; Klingebiel, U. J. Organomet. Chem. 1996, 514, 281.
- 5. Sauer, S. J.; Garnsey, M. R.; Coltart, D. M. J. Am. Chem. Soc. 2010, 132, 13997.
- 6. Weinreb, S. M.; Nahm, S. Tetrahedron Lett. 1981, 22, 3815.
- 7. Evans, D. A.; Borg, G.; Scheidt, K. A. Angew. Chem. Int. Ed. 2002, 41, 3188.
- 8. Blaquiere, N.; Shore, D. G.; Rousseaux, S.; Fagnou. K. J. Org. Chem. 2009, 74, 6190.
- 9. Neises, B.; Steglich, W. Angew. Chem. Int. Ed. Eng. 1978, 17, 522.

10. Torregrosa, R. R. P.; Ariyarathna, Y.; Chattopadhyay, K.; Tunge, J. A. J. Am. Chem. Soc. **2010**, *132*, 9280.

Spectral Characterization

Spectral Characterization of **1a** (4S)-4-isopropyl-3-(2-methyl-2-phenylpent-4-enoyl)oxazolidin-2-one

Major isomer - ¹H NMR (500 MHz, CDCl₃) δ 7.23 (dd, J = 10.4, 4.8 Hz,

3H), 7.17 - 7.04 (m, 3H)- Ar-H major and minor are overlapped, 5.56 (m,

1H), 5.07 – 4.93 (m, 2H), 4.49 – 4.41 (m, 1H), 4.13 – 3.99 (m, 2H), 3.25

/ (dd, J = 13.7, 8.1 Hz, 1H), 2.58 (dd, J = 13.8, 6.5 Hz, 1H), 2.35 (dqd, J = 13.9, 7.0, 3.4 Hz, 1H), 1.53 (s, 3H), 0.86 (d, J = 7.1 Hz, 3H), 0.76 (d, J = 6.9 Hz, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 175.6, 151.4, 143.3, 133.9, 128.1, 126.4, 125.5, 118.6, 62.8, 60.1, 52.9, 43.2, 28.4, 24.4, 18.3, 14.7 Minor- ¹H NMR (500 MHz, CDCl₃) δ Ar-H are overlapped with major isomer, 5.54 – 5.44 (m, 1H-overlapped with major isomer), 5.07 – 4.97 (m, overlapped with major isomer, 4.12 – 3.99 (m, overlapped with major isomer), 2.93 (dd, J = 13.8, 8.3 Hz, 1H), 2.53 (dd, J = 13.8, 6.4 Hz, overlapped with major isomer), 1.64 (s, 3H), 0.79 (d, J = 6.9 Hz, 6H - overlapped with major isomer) ¹³C NMR (126 MHz, CDCl₃) δ 142.8, 134.2, 118.4, 63.1, 59.9, 52.9, 44.5, 28.6, 23.1, 18.1, 14.9 FT-IR (CH₂Cl₂) ν_{max} cm⁻¹ 3055, 2975, 1689, 1598, 1380, 703 Calcd. HRMS for C₁₈H₂₃NO₃Na (M+Na) – 324.1576, found 324.1541

Spectral Characterization of **1b** (4S)-4-(tert-butyl)-3-(2-methyl-2-phenylpent-4enoyl)oxazolidin-2-one

major, minor

Major isomer - ¹H NMR (500 MHz, CDCl₃) δ 7.29 – 7.20 (m, 3H), 7.15 – 7.06 (m, 2H + minor isomer), 5.73 (m, 1H), 5.12 (ddd, J = 16.9, 3.1, 1.6 Hz, 1H), 5.08 – 5.02 (m, 1H), 4.43 (dd, J = 7.4, 1.4 Hz, 1H), 4.10 – 4.01 (m, 2H), 3.71 – 3.55 (m, 1H), 2.67 (ddt, J = 13.7, 6.2, 1.4 Hz, 1H), 1.47 (s, 3H), 0.87 (s, 9H + minor isomer). Minor isomer - ¹H NMR (500 MHz, CDCl₃) δ

7.27 - 7.15 (Ar-H - overlapped with major isomer), 5.51 - 5.42 (m, 1H), 4.94 (s, 1H), 4.93 - 4.90 (m, 1H), 4.52 (dd, J = 7.4, 1.6 Hz, 1H), 4.32 (dd, J = 7.6, 1.4 Hz, 1H), 4.14 (dd, J = 9.3, 1.4 Hz, 1H), 2.74 (dd, J = 13.8, 8.1 Hz, 1H), 2.48 (dd, J = 13.8, 6.5 Hz, 1H), 1.75 (s, 3H), 0.89 ('Bu – overlapped with major isomer) ¹³C NMR (126 MHz, CDCl₃) δ 175.7(major), 174.8 (minor), 152.6 (major), 152.0 (minor), 144.1 (major), 142.3 (minor), 134.4 (minor), 134.1 (major), 128.6 (minor), 128.3 (major), 128.1 (minor), 127.2 (minor), 126.4 (major), 125.5 (minor), 125.2 (major), 118.3 (minor), 64.9 (major), 63.2 (major), 62.1 (minor), 61.4 (minor),

53.4 (major), 52.9 (minor), 42.9 (minor), 41.6 (major), 35.9 (major), 35.8 (minor), 27.5 (minor), 26.1 (major), 25.7 (major), 20.1 (minor) FT-IR (CH₂Cl₂) υ_{max} cm⁻¹ 3060, 2973, 1690, 1590, 1370, 700 Calcd. HRMS for C₁₉H₂₅NO₃Na (M+Na) – 338.1732, found 338.1701

Spectral Characterization of **1c** (4R)-4-benzhydryl-3-(2-methyl-2-phenylpent-4enoyl)oxazolidin-2-one

¹H NMR (500 MHz, CDCl₃) Ar-H major isomer + minor isomer δ 7.30 – 7.22 (m, 4H), 7.22 – 7.17 (m, 6H), 7.17 – 7.12 (m, 7H), 7.10 (ddd, J = 8.3, 4.4, 2.1 Hz, 3H), 6.93 (dd, J = 8.3, 1.1 Hz, 1H), 6.90 – 6.86 (m, 2H), 5.39 (td, J = 7.4, 2.8 Hz, 1H), 5.31 (ddd, J = 7.4, 6.3, 3.1 Hz, 1H), 5.29 – 5.18 (m, 1H), 4.96 – 4.83 (m, 3H), 4.69 (d, J = 6.2 Hz, 1H), 4.54 (d, J = 7.3 Hz,

major, minor 1H), 4.20 – 4.10 (m, 3H), 3.03 (dd, J = 13.8, 7.2 Hz, 1H), 2.63 (dd, J = 13.7, 8.0 Hz, 1H), 2.51 (dd, J = 13.8, 7.2 Hz, 1H), 2.41 – 2.35 (m, 1H), 1.46 (s, 3H), 1.44 (s, 2H) ¹³C NMR (126 MHz, CDCl₃) δ 175.7 (major), 175.2 (minor), 151.3 (major), 150.9 (minor), 142.7 (major), 142.1 (minor), 139.9 (major), 139.7 (minor), 138.6 (minor), 138.5 (major), 134.4 (minor), 134.0 (major); Ar-C; major+ minor 129.07 (Ar-C), 129.05 (Ar-C), 129.01 (Ar-C), 128.9 (Ar-C), 128.8 (Ar-C), 128.7 (Ar-C), 128.69 (Ar-C), 128.6 (Ar-C), 128.05 (Ar-C), 128.02 (Ar-C), 127.7 (Ar-C), 127.68 (Ar-C), 127.1 (Ar-C), 126.3 (Ar-C), 126.27 (Ar-C), 125.7 (Ar-C), 125.6 (Ar-C), 118.4 (major), 118.1 (minor), 65.4 (minor), 65.1 (major), 58.7 (major), 57.9 (minor), 52.7 (major), 52.6 (minor), 52.5 (minor), 51.9 (major) FT-IR (CH₂Cl₂) ν_{max} cm⁻¹ 3060, 2977, 1789, 1681, 1600, 1496, 1242, 918, 700 Calcd. HRMS for C₂₈H₂₇NO₃Na (M+Na) – 448.1889, found 448.1931

Spectral Characterization of 1d (4R)-4-benzyl-3-(2-methyl-2-phenylpent-4-enoyl)oxazolidin-2one

¹H NMR (500 MHz, CDCl₃) δ Ar-H major isomer + minor isomer 7.29 – 7.20 (m, 6H), 7.20 - 7.17 (m, 4H), 7.17 - 7.12 (m, 2H), 7.12 - 7.07 (m, ĥ 3H), 5.64 (m, J = 16.7, 10.1, 8.3, 6.4 Hz, 1H), 5.55 - 5.48 (m, minor isomer), 5.10 - 4.93 (m, 2H + minor isomer), 4.70 - 4.62 (m, 1H + minor isomer), 4.00 - 3.93 (m, 2H + minor isomer), 3.40 - 3.26 (m, 2H + minor isomer), 3.00 - 2.95 (m, minor isomer), 2.68 - 2.55 (m, 1H + minor major, minor isomer), 2.50 (dd, J = 13.1, 10.8 Hz, 1H, major isomer), 1.65 (s, minor isomer), 1.56 (s, 3H, major isomer). ¹³C NMR (126 MHz, CDCl₃) & 175.8 (minor), 175.5 (major), 150.8 (major), 143.2 (major), 142.6 (minor), 135.8 (major), 135.6 (minor), 134.1 (minor), 133.9 (major), 129.5 (minor), 129.4 (major), 129.0 (major), 128.9 (major), 128.2 (major), 128.2 (minor), 127.3 (minor), 127.28 (major), 126.4 (major), 125.6 (minor), 125.5 (major), 118.8 (major), 118.5 (minor), 65.9 (minor), 65.8 (major), 57.3 (major), 57.0 (minor), 52.8 (minor), 52.7 (major), 44.2 (minor), 42.7 (major), 37.9 (minor), 37.8 (major) FT-IR (CH₂Cl₂) v_{max} cm⁻¹ 3026, 2977, 1789, 1681, 1236, 700 Calcd. HRMS for C₂₂H₂₄NO₃ (M+H) – 350.1756, found 350.1743

Spectral Characterization of 2a 2-methyl-2-phenyl-1-(1H-pyrrol-1-yl)pent-4-en-1-one

Ph

(m, 3H), 6.92 – 6.87 (m, 2H), 5.97 (d, J = 2.4 Hz, 2H), 5.48 (m, 1H), 4.99 – 4.94 (m, 1H), 4.88 (ddd, J = 17.0, 3.2, 1.4 Hz, 1H), 2.81 (dd, J = 13.7, 8.0 Hz, 1H), 2.71 (dd, J = 13.7, 6.6 Hz, 1H), 1.60 (s, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 172.7, 142.3, 132.1, 128.1, 126.2, 124.8, 119.6, 118.1, 110.8, 51.0, 44.0, 23.6 FT-IR (CH₂Cl₂) υ_{max} cm⁻¹ 3020, 1704, 1494, 1465, 1213, 1155, 700, 503 Calcd. HRMS for C₁₆H₁₇NO (M+) - 239.1310, found 239.1245

¹H NMR (500 MHz, CDCl₃) δ 7.28 (dt, J = 9.7, 1.9 Hz, 2H), 7.23 – 7.15

Spectral Characterization of 2b 1-(2-methyl-2-phenylpent-4-enoyl)-1H-pyrrole-2-carbonitrile

¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.22 (m, 3H), 7.22 – 7.10 (m, 3H), NC 6.81 (dd, J = 3.6, 1.4 Hz, 1H), 6.53 (dd, J = 3.4, 1.4 Hz, 1H), 5.94 (t, J = 3.5 Ρh Hz, 1H), 5.50 (m, 1H), 5.03 - 4.97 (m, 1H), 4.86 (ddd, J = 16.9, 3.1, 1.4

Hz, 1H), 2.85 - 2.70 (m, 2H), 1.63 (s, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 172.7, 142.1, 132.3,

129.5, 127.9, 125.9, 125.6, 125.1, 119.8, 113.4, 112.3, 104.4, 52.7, 44.8, 24.4 FT-IR (CH₂Cl₂) v_{max} cm⁻¹ 3057, 2200, 1725, 1450, 1150, 725 Calcd. HRMS for C₁₇H₁₆N₂ONa (M+Na) – 287.1160, found 287.1161

Spectral Characterization of 2c 1-(1H-indol-1-yl)-2-methyl-2-phenylpent-4-en-1-one

¹H NMR (500 MHz, CDCl₃) δ 8.51 (dd, J = 8.4, 0.6 Hz, 1H), 7.39 (d, J= 7.7 Hz, 1H), 7.33 – 7.26 (m, 3H), 7.21 (dd, J = 6.2, 5.2 Hz, 3H), 7.18 (ddd, J = 8.3, 5.3, 1.1 Hz, 2H), 6.79 (d, J = 3.9 Hz, 1H), 6.21 (d, J = 3.6

Hz, 1H), 5.52 (m, 1H), 4.98 – 4.86 (m, 2H), 2.88 (dd, J = 13.7, 7.9 Hz, 1H), 2.77 (dd, J = 13.7, 6.7 Hz, 1H), 1.66 (s, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 174.7, 143.8, 136.5, 133.3, 129.5, 129.2, 127.3, 126.2, 125.8, 125.0, 123.7, 120.5, 119.1, 117.2, 108.2, 52.8, 45.3, 24.7 FT-IR (CH₂Cl₂) ν_{max} cm⁻¹ 3068, 2989, 1704, 1539, 1494, 1379, 1321, 1207, 1145, 931, 767 Calcd. HRMS for C₂₀H₁₉NOLi (M+Li) – 296.1627, found 296.1648

Spectral Characterization of 2d 1-(2-methyl-2-phenylpent-4-enoyl)-1H-indole-5-carbonitrile

¹H NMR (500 MHz, CDCl₃) δ 8.58 (d, J = 8.7 Hz, 1H), 7.73 (d, J = 1.1 Hz, 1H), 7.53 (dd, J = 8.7, 1.6 Hz, 1H), 7.31 (dt, J = 9.7, 1.8 Hz, 2H), 6.91 (d, J = 3.9 Hz, 1H), 6.27 (d, J = 4.4 Hz, 1H), 5.50 (m,

1H), 4.98 - 4.92 (m, 1H), 4.87 (ddd, J = 17.0, 2.9, 1.3 Hz, 1H), 2.82 (ddd, J = 20.3, 13.7, 7.3 Hz, 2H), 1.66 (s, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 174.9, 143.1, 138.4, 132.8, 129.5, 128.2, 127.6, 125.7, 125.2, 119.6, 119.5, 117.9, 107.7, 107.0, 53.1, 45.0, 24.6 FT-IR (CH₂Cl₂) ν_{max} cm⁻¹ 3058, 2875, 2360, 1751, 1639, 1512, 1249, 1116, 916, 698 Calcd. HRMS for C₂₁H₁₈N₂OLi (M+Li) – 321.1579, found 321.1531

Spectral Characterization of 2e N-methoxy-N,2-dimethyl-2-phenylpent-4-enamide

¹H NMR (500 MHz, CDCl₃) δ 7.25 (tt, J = 3.6, 1.8 Hz, 2H), 7.21 – 7.10 (m, 3H), 5.49 (m, 1H), 5.01 – 4.91 (m, 2H), 3.03 (s, 3H), 2.90 (dd, J = 13.6, 8.1 Hz, 1H), 2.60 – 2.50 (m, 4H), 1.45 (s, 3H) ¹³C NMR (126 MHz, CDCl₃) δ

177.0, 144.8, 134.5, 128.2, 126.2, 125.9, 118.1, 58.9, 49.9, 43.1, 33.3, 22.9 FT-IR (CH₂Cl₂) v_{max} cm⁻¹ 3064, 2935, 1654, 1490, 1379, 999, 698 Calcd. HRMS for C₁₄H₂₀NO₂ (M+H) – 234.1494 found 234.1520

Spectral Characterization of 2f 2,5-dimethylphenyl 2-methyl-2-phenylpent-4-enoate

= 13.8, 7.4 Hz, 1H), 2.73 (dd, J = 13.8, 6.9 Hz, 1H), 2.20 (s, 3H), 1.80 (s, 3H), 1.65 (s, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 171.9, 146.9, 140.3, 134.4, 131.5, 128.6, 126.5, 126.3, 124.9, 124.6, 124.4, 123.9, 119.8, 116.6, 47.7, 41.3, 20.0, 18.6, 13.3 FT-IR (CH₂Cl₂) ν_{max} cm⁻¹ 3078, 2980, 1735, 1598, 1508, 1492, 1240, 1198, 1128, 925, 700 Calcd. HRMS for C₂₀H₂₃O₂ (M+H) – 295.1698, found 295.1670

Spectral Characterization of 2g S-phenyl 2-methyl-2-phenylpent-4-enethioate

¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.21 (m, 10H), 5.55 – 5.43 (m, 1H), 5.07 – 4.95 (m, 2H), 2.77 (ddd, J = 20.7, 13.9, 7.2 Hz, 2H), 1.61 (s, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 202.5, 141.6, 134.8, 133.4, 129.1, 128.6, 128.3, 127.4, 127.2, 118.8, 57.1, 43.7, 22.7 FT-IR (CH₂Cl₂) υ_{max} cm⁻¹ 3058, 2985, 1780, 1697, 1440, 952, 703 Calcd. HRMS for C₁₈H₁₉OS (M+H) – 283.1157, found 283.1202

Spectral characterization of 2h 2,2-diallyl-1-(1H-pyrrol-1-yl)pent-4-en-1-one

¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.38 (m, 2H), 6.21 – 6.18 (m, 2H), 5.62 (ddt, *J* = 17.5, 10.2, 7.4 Hz, 3H), 5.05 – 4.94 (m, 6H), 2.53 (d, *J* = 7.4 Hz, 6H) ¹³C NMR (126 MHz, CDCl₃) δ 173.2, 132.6, 120.2, 119.4, 112.2, 51.7, 39.2 FT-IR (CH₂Cl₂) υ_{max} cm⁻¹ 3072, 2941, 1704, 1637, 1467, 1284,

1255, 1103, 921, 736 Calcd. HRMS for C₁₅H₂₀NO (M+H) – 230.1545, found 230.1539

Spectral characterization of 2i 2-ethyl-2-methyl-1-(1H-pyrrol-1-yl)pent-4-en-1-one

O N

¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.44 (m, 2H), 6.31 – 6.24 (m, 2H), \leq 5.80 – 5.65 (m, 1H), 5.11 – 4.97 (m, 2H), 2.71 (dd, J = 14.1, 7.0 Hz, 1H), 2.43 (dd, J = 14.1, 7.7 Hz, 1H), 2.08 – 1.92 (m, 1H), 1.79 (dq, J = 14.9, 7.5

Hz, 1H), 1.39 (s, 3H), 0.89 (t, J = 7.5 Hz, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 173.4, 132.1, 119.2, 117.7, 110.9, 47.7, 42.6, 31.3, 22.2, 7.8 FT-IR (CH₂Cl₂) υ_{max} cm⁻¹ 2966, 2949, 1760,

1664, 1517, 1463, 1163, 919, 734 Calcd. HRMS for $C_{12}H_{18}NO$ (M+H) – 192.1388, found 192.1443

Spectral characterization of **3a** 2,5-dimethylphenyl 2-phenylpent-4-enoate

¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.33 (m, 2H), 7.32 – 7.27 (m, 2H), 7.26 – 7.21 (m, 1H), 6.96 (d, *J* = 7.7 Hz, 1H), 6.83 (d, *J* = 8.4 Hz, 1H), 6.63 (s, 1H), 5.76 (ddt, *J* = 17.1, 10.2, 6.8 Hz, 1H), 5.15 – 4.97 (m, 2H), 3.83 (dd, *J* = 8.8, 6.8 Hz, 1H), 2.90 (dddt, *J* = 14.4, 8.5, 7.1, 1.1 Hz, 1H), 2.56 (dtt, *J* = 14.5, 6.7, 1.3 Hz, 1H), 2.19 (s, 3H), 1.79 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 170.6, 147.9, 137.1, 135.7, 134.1, 129.7, 127.7, 127.1, 126.6, 125.8, 125.7, 121.1, 116.3, 50.4, 36.2, 19.8, 14.5; FT-IR (CH₂Cl₂) ν_{max} cm⁻¹ 3070, 2920, 1755, 1508, 1454, 1242, 1134, 1110, 918 Calcd. HRMS for C₁₉H₂₁O₂ (M+H) – 281.1542, found 281.1497

Spectral characterization of 3b 2,5-dimethylphenyl 2-methylpent-4-enoate

¹H NMR (500 MHz, CDCl₃) δ 7.02 (d, J = 7.7 Hz, 1H), 6.87 (d, J = 8.4Hz, 1H), 6.71 (s, 1H), 5.79 (ddt, J = 17.1, 10.2, 7.0 Hz, 1H), 5.13 – 5.01 (m, 2H), 2.73 (h, J = 7.0 Hz, 1H), 2.56 – 2.48 (m, 1H), 2.30 – 2.24 (m, 1H), 2.24 (d, J = 3.4 Hz, 3H), 2.05 (s, 3H), 1.26 (d, J = 7.0 Hz, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 174.4, 149.1, 136.9, 135.3, 130.8, 126.7, 122.3, 117.3, 39.4, 37.8, 20.9, 16.8, 15.9 FT-IR (CH₂Cl₂) ν_{max} cm⁻¹ 3072, 2869, 1753, 1623, 1510, 1244,1114, 918 Calcd. HRMS for C₁₄H₁₉O₂ (M+H) – 219.1385, found 219.1384

Spectral characterization of 3c (E)-2,5-dimethylphenyl 2-methyl-5-phenylpent-4-enoate

Hz, 1H), 6.19 (dt, J = 15.7, 7.2 Hz, 1H), 2.90 – 2.75 (m, 1H), 2.66 (dtd, J = 8.6, 7.3, 1.3 Hz, 1H), 2.43 (dtd, J = 8.3, 7.1, 1.3 Hz, 1H), 2.19 (s, 3H), 2.03 (s, 3H), 1.31 (d, J = 7.0 Hz, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 174.4, 149.1, 137.3, 136.9, 132.6, 130.8, 128.6, 127.3, 126.1, 122.4, 39.9, 37.1, 20.8, 16.9, 15.8 FT-IR (CH₂Cl₂) ν_{max} cm⁻¹ 3033, 2975, 2933, 1755, 1506, 1456, 1377, 1247,1143, 1114, 968 Calcd. HRMS for C₂₀H₂₂O₂Na (M+Na) – 317.1518, found 317.1529

Spectral characterization of 3d 2,5-dimethylphenyl 2-allyl-2-methylpent-4-enoate

¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, J = 7.6 Hz, 1H), 6.96 (d, J = 7.6 Hz, 1H), 6.79 (s, 1H), 5.90 (ddt, J = 16.8, 10.4, 7.3 Hz, 2H), 5.24 – 5.13 (m, 4H), 2.59 (ddd, J = 13.8, 7.1, 0.8 Hz, 2H), 2.42 (ddd, J = 13.8, 7.5, 0.9 Hz, 2H), 2.34 (s, 3H), 2.16 (s, 3H), 1.34 (s, 3H) ¹³C NMR (126)

MHz, CDCl₃) δ 173.8, 148.3, 135.7, 132.5, 129.8, 125.6, 121.3, 117.6, 44.9, 41.8, 20.6, 19.9, 15.0 FT-IR (CH₂Cl₂) υ_{max} cm⁻¹ 3076, 2983, 1751, 1641, 1510, 1242, 1199, 1116, 1000, 919 Calcd. HRMS for C₁₇H₂₃O₂ (M+H) – 259.1698, found 259.1711.

Spectral characterization of 3e 2,5-dimethylphenyl 2-allyl-2,4-dimethylpent-4-enoate

¹H NMR (500 MHz, CDCl₃) δ 7.01 (d, J = 7.7 Hz, 1H), 6.85 (d, J = 8.4 Hz, 1H), 6.74 (s, 1H), 5.86 – 5.74 (m, 1H), 5.15 – 5.04 (m, 2H), 4.87 – 4.82 (m, 1H), 4.73 (d, J = 0.9 Hz, 1H), 2.55 (dd, J = 13.9, 5.6 Hz, 2H), 2.29 (ddd, J = 13.8, 4.0, 3.4 Hz, 2H), 2.23 (s, 3H), 2.07 (s,

3H), 1.73 (s, 3H), 1.24 (s, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 175.2, 149.3, 141.9, 136.7, 133.7, 130.9, 126.6, 126.5, 122.2, 118.8, 114.9, 46.5, 45.9, 44.0, 24.4, 21.6, 20.9, 16.1 FT-IR (CH₂Cl₂) v_{max} cm⁻¹ 3072, 2985, 2919, 1750, 1644, 1507, 1454, 1244, 1194, 1115, 897 Calcd. HRMS for C₁₈H₂₅O₂ (M+H) – 273.1855, found 273.1848.

Spectral characterization of 3f 2,5-dimethylphenyl 2-ethyl-2-phenylpent-4-enoate

¹H NMR (500 MHz, CDCl₃) δ 7.35 (dt, J = 3.0, 1.7 Hz, 2H), 7.33 – 7.28 (m, 2H), 7.24 – 7.19 (m, 1H), 6.94 (d, J = 7.7 Hz, 1H), 6.81 (d, J = 7.7 Hz, 1H), 6.81 (d, J = 7.7 Hz, 1H), 6.62 (s, 1H), 5.60 – 5.50 (m, 1H), 5.14 – 5.00 (m, 2H), 2.96 (dd, J = 14.2, 7.8 Hz, 1H), 2.82 (dd, J = 14.2, 6.6 Hz, 1H), 2.24 (dd, J = 14.3, 7.1 Hz, 1H), 2.20 (s, 3H), 2.10 (dq, J = 14.7, 7.4 Hz, 1H), 1.76 (s, 3H), 0.83 (t, J = 7.4 Hz, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 173.8, 149.2, 141.5, 136.6, 133.4, 130.8, 128.5, 127.0, 126.9, 126.7, 126.5, 122.1, 118.5, 53.9, 37.9, 26.4, 20.9, 15.6, 8.4 FT-IR (CH₂Cl₂) ν_{max} cm⁻¹ 3076, 2979, 1737, 1598, 1508, 1496, 1242, 1188, 1118, 923, 702 Calcd. HRMS for C₂₁H₂₄O₂Na (M+Na) – 331.1674, found 331.1682. Spectral characterization of **3g** (E)-2,5-dimethylphenyl 2-ethyl-2-phenyloct-4-enoate

¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, J = 8.0 Hz, 2H), 7.36 (t, J = 7.7 Hz, 2H), 7.26 (t, J = 7.2 Hz, 1H), 6.99 (d, J = 7.7 Hz, 1H), 6.87 (d, J = 7.7 Hz, 1H), 6.68 (s, 1H), 5.54 (dt, J = 13.9, 6.8 Hz, 1H), 5.23 (dt, J = 14.5, 6.7 Hz, 1H), 2.97 (dd, J = 14.1, 7.7 Hz,

1H), 2.80 (dd, J = 14.1, 6.6 Hz, 1H), 2.30 – 2.23 (m, 4H), 2.18 – 2.12 (m, 1H), 1.95 (q, J = 7.1 Hz, 2H), 1.82 (s, 3H), 1.39 – 1.29 (m, 2H), 0.85 (td, J = 7.4, 5.7 Hz, 6H) ¹³C NMR (126 MHz, CDCl₃) δ 174.0, 149.2, 141.8, 136.6, 134.6, 130.8, 128.4, 126.8, 126.5, 124.5, 122.1, 54.2, 36.6, 34.8, 26.5, 22.6, 20.9, 15.6, 13.6, 8.3 FT-IR (CH₂Cl₂) ν_{max} cm⁻¹ 3020, 2958, 2927, 2871, 1508, 1750, 1203, 1151, 1108, 804, 698 Calcd. HRMS for C₂₄H₃₀O₂Na (M+Na) – 373.2144, found 373.2149.

Spectral characterization of **3h** (E)-2,5-dimethylphenyl 2-methyl-2-phenyloct-4-enoate

¹H NMR (400 MHz, CDCl3) δ 7.47 – 7.42 (m, 2H), 7.40 – 7.33 (m, 2H), 7.27 (dt, J = 3.9, 1.7 Hz, 1H), 7.00 (d, J = 7.7 Hz, 1H), 6.87 (d, J = 7.6 Hz, 1H), 6.67 (s, 1H), 5.52 (dt, J = 14.8,

6.7 Hz, 1H), 5.39 – 5.22 (m, 1H), 2.92 (dd, J = 13.9, 7.4 Hz, 1H), 2.70 (dd, J = 13.7, 6.9 Hz, 1H), 2.26 (s, 3H), 1.95 (q, J = 7.0 Hz, 2H), 1.86 (s, 3H), 1.67 (s, 3H), 1.40 – 1.29 (m, 2H), 0.85 (t, J = 7.4 Hz, 3H) ¹³C NMR (126 MHz, CDCl3) δ 174.5, 149.4, 143.1, 136.8, 135.2, 130.9, 128.6, 127.1, 126.8, 126.5, 125.2, 122.3, 50.4, 42.5, 34.9, 22.8, 22.7, 21.1, 15.8, 13.9 FT-IR (CH₂Cl₂) ν_{max} cm⁻¹ 2968, 2920, 1749, 1502, 1430, 1238, 1110, 692 Calcd. HRMS for C₂₃H₂₈O₂ (M+Na) – 359.1987 found 359.1989.

GC data

Chiral GC analysis was done using Astec CHIRALDEX B-DM column, 107-115°C at 0.1°C/min. Prior to analysis Acyl pyrrole substrates were transformed in to tertiary alcohols using MeLi.

