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Materials

CLEAR-Amide and Tentagel-S-NH2 were purchased from Peptides International.
Fmoc-Photolabile linker was purchased by Anaspec. Fmoc amino acids, HBTU, and
HOBt were purchased from ChemImpex. p-nitrophenyl methoxyacetate! (6) and

reactive tag? (1) were prepared according to literature procedures.

Peptide Synthesis. Peptides were synthesized by solid-phase peptide synthesis
using Fmoc-protected amino acids on a Tentagel S (library peptides) or CLEAR-
Amide (individual peptides) resin.? Activation of amino acids was performed with

HBTU in the presence of HOBt DIPEA in DMF. Peptide deprotection was carried out
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in 20% piperidine in DMF. All peptides were acetylated at the N-terminus with 25%
acetic anhydride and 25% pyridine in DMF. For the peptide libraries on Tentagel
resin, the peptides were deprotected with 95:2.5:2.5 trifluoroacetic acid (TFA) and
triisopropylsilane (TIPS)/water for 1h. Cleavage of the peptide from the resin was
performed in: (a) for the peptides on Tentagel resin - in methanol irradiated with
UV light; (b) for the peptides on CLEAR-Amide resin - 95:2.5:2.5 trifluoroacetic acid
(TFA) and triisopropylsilane (TIPS)/water for 3 h. TFA was evaporated and
cleavage products were precipitated with cold ether. The precipitate was washed
with ether and dried under N». It was then purified by reverse-phase HPLC using an
Atlantis C-18 semipreparative column and a gradient of 40 to 100% methanol over
60 min, where solvent A was 95 : 5 water : acetonitrile with 0.1% TFA. After
purification, the peptides were lyophilized to a powder and treated with Amberlyst
21 in methanol to produce the free base* or used directly as the TFA salt.

High resolution masses were acquired using Thermo Electrospray FT-MS.

Peptide HRMS Calculated
3cH+ 888.5660 888.5665
3bH+ 922.5509 922.5509
3aH+ 952.5612 952.5615
4 H+ 740.4089 740.4090
5 H+ 1156.5645 1156.5642

Split-and-mix synthesis. Peptide libraries were synthesized on Tentagel resin up
until the variable position, then split in 10 portions coupling a different amino acid
to each portion followed by mixing of all portions. The library was split again,

coupling different amino acids and mixed again to continue with library synthesis.

Mass Spectrometry. Mass spectrometry of the peptides was performed using
MALDI-FT on IonSpec spectrometer using 2,5-dihydroxybenzoic acid as the matrix.

High resolution mass spectra were obtained using ESI-TOF.
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UV-Vis measurements. The peptide activities were determined spectrophotometrically
with p-nitrophenyl 4-methoxyacetate 6 (20 mM) as substrate at 25 °C in TFE using a HP
845x UV-Vis spectrophotometer. Measurements were made at 320 nm corresponding to

p-nitrophenol (g = 5,852 cm™M™). The substrate solution was prepared fresh each day.
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Figure S1. Catalytic trifluoroethanolysis of 2 by 4 (blue) and 3a (red) monitored by UV-vis spectrophotometry
at 320 nm. 100 uM substrate, 25, 50, and 100 uM peptide.
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Figure S1a. Catalytic trifluoroethanolysis of 6 by 4 monitored by UV-vis spectrophotometry at 320 nm. 100 uM
substrate, 25, 50, and 100 uM peptide.
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Figure S1b. Catalytic trifluoroethanolysis of 6 by 3a monitored by UV-vis spectrophotometry at 320 nm. 100
uM substrate, 25, 50, and 100 uM peptide.

NMR Measurements. The nuclear Overhauser effect spectroscopy (NOESY)
spectrum is taken with 48 scans in the direct dimension with 256 increments in the

indirect dimension. The mixing time for the NOESY spectra is 300 ms.>

o
1

e}

®
t

o

E5H+

N
t

H3aH+

~
|

E4H+

Chemical Shift (ppm)

o
921
1

(o)
|

Cys Leu MeY Val Pro Gly Leu His Val Cys
Residue

Figure S2. Amide NH proton chemical shifts for 5H+, 3aH+, and 4H+ in trifluoroethanol-d2.
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Figure S3. Chemical shift deviation from random coil values for 4, and 4 H+ in acetonitrile d3.
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Figure S4. Chemical shift deviation from random coil values for 5H+ (trifluoroethanol-d2), 3aH+, and 4H+
(acetonitrile d3).
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Figure S5. Chemical shift deviation from random coil values for 3a, and 4 in acetonitrile d3.
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Figure S6.Chemical shift deviation from random coil values for 3a H+, 3b H+ and 3c-H+ in acetonitrile-d3
indicating a beta hairpin structure.
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Figure S7.Chemical shift deviation from random coil values for 3a, 3a H+ and 3a-Ac in acetonitrile-d3
indicating a beta hairpin structure.
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Figure S8. Imidazole protonation-dependent chemical shift change for ring methoxy groups in 3a, 4, and 5
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Figure S10. Reactivity of 2.5 mM 3a, 4, and 5 peptide with p-nitrophenylmethoxyacetate (9 mM) in d3-TFE at
25 degrees C.
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Figure S11. Substitution effects on reactivity of peptides (2.5 mM catalyst, 9 mM substrate, d3 TFE, 25 degrees
0
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Figure S12a.: Close-up of NOESY of 3a in MeCN-d3
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Figure S12b.: 3a NOESY in MeCN-d3
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Figure S12c.: 3a H+ NOESY in MeCN-d3
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Figure S12d.: 3a H+ NOESY in MeCN-d3
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Figure S12e.: 3a Ac NOESY in MeCN-d3

S16

O 4



v ! '
LI I
b ]
|
21 ’ ' ' 2
| N L]
f ¥
) 7 \l ! ]
3 N /
a 41 1} { -4
k=2 \ V-
I ) ——‘)/\V , '
é— ) PRI :m--
61 - ' -6
N olv’ + l' ' :
. LU
81 :;g;! . . -8
w, - "H (ppm)
Figure S12f.: 3a Ac NOESY in MeCN-d3
2D NMR chemical shifts
Table S1.: 1H NMR resonances for 3a in MeCN-d3
Residue NH a Ba Bb |y ) £ other
Leul 7.02 4.3
MeY2 7.32 496 | 3.02 | 2.75 7.04 | 6.76
Val3 8.16 4.42
dPro4 4.3 3.72
Glys 723  3.79
Leub 7.72 444
His7 7.84 4.52 294 | 2.84 6.64 | 7.45
Val8 7.44 4.1
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Table S2.: 1H NMR resonances for 3a H* in MeCN-d3

Residue NH a Ba Bb |y ) 3 other
.90,
Leul 7.17 4.25 .83
MeY2 7.37 492 |3.033 | 2.76 7.07 | 6.77
Val3 8.09 4.43 0.93
dPro4 431 195| 3.72
Gly5 7.21| 3.789
Leu6 7.7 3.52 0.91
His7 7.69 468 | 3.06 | 2.94 7.054 | 8.42
Val8 7.57 4.1 0.91
Table S3.: 1H NMR resonances for 3a Ac in MeCN-d3
Residue NH a Ba Bb Y ) 3 other
Leul 7.01 4.37
MeY2 7.33 5.05 3.02 2.75 7.03 6.73
Val3 8.2 444 | 2.02 0.93
dPro4 4.28 3.7
3.77,
Gly5 7.21 | 3.67
Leu6 7.75 4.43
His7 7.67 4.54 | 2.969 | 2.825 7.18 | 8.06 | 2.5 (Im-Ac)
Val8 7.52 4.1
Table S4.: 1H NMR resonances for 4 H+ in MeCN-d3
o NH
MeY1 4,732 7.129
Val2 4.349 7.757
dPro3 4.302
Gly4 3.782 7.365
Leu5 4.299 7.733
His6 4,617 7.622
Table S5.: 1H NMR resonances for 4 in MeCN-d3
(o} NH
MeY1 4,732 | 7.16
Val2 4.349 | 8.04
dPro3 4.302
Gly4 3.782 | 7.331
Leu5 4.299 | 7.698
His6 4,617 | 7.835
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Table S6.: 1H NMR resonances for 5 H+ in TFE-d2

5H+ a NH

Cysl 5.525 7.138
Leu2 4,583 9.023
MeY3 5.438 7.422
Val4 4.5 8.672
Pro5 4,392

Gly6 3.9 7.688
Leu?7 4.398 8.408
His8 5.545 7.419
Val9 4.325 8.75
Cys10 5.421 7.656

Table S7.: 1H NMR resonances for 3b H+ in MeCN-d3

3bH+ o NH

Leul 4.211 7.096
Phe2 4,937 7.359
Val3 4421 8.056
Pro4 4,318

Gly5 3.789 7.212
Leu6 4511 7.699
His7 4.685 7.659
Val8 4.107 7.533

Table $8.: 1H NMR resonances for 3¢ H+ in MeCN-d3

3cH+ o NH

Leul 4,216 7.251

Leu2 4,524 7.275

Val3 4.334 7.898

Pro4 4.308

Gly5 3.843 7.229

Leu6 4,426 7.585

His7 4,845 7.72

Val8 4.183 7.684
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