Trienamines derived from 5-substituted furfurals: remote ε-functionalization of 2,4-dienals

Jaime A. S. Coelho¹, Alexandre F. Trindade^{1,2*}, Vânia André³, M. Teresa Duarte³, Luis F. Veiros³, Carlos A. M. Afonso^{1,*}

¹Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.

² CQFM, Centro de Química-Física Molecular, IN-Institute of Nanosciences and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.

³ Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001, Lisboa, Portugal.

Supporting Information

Table of contents

1.	General Methods	2
2.	Synthesis of furfurals	3
3.	Synthesis and characterization of 6a	6
4.	Reaction conditions optimization	9
5.	Amine scope	11
6.	Asymmetric version	15
7.	Aldehyde scope	18
8.	Cross reaction	21
9.	Investigation of reaction mechanism	22
10.	DFT Calculations	30
11.	¹ H and ¹³ C NMR Spectra	46
12.	References	71

1. General Methods

All solvents were freshly dried and distilled before use. All reactions were performed in flame dried glassware under argon atmosphere otherwise notice. Commercially available reagents were used as received without further purification otherwise notice. 3,3'-bis(2,4,6-triisopropylphenyl)-2,2'-binaphtholate (*(R)*-TRIP) was kindly provided by Prof. Dr. Benjamin List.

Flash chromatography was carried out on silica gel 60M purchased from MN (Ref. 815381). Reaction mixtures were analyzed by TLC using ALUGRAM SIL G/UV254 from MN (Ref. 818133, silica gel 60), and visualization by UV and phosphomolybdic acid stain.

NMR spectra were recorded at room temperature in a Bruker AMX 300 or Bruker AMX 400 using CDCl₃, D₂O or DMSO-d₆ as solvents and $(CH_3)_4Si(^1H)$ as internal standard. All coupling constants are expressed in Hz. Electrospray ionization (ESI) mass spectra were recorded in a mass spectrometer (Micromass Quattro Micro API, Waters, Ireland) with a Triple Quadrupole (TQ) and with an electrospray ion source operating in positive mode. Elemental analysis was performed in a Flash 2000 CHNS-O analyzer (ThermoScientific, UK).

HPLC analysis was performed on a VWR Hitachi apparatus with a diode array detector L-2455 coupled to a pump L-2130 and using a KROMASIL 100 SIL 5.0 column, manual injector with 20 μ L loop. Mobile phase gradient from 100:0 to 98:2 in 30 min n-hexane/2-propanol, flow 1 mL/min.

2. Synthesis of furfurals

5-(Hydroxymethyl)furfural, HMF⁴, 4

To a round-bottom flask D-fructose (2 g, 11.1 mmol), tetraethylamonium bromide (18 mL) and water (2 mL) were added and the mixture and was allowed to stir at 80°C until a homogeneous solution is obtained (around 15 min). Then Amberlyst-15-powder (200 mg, 10% w/w) was added and the mixture and was allowed to stir for 10 min, from 80°C to 100°C, followed by an additional 15 min at 100°C. Isolation of HMF was performed by dissolution of the reaction mixture in ethanol followed by precipitation with ethyl acetate, filtration, and removal of ammonium salt traces by filtration with silica to yield the product (1.4 g, quantitative yield) as a dark orange oil that crystalizes in the freezer (0°C). ¹H NMR (400 MHz, CDCl₃) δ 2.59 (s, 1H), 4.71 (s, 2H), 6.51 (d, *J* = 3.5 Hz, 1H), 7.21 (d, *J* = 3.5 Hz, 1H), 9.58 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 57.7, 110.1, 123.1, 152.4, 160.8, 177.9.

5-(((tert-Butyldimethylsilyl)oxy)methyl)furan-2-carbaldehyde¹, 1

To a solution of 5-hydroxymethylfurfural (HMF) (1.6 g, 12.7 mmol) in DMF (3.2 mL) were added imidazole (2.2 g, 31.7 mmol, 2.5 equiv.) and *tert*-butyldimethylsilyl chloride (2.3 g, 15.2 mmol, 1.2 equiv.). The solution was stirred for 22 h. The silylated compound was extracted with hexane (5 x 20 mL). The collected organic layers were washed with brine, dried over Na₂SO₄, and the solvent removed to give the crude product that was distilled (100 °C/0.8 mbar) giving the product (1.9 g, 63 % yield) as a light yellow liquid that solidifies in the freezer (0 °C). ¹H NMR (400 MHz, CDCl₃) δ 0.08 (s, 6H), 0.89 (s, 9H), 4.71 (s, 2H), 6.44 (d, *J* = 3.52 Hz, 1H), 7.18 (d, *J* = 3.54 Hz, 1H), 9.56 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ -5.3, 18.4, 25.8, 58.7, 109.5, 122.6, 152.3, 161.5, 177.6.

(5-Formylfuran-2-yl)methyl benzoate², 2

To a flame dried round-bottom flask, HMF (1.0 g, 7.9 mmol) and anhydrous pyridine (4 mL) were added followed by benzoyl chloride (1 mL, 8.7 mmol, 1.1 equiv.). The reaction mixture was allowed to stir at reflux for 1.5 h under argon atmosphere. The mixture was quenched with

cold water (50 mL), acidified with HCl 1M and extracted with Et₂O. The combined organic layers were dried over MgSO4, filtered and the solvent removed to give the crude product that was recrystallized from Et₂O/hexane as a pale orange solid (0.86 g, 47% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.38 (s, 2H), 6.68 (d, *J* = 3.55 Hz, 1H), 7.24 (d, *J* = 3.56 Hz, 1H), 7.46 (t, *J* = 7.7 Hz, 2H), 7.58 (tt, *J* = 7.45, 1.30 Hz, 1H), 8.07 (m, 2H), 9.65 (s, 1H).

5-((Benzyloxy)methyl)furan-2-carbaldehyde³, 3

Benzyl bromide (3.8 g, 22.2 mmol) and silver oxide (2.6 g, 11.1 mmol) were successively added to a stirred solution of HMF (1.4 g, 11.1 mmol) dissolved in anhydrous DMF (15 mL). The mixture was stirred for 50 h at RT. The solution was evaporated under reduced pressure and the residue was purified by column chromatography (silica; hexane-EtOAc, 1:1) to give the desired product (1.2 g, 50 % yield). ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, *J* = 6.9 Hz, 3H), 1.27-1.31 (m, 4H), 1.63 (quint, *J* = 7.4 Hz, 2H), 2.35 (t, *J* = 7.6, 2H), 5.12 (s, 2H), 6.58 (d, *J* = 3.55 Hz, 1H), 7.21 (d, *J* = 3.55 Hz, 1H), 9.63 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 64.2, 73.0, 111.4, 122.0, 128.0, 128.1, 128.6, 137.3, 152.7, 158.5, 177.8.

(5-Formylfuran-2-yl)methyl acetate³, 5

To a flame dried round-bottom flask, HMF (3.5 g, 27.8 mmol), anhydrous MeCN (50 mL) and acetic anhydride (4.3 mL, 45.6 mmol) were added followed by catalytic amount of pyridine (0.5 mL, 6.2 mmol). The reaction mixture was allowed to stir at room temperature for 22h under argon atmosphere. The solvent was removed and the product purified by column chromatography with silica gel (hexane/ethyl acetate 8:2) to give the product (4.3 g, 93% yield) as a pale yellow oil that crystallized in the freezer (0°C). ¹H NMR (300 MHz, CDCl₃) δ 2.11 (s, 3H), 5.12 (s, 2H), 6.58 (d, *J* = 3.55 Hz, 1H), 7.21 (d, *J* = 3.55 Hz, 1H), 9.64 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.8, 57.9, 112.7, 121.8, 153.0, 155.6, 170.5, 178.0.

5-(Chloromethyl)furan-2-carbaldehyde⁵, CMF

To a flame dried round-bottom flask, HMF (1 g, 7.9 mmol) and anhydrous CHCl₃ were added. Trimethylsilyl chloride (6 mL, 47.3 mmol, 6 equiv.) was added dropwise at 45 °C and the resulting mixture stirred for 24 h at 45°C under inert atmosphere. The mixture was then quenched with saturated aqueous solution of NaHCO₃ and extracted with DCM. The collected organic layers were dried over Na₂SO₄ and the solvent removed. The crude product was purified by dissolution in hot hexane and filtration through a pad of celite and activated carbon. The solvent was removed under vacuum to give the desired product (0.7 g, 61% yield). ¹H NMR (300 MHz, CDCl₃) δ 4.59 (s, 2H), 6.57 (d, *J* = 3.57 Hz, 1H), 7.19 (d, *J* = 3.57 Hz, 1H), 9.60 (s, 1H).

3. Synthesis and characterization of 6a

5-(1-((tert-butyldimethylsilyl)oxy)-2-(5-(((tert-butyldimethylsilyl)oxy)methyl)furan-2-yl)-2-morpholinoethyl)furan-2-carbaldehyde

To a solution of **1** (90 mg, 0.375 mmol) in anhydrous acetonitrile, morpholine (1 equiv., 0.375 mmol) was added via gas-tight syringe followed by the addition of $Dy(OTf)_3$ (10 mol%) in one portion. The reaction mixture was allowed to stir at 40 °C for 2 days. The solvent was then evaporated and the two diastereoisomers **6a-I** (R_f =0.55, 8:2 Hex/AcOEt) and **6a-II** (R_f =0.65, 8:2 Hex/AcOEt) were purified by flash chromatography using hexane/ethyl acetate.

Diastereoisomer 6a-I

¹H NMR (400 MHz, CDCl₃) δ -0.17 (s, 3H), -0.13 (s, 3H), 0.09 (s, 3H), 0.10 (s, 3H), 0.69 (s, 9H) 0.91 (s, 9H), 2.29 (m, 2H), 2.59 (m, 2H), 3.46 (m, 4H), 3.82 (d, *J* = 9.04 Hz, 1H), 4.60 (s, 2H), 5.24 (d, *J* = 9.07 Hz, 1H), 6.18 (s, 2H), 6.44 (d, *J* = 3.53 Hz, 1H), 7.22 (d, *J* = 3.47 Hz, 1H), 9.61 (s, 1H).

6-I and 6-II ¹³C NMR (100 MHz, CDCl₃) δ 177.7, 177.6, 163.8, 162.3, 153.9, 153.8, 151.8, 151.8, 150.2, 150.1, 122.8, 122.0, 110.9, 110.1, 110.1, 109.5, 107.8, 107.6, 68.7, 68.3, 68.2, 67.5, 67.4, 58.3, 58.2, 50.9, 50.8, 26.0, 25.9, 25.8, 25.5, 18.5, 18.5, 18.3, 18.0, -4.8, -4.9, -5.0, -5.0, -5.4, -18.7.

HRMS Calculated for $C_{28}H_{47}NO_6Si_2Na$: 572.283414 m/z, found: 572.283506 m/z. ESI⁺ Calculated for $[C_{28}H_{47}NO_6Si_2]^+$: 550.3020 m/z, found: 550.3015 m/z

Synthesis of the S2 crystals suitable for X-Ray analysis:

a) To a solution of **6a-I** (100 mg, 0.18 mmol) in anhydrous THF (1 mL), tetrabutylammonium fluoride (TBAF·3H₂O, 4 equiv., 215 mg) was added at 0°C and the mixture was allowed to stir for 15 min. The product was purified by chromatography column to yield the product a pale yellow oil (58 mg, 99% yield). ¹H NMR (400 MHz, CDCl₃) δ 2.54 (m, 4H), 3.66 (m, 4H), 3.87 (d, *J* = 6.11 Hz, 1H), 4.54 (d, *J* = 5.87 Hz, 2H), 5.33 (d, *J* = 6.08 Hz, 1H), 6.14 (dd, *J* = 9.96, 2.85, 2H), 6.39 (d, *J* = 3.48 Hz, 1H), 7.13 (d, *J* = 3.50 Hz, 1H), 9.51 (s, 1H).

b) To a mixture of compound **S1** (58 mg, 0.18 mmol) in anhydrous MeCN (1 mL) 3,5dinitrobenzoyl chloride (2.2 equiv.) was added and the reaction mixture was allowed to stir at room temperature (RT). After 1 h, triethylamine (2.2 equiv.) was added slowly and the reaction mixture was allowed to stir for 1 h. The product was then purified by flash chromatography to yield a yellow solid (83.6 mg, 65% yield) that was recrystallized from hexane/ethyl acetate.

X-ray Crystallographic Analysis:

Crystals of **S2** suitable for X-ray diffraction studies were mounted on a loop with protective oil. X-ray data were collected at 150K on a Bruker AXS-KAPPA APEX II diffractometer using graphite monochromated Mo-K α radiation (λ =0.71069 Å) and operating at 50kV and 30 mA. Cell parameters were retrieved using Bruker SMART software and refined using Bruker SAINT⁶ on all observed reflections. Absorption corrections were applied using SADABS⁷. Structure solution and refinement were performed using direct methods with program SIR97⁸ and SHELXL97⁹, both included in the package of programs WINGX-Version 1.80.05¹⁰. A fullmatrix least-squares refinement was used for the non-hydrogen atoms with anisotropic thermal parameters. All hydrogen atoms connected to carbons were inserted in idealized positions and allowed to refine riding in the parent carbon atom.

Crystallographic data for **S2** (CCDC 1011693): $C_{30}H_{23}N_5O_{16}$, fw=709.53, monoclinic, space group *P*2₁, a=6.462(3) Å, b=21.405(2) Å, c=11.722(4) Å, β = 105.001(1) °, V =1566.1(9) Å³, Z=2, T=150K, d_{calc}=1.505 mg.m⁻³, μ =0.125 mm⁻¹, F(000)=732. Of 22063 reflections collected, 6354 were independent (R_{int}= 0.0725); 461 variables refined with 6354 reflections to final R indices R₁(I > 2 σ (I))=0.0544, wR₂(I>2 σ (I))=0.1136, R₁(all data)=0.0988, wR₂(all data)=0.1284, GOF= 0.967.

Diastereoisomer 6a-II

¹H NMR (400 MHz, CDCl₃) δ -0.13 (s, 3H), 0.07 (s, 9H), 0.86 (s, 9H) 0.89 (s, 9H), 2.50 (m, 2H), 2.70 (m, 2H), 3.66 (m, 4H), 3.96 (d, *J* = 8.20 Hz, 1H), 4.54 (s, 2H), 5.19 (d, *J* = 8.21 Hz, 1H), 5.96 (d, *J* = 2.98 Hz, 1H), 6.03 (d, *J* = 2.92 Hz, 1H), 6.32 (d, *J* = 3.49 Hz, 1H), 7.06 (d, *J* = 3.55 Hz, 1H), 9.53 (s, 1H). Calculated for C₂₈H₄₇NO₆Si₂Na: 572.283414 m/z, found: 572.283506 m/z.

4. Reaction conditions optimization

General Protocol for reaction conditions optimization

To a solution of **1** (30 mg, 0.125 mmol) in the desired anhydrous solvent, morpholine was added via gas-tight syringe. The catalyst was added in one portion and the mixture was allowed to stir at the mentioned temperature and time. The solvent was then evaporated and the crude reaction mixture was filtered through a small pad of silica gel using 10 mL hexane/ethyl acetate 7:3. The solvent was evaporated and hexane was used to dilute the mixture to the appropriate concentration for HPLC analysis.

 $R_t (1) = 4.78 \text{ min.}, \lambda_{max} = 275 \text{ nm}; R_t (6a-II) = 5.21 \text{ min.}, 282 \text{ nm}; R_t (6a-I) = 7.05 \text{ min.}, \lambda_{max} = 282 \text{ nm}.$

Calibration curves for quantitative HPLC analysis

Results

н	OTBDMS —	morpholine Acid (10 mol%	→ TBDMSO	\sim		H+	твомо		он
1		Solvent, T, t		TBDI	MSO 6a-I		TE	3DMSO 6a-II	
Catalyst	Cat. Amount (mol%)	Amine quant. (equiv.)	Solvent	Conc. (M)	Temp. (°C)	t (h)	Conv. (%) ^a	Yield (%) ^b	d.r. ^c
ZrCl ₄	10	2	MeCN	0.08	80	16	70	48	1:1.4
GdCl ₃	10	2	MeCN	0.08	80	16	68	64	1:1.3
Dy(OTf) ₃	10	2	MeCN	0.08	80	16	96	6	1:0.6
FeCl ₃	10	2	MeCN	0.08	80	16	76	13	1:0.1
CeCl ₃	10	2	MeCN	0.08	80	16	67	42	1:1.3
AlCl ₃	10	2	MeCN	0.08	80	16	96	35	1:2.6
$ScOf_3$	10	2	MeCN	0.08	80	16	100	6	1:5.5
ZrCl ₄	10	2	MeCN	0.08	50	16	47	23	1:0.8
GdCl ₃	10	2	MeCN	0.08	50	16	51	18	1:0.8
$DyOTf_3$	10	2	MeCN	0.08	50	16	93	42	1:1.5
FeCl ₃	10	2	MeCN	0.08	50	16	67	25	1:0.9
CeCl ₃	10	2	MeCN	0.08	50	16	31	11	1:0.8
AlCl ₃	10	2	MeCN	0.08	50	16	32	17	1:0.8
Dv(OTf) ₃	10	2	MeCN	0.08	40	16	47	47	1:0.9
Dv(OTf) ₃	10	2	MeCN	0.08	30	16	21	11	1:0.8
Dv(OTf) ₃	10	2	MeCN	0.08	40	48	73	73	1:1.0
GdCl ₃	10	2	MeCN	0.08	80	6	63	34	1:1.0
GdCl ₃	10	2	MeCN	0.08	80	48	95	33	1:2.6
Sc(OTf) ₃	10	2	MeCN	0.08	40	16	44	44	1:0.9
H ₂ SO ₄	10	2	MeCN	0.08	80	16	46	23	1:0.9
TFA	10	2	MeCN	0.08	80	16	97	20	1:2.3
PTSA	10	2	MeCN	0.08	80	16	82	59	1.1.4
НСООН	10	2	MeCN	0.08	80	16	38	8	1.0.8
Dv(OTf) ₂	5	2	MeCN	0.08	40	48	57	57	1.0.9
$Dv(OTf)_2$	20	2	MeCN	0.08	40	48	85	85	1.1.1
$Dv(OTf)_2$	10	1	MeCN	0.08	40	48	74	74	1.1.0
$Dv(OTf)_2$	10	0.55	MeCN	0.08	40	48	51	38	1.1.0
$Dv(OTf)_2$	10	1	Hexane	0.08	40	48	25	traces	-
$Dv(OTf)_2$	10	1	MeOH	0.08	40	48	62	3	1.0.3
$Dv(OTf)_2$	10	1	DCE	0.08	40	48	91	33	1.1.8
$Dv(OTf)_2$	10	1	THF	0.08	40	48	60	22	1.0.9
$Dy(OTf)_{2}$	10	1	DCM	0.08	40	48	77	59	1.0.5
Dv(OTf)	10	1	DMSO	0.08	40	48	16	traces	-
Dv(OTf)	10	1	DMF	0.08	40	48	24	traces	-
Dv(OTf)	10	1	H	0.08	40	48	2 · 71	traces	-
$D_{v}(OTf)_{a}$	10	1	MeCN	0.04	40	48	68	68	1.13
Dv(OTf)	10	1	MeCN	0.17	40	48	88	88	1.1.5
$D_{v}(OTf)_{a}$	10	1	MeCNd	0.08	40	48	77	55	1.1 1
Dv(OTf)	10	1	MeCNe	0.08	40	48	62	62	1:1 3

^{*a*} Conversion determined by HPLC analysis based on starting material that did not react. ^{*b*} Total yield of both isomers **6a-I** and **6a-II** determined by HPLC analysis of crude reaction mixture. ^{*c*} Determined by HPLC analysis of crude reaction mixture, ratio **6a-II:6a-I**. ^{*d*} 10% w/w molecular sieves was used as additive. ^{*e*} Used comercial HPLC grade MeCN, not dried.

Other catalysts screened by TLC analysis that gave no promising results: $Pd(II)(acac)_2$, $Cu(OTf)_2$, $Au(I)Cl(PPh_3)$, AgOTf, $Ru(III)Cl_3 \cdot xH_2O$, $CoCl_2 \cdot 2H_2O$, $InCl_3$, $Zn(OTf)_2$, $PdCl_2$, CuI, $BaCl_2 \cdot 2H_2O$, $NiCl_2 \cdot 6H_2O$, $FeCl_3 \cdot 6H_2O$, $TiC_{12}H_{28}O_4$, $AlC_9H_{21}O_3$, $LaCl_3 \cdot 7H_2O$, $BF_3 \cdot Et_2O$.

5. Amine scope

General Protocol

To a solution of **1** (90 mg, 0.375 mmol) in anhydrous acetonitrile (2.25 mL), amine (1 equiv., 0.375 mmol) was added followed by the addition of $Dy(OTf)_3$ (10 mol%) in one portion. The reaction mixture was allowed to stir at 40°C until full consumption of **1** (followed by TLC). The solvent was then evaporated and the product was purified by flash chromatography using hexane/ethyl acetate.

Results

- *N*-methylbutan-1-amine, diallylamine, pyrrolidine, piperazine, proline led to complex mixture and the product was not isolated/identified.
- 2,2,6,6-tetramethylpiperidine, *N*-benzyl-2-methylpropan-2-amine, imidazole, pyrrole, diethanolamine and diphenylamine did not react with **1**.
- Dibenzylamine, diethylamine, methyl-piperazine, ethylbutylamine, piperidine yielded the desired compound:

Р		R ₂ NH (1 equiv.) Dy(OTf) ₃ (10 mol%) MS MeCN, t, 40°C	H H H H H H H H H H	OTBDMS	,OTBDMS
	Entry	Amine	time (h)	Yield (%)	_
	1	N H	41	86	_
	2	Ň H	24	78	
	3	HN_N—	24	37	
	4		20	60	
	5		24	48	
	6		48	38	

5-(1-((tert-butyldimethylsilyl)oxy)-2-(5-(((tert-butyldimethylsilyl)oxy)methyl)furan-2-yl)-2-(dibenzylamino)ethyl)furan-2-carbaldehyde, 6b

Isolation of the different diastereoisomers, **6b-I** and **6b-II** (not stable), ratio not determined.

6b-I - ¹H NMR (400 MHz, CDCl₃) δ -0.24 (s, 3H), -0.19 (s, 3H), 0.16 (s, 3H), 0.16 (s, 3H), 0.60 (s, 9H) 0.96 (s, 9H), 3.13 (d, *J* = 13.78 Hz, 2H), 3.88 (d, *J* = 13.69, 2H), 4.06 (d, *J* = 10.09 Hz, 1H), 4.68 (s, 2H), 5.33 (d, *J* = 10.12 Hz, 1H), 6.20 (d, *J*=2.47 Hz, 1H), 6.27 (d, *J* = 2.50 Hz, 1H), 6.30 (d, *J* = 3.47 Hz, 1H), 7.06 (m, 4H), 7.22 (m, 6 H), 7.29 (d, *J* = 3.36 Hz, 1H), 9.59 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ -5.5, -5.2, -4.9, 18.0, 18.6, 25.5, 26.1, 29.9, 50.0, 55.4, 58.4, 61.7, 67.8, 107.9, 110.4, 111.8, 127.1, 128.3, 128.9, 139.3, 150.4, 152.0, 153.9, 163.2, 178.4. Calculated for C₃₈H₅₃NO₅Si₂Na: 682.335451 m/z, found: 682.335489 m/z.

5-(1-((tert-butyldimethylsilyl)oxy)-2-(5-(((tert-butyldimethylsilyl)oxy)methyl)furan-2-yl)-2-(diethylamino)ethyl)furan-2-carbaldehyde, 6c

Isolated as a mixture of diastereoisomers 6c-I and 6c-II, ratio not determined

6c-I and 6c-II - ¹H NMR (400 MHz, CDCl₃) δ -0.20 - -0.15 (6H), 0.00 - 0.12 (6H), 0.75 - 1.00 (18H), 0.5 - 0.7 (6H), 2.00 - 3.00 (4H), 4.03 - 4.13 (1H), 4.59-4.74 (s, 2H), 5.00 - 5.18 (1H), 6.08 - 6.14 (2H), 6.38 - 6.40 (1H), 7.09 - 7.23 (1H), 9.54 - 9.59 (1H). ¹³C NMR (100 MHz, CDCl₃) δ -5.4, -5.2, -4.1, -5.0, 13.9, 18.0, 18.6, 25.6, 25.8, 25.9, 26.0, 44.9, 58.4, 60.6, 63.3, 69.0, 107.7, 107.8, 109.5, 109.6, 109.9, 110.2, 122.2, 151.7, 153.4, 164.3, 177.1, 177.7. Calculated for C₂₈H₄₉NO₅Si₂Na: 558.304147 m/z, found: 558.304643 m/z.

5-(1-((tert-butyldimethylsilyl)oxy)-2-(5-(((tert-butyldimethylsilyl)oxy)methyl)furan-2-yl)-2-(4-methylpiperazin-1-yl)ethyl)furan-2-carbaldehyde, 6d

Isolated as a mixture of diastereoisomers, 6d-I and 6d-II, ratio 1:1.0

6d-I – ¹H NMR (400 MHz, CDCl₃) δ -0.18 (s, 3H), -0.15 (s, 3H), 0.07 (s, 3H), 0.08 (s, 3H), 0.68 (s, 9H) 0.90 (s, 9H), 2.14 (s, 3H), 2.30-2.72 (m, 8H), 3.84 (d, *J* = 9.1 Hz, 1H), 4.56 (s, 2H), 5.22 (d, *J* = 9.09 Hz, 1H), 6.14 (m, 2H), 6.44 (d, *J* = 3.46 Hz, 1H), 7.21 (d, *J* = 3.39 Hz, 1H), 9.60 (s, 1H).

6d-II – ¹H NMR (400 MHz, CDCl₃) δ -0.10 (s, 3H), 0.05 (s, 9H), 0.84 (s, 9H) 0.88 (s, 9H), 1.25-1.55 (m, 6H), 2.24 (s, 3H), 2.30-2.72 (m, 8H), 3.98 (d, *J* = 8.12 Hz, 1H), 4.51 (s, 2H), 5.18 (d, *J* = 8.12 Hz, 1H), 5.94 (d, *J* = 2.4 Hz, 1H), 5.98 (d, *J* = 2.75 Hz, 1H), 6.30 (d, *J* = 3.43 Hz, 1H), 7.05 (d, *J* = 3.46 Hz, 1H), 9.51 (s, 1H).

6d-I + **6d-II** – ¹³C NMR (100 MHz, CDCl₃) δ 177.69, 177.67, 164.1, 162.4, 153.8, 153.7, 151.8, 150.1, 149.9, 122.5, 121.0, 110.8, 110.1, 109.4, 107.8, 107.6, 68.5, 67.9, 67.0, 66.6, 58.2, 58.1, 55.4, 55.3, 45.7, 26.1, 26.0, 25.8, 25.6, 18.6, 18.5, 18.3, 18.0, -4.8, -4.9, -5.0, -5.4. Calculated for C₂₉H₅₀N₂O₅Si₂Na: 585.315053 m/z, found: 585.315022 m/z.

5-(2-(butyl(ethyl)amino)-1-((tert-butyldimethylsilyl)oxy)-2-(5-(((tert-butyldimethylsilyl)oxy)methyl)furan-2-yl)ethyl)furan-2-carbaldehyde, 6e

Isolated as a mixture of diastereoisomers, 6e-I and 6e-II, ratio 1:0.25

6e-I – ¹H NMR (400 MHz, CDCl₃) δ -0.20 (s, 3H), -0.17 (s, 3H), 0.09 (s, 3H), 0.10 (s, 3H), 0.66 (s, 9H), 0.74-0.81 (m, 6H), 0.91 (s, 9H), 1.04-1.31 (m, 4H), 2.11 (m, 2H), 2.37 (m, 1H), 2.64 (m, 1H), 4.03 (d, *J* = 9.78 Hz, 1H), 4.59 (s, 2H), 5.18 (d, *J* = 9.79 Hz, 1H), 6.12 (d, *J* = 2.7 Hz, 1H), 6.16 (d, *J* = 2.7 Hz, 1H), 6.44 (d, *J* = 3.52 Hz, 1H), 7.21 (d, *J* = 3.51 Hz, 1H), 9.61 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 177.7, 164.2, 153.3, 151.7, 151.6, 122.2, 110.4, 109.7, 107.8, 68.7, 63.5, 58.4, 50.7, 45.1, 30.5, 26.0, 25.8, 25.5, 20.4, 20.3, 18.6, 18.1, 18.0, 14.2, 13.9, -5.0, -5.1, -5.5. Calculated for C₃₀H₅₃NO₅Si₂Na: 586.335452 m/z, found: 586.335467 m/z. **6e-II** – Calculated for C₃₀H₅₃NO₅Si₂Na: 586.335452 m/z, found: 586.335797 m/z.

5-(1-((tert-butyldimethylsilyl)oxy)-2-(5-(((tert-butyldimethylsilyl)oxy)methyl)furan-2-yl)-2-(piperidin-1-yl)ethyl)furan-2-carbaldehyde, 6f

Isolation of the different diastereoisomers, 6f-I and 6f-II.

6f-I – ¹H NMR (400 MHz, CDCl₃) δ -0.17 (s, 3H), -0.15 (s, 3H), 0.09 (s, 3H), 0.10 (s, 3H), 0.68 (s, 9H) 0.91 (s, 9H), 1.20-1.31 (m, 6H), 2.17 (m, 2H), 2.53 (m, 2H), 3.81 (d, *J* = 9.24 Hz, 1H), 4.60 (s, 2H), 5.24 (d, *J* = 9.24 Hz, 1H), 6.13 (d, *J* = 2.93 Hz, 1H), 6.17 (d, *J* = 2.95 Hz, 1H), 6.45 (d, *J* = 3.56 Hz, 1H), 7.21 (d, *J* = 3.55 Hz, 1H), 9.61 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 177.77, 151.76, 109.49, 107.84, 68.54, 58.33, 51.70, 26.00, 25.57, 18.54, 18.02, -5.00, -5.04, -5.36. C₂₉H₄₉NO₅Si₂Na: 570.304151 m/z, found: 570.303693 m/z.

6f-II – ¹H NMR (400 MHz, CDCl₃) δ -0.07 (s, 3H), 0.06 (s, 6H), 0.09 (s, 3H), 0.85 (s, 9H) 0.89 (s, 9H), 1.25-1.55 (m, 6H), 2.38 (m, 2H), 2.63 (m, 2H), 3.95 (d, *J* = 8.73 Hz, 1H), 4.53 (s, 2H), 5.18 (d, *J* = 8.69 Hz, 1H), 5.90 (d, *J* = 2.94 Hz, 1H), 6.00 (d, *J* = 2.96 Hz, 1H), 6.30 (d, *J* = 3.51 Hz, 1H), 7.05 (d, *J* = 3.56 Hz, 1H), 9.51 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 178.1, 151.7, 110.0, 107.8, 68.4, 58.2, 51.7, 29.9, 25.8, 18.5, 18.33, -4.73, -5.0, -5.4.

6. Asymmetric version

General Protocol using chiral amines:

To a solution of **1** (90 mg, 0.375 mmol) in anhydrous acetonitrile (2.25 mL), *N*-benzyl-1phenylethanamine (1 equiv., racemic, (*R*)- or (*S*)-isomers) was added followed by the addition of Dy(OTf)₃ (10 mol%) in one portion. The reaction mixture was allowed to stir at 40°C for 4 days. The solvent was then evaporated and the catalyst was filtrated through a pad of silica gel using hexane/ethyl acetate and the starting material/products were analyzed by ¹H NMR. HRMS for the product **6g** using racemic amine: Calculated for $C_{39}H_{56}NO_5Si_2$: 674.3692 m/z, found: 6474.3690 m/z.

¹H NMR analysis

Using racemic amine – d.r. 1:1:0.35:0.25

Using amine S-isomer – d.r 1: 1: 0.05: 0.05

Using amine R-isomer – d.r 1:1:0:0

General protocol for unsuccessful asymmetric version using chiral catalysts

To a solution of **1** (15 mg, 0.06 mmol) in the desired anhydrous solvent (0.4 mL), morpholine (1 equiv., 0.06 mmol), catalyst (10 mol%) and the ligand (for the Lewis acid examples, 10 mol%) were added. The reaction mixture was allowed to stir for the time and temperature described. The solvent was then evaporated and the catalyst was filtrated through a pad of silica gel using hexane/ethyl acetate and the starting material/products were analyzed by HPLC.

HPLC analysis was performed on a Shimadzu apparatus with a diode array detector SPD-M20A coupled to a pump LC-20AT and using a CHIRALCEL OD column, manual injector with 20 µL loop. Mobile phase gradient from 99:1 n-hexane/2-propanol, flow 1 mL/min.

Entry	Catalyst	Ligand	Conditions	Yield ^a	ee ^b
1	Dy(OTf) ₃	(S)-BINOL	MeCN, 40°C, 2d	Good	racemic
2	Dy(OTf) ₃	BOX	MeCN, 40°C, 2d	Good	racemic
3	Dy(OTf) ₃		MeCN, 40°C, 2d	Good	racemic
4 ^{<i>c</i>}	Sc(OTf) ₃	PyBOX	MeCN, 40°C, 2d	Good	racemic
5 ^c	Sc(OTf) ₃		DCM, 40°C, 2d	Good	racemic
6	(R)-BINOL Hydrogenphosphate	-	DCE, 80°C, 3d	Low	racemic
7 ^d	(R)-VAPOL Hydrogenphosphate	-	DCE, 80°C, 5d	Low	racemic
8	(R)-TRIP		DCE, 70°C, 5d	Moderate	racemic
9^d	(S)-CSA	-	MeCN, 80°C, 2d	Moderate	racemic

^{*a*}Qualitative yield determined by TLC analysis of crude reaction mixture; ^{*b*}Determined by HPLC of crude reaction mixture; ^{*c*}The catalyst and the ligand were pre-mixed before for 2h at RT; ^{*d*}No reaction observed at 40°C for 2d. (*S*)-BINOL: (S)-(-)-1,1'-Bi(2-naphthol) (CAS: 18531-99-2); BOX: 2,2'-Isopropylidenebis[(4S)-4-tert-butyl-2-oxazoline] (CAS: 131833-93-7); PyBOX: 2,6-Bis[(4R)-4-phenyl-2-oxazolinyl]pyridine (CAS:128249-70-7); (*R*)-BINOL Hydrogenphosphate: (R)-(-)-1,1'-Binaphthyl-2,2'-diyl hydrogenphosphate (CAS: 39648-67-4); (*R*)-VAPOL Hydrogenphosphate: (R)-2,2'-Diphenyl-3,3'-biphenanthryl-4,4'-diyl phosphate (CAS: 871130-18-6); (*R*)-TRIP: (R)-3,3'-Bis(2,4,6-triisopropylphenyl)-1,1'-binaphthyl-2,2'-diyl hydrogenphosphate; (*S*)-CSA: (1S)-(+)-10-Camphorsulfonic acid (CAS: 3144-16-9).

7. Aldehyde scope

General protocol:

To a solution of aldehyde (0.375 mmol) in anhydrous acetonitrile (2.25 mL), morpholine (1 equiv., 0.375 mmol) was added via gas-tight syringe followed by the addition of $Dy(OTf)_3$ (10 mol%) in one portion. The reaction mixture was allowed to stir at 40 °C for 54h. The solvent was then evaporated and the product (mixture of diastereoisomers) was purified by flash chromatography using hexane/ethyl acetate.

Results:

Entry	PG	Conversion (%)	Yield (%)
1	Bz	99	58
2	Bn	69	58
3	Ac	80	29
4	Н	78	44

Products characterization

(5-(2-(benzoyloxy)-2-(5-formylfuran-2-yl)-1-morpholinoethyl)furan-2-yl)methyl benzoate, 7a

Isolated as a mixture of diastereoisomers, 7a-I and 7a-II, ratio 1:1.0

7a-I and **7a-II** – ¹H NMR (400 MHz, CDCl₃) δ 2.32-2.40 (m, 4H), 2.67 (m, 2H), 3.78 (m, 2H), 3.50 (m, 8H), 4.35 (d, *J* = 10.42 Hz, 1H), 4.47 (d, *J* = 9.97 Hz, 1H), 5.20 (s, 2H), 5.22 (s, 2H), 6.12 (d, *J* = 3.10 Hz, 1H), 6.31 (d, *J* = 2.76 Hz, 2H), 6.40 (d, *J* = 3.11 Hz, 1H), 6.43 (d, *J* = 3.53 Hz, 1H), 6.60 (d, *J* = 9.97 Hz, 1H), 6.63 (d, *J* = 3.53 Hz, 1H), 6.73 (d, *J* = 10.40 Hz, 1H), 6.91 (d, *J* = 3.54 Hz, 1H), 7.18 (d, *J* = 3.53 Hz, 1H), 7.26-7.57 (m, 12H), 7.80 (d, *J* = 7.44 Hz, 2H), 7.90 (d, *J* = 7.41 Hz, 2H), 8.01 (d, *J* = 7.39 Hz, 2H), 8.06 (d, *J* = 7.36 Hz, 2H), 9.49 (s, 1H), 9.61 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 177.8, 177.8, 166.2, 166.1, 165.6, 165.3, 157.7, 156.4, 152.7, 152.5, 150.7, 149.8, 149.7, 149.7, 133.4, 133.4, 133.1, 130.0, 129.9, 129.9, 129.8, 129.8, 129.3, 128.7, 128.6, 128.6, 128.5, 128.5, 128.4, 127.2, 122.1, 122.1, 121.6, 121.5, 112.3, 112.3, 111.4, 111.3, 111.0, 111.0, 67.3, 67.3, 67.0, 66.1, 64.8, 64.2, 58.6, 58.5, 50.5, 50.3. CHN Calculated for (C₃₀H₂₇NO₈)₄H₂O: C: 67.47; H: 5.19; N: 2.62, found: C: 67.45; H: 5.29; N: 2.42.

5-(1-(benzyloxy)-2-(5-((benzyloxy)methyl)furan-2-yl)-2-morpholinoethyl)furan-2-carbaldehyde, 8a

Isolated as a mixture of diastereoisomers, 8a-I and 8a-II, ratio 1:0.8

8a I – ¹H NMR (400 MHz, CDCl₃) δ 2.28 (m, 2H), 2.58 (m, 2H), 3.68 (m, 4H), 4.19 (d, J = 9.12 Hz, 1H), 4.36 (d, J = 12.21 Hz, 1H), 4.39 (d, J = 12.14 Hz, 1H), 4.38 (s, 2H), 4.46 (d, J = 2.88 Hz, 2H), 4.98 (d, J = 9.11 Hz, 2H), 6.02 (d, J = 2.99 Hz, 1H), 6.13 (d, J = 2.95 Hz, 1H), 6.39 (d, J = 3.51 Hz, 1H), 7.03 (d, J = 3.51 Hz, 1H), 7.23-7.36 (m, 10H), 9.63 (s, 1H).

8a II – ¹H NMR (400 MHz, CDCl₃) δ 2.28 (m, 2H), 2.58 (m, 2H), 3.68 (m, 4H), 4.01 (d, J = 9.12 Hz, 1H), 4.42 (s, 2H), 4.50 (s, 2H), 4.53 (d, J = 11.81 Hz, 1H), 4.67 (d, J = 12.07 Hz, 1H), 5.04 (d, J = 9.16 Hz, 2H), 6.22 (d, J = 2.96 Hz, 1H), 6.33 (d, J = 2.95 Hz, 1H), 6.50 (d, J = 3.49 Hz, 1H), 7.09 (d, J = 3 Hz, 1H), 7.23-7.36 (m, 10H), 9.52 (s, 1H).

8a I and *8a* II – ¹³C NMR (100 MHz, CDCl₃) δ 177.8, 177.7, 161.0, 159.5, 152.5, 152.4, 151.4, 151.3, 150.8, 150.8, 150.5, 150.3, 138.0, 137.9, 137.3, 137.2, 128.6, 128.5, 128.4, 128.3, 128.2, 127.9, 127.8, 127.8, 122.2, 122.2, 121.5, 121.5, 111.7, 110.8, 110.6, 110.4, 110.3, 110.1, 74.0, 72.9, 72.1, 71.6, 71.5, 67.3, 66.2, 65.5, 64.0, 63.8, 50.6, 50.3. CHN Calculated for (C₃₀H₃₁NO₆)₂(H₂O): C: 70.57; H: 6.32; N: 2.74, found: C: 70.37; H: 6.12; N: 2.84.

5-(1-hydroxy-2-(5-(hydroxymethyl)furan-2-yl)-2-morpholinoethyl)furan-2-carbaldehyde, 9a

Isolated as a mixture of diastereoisomers, 9a-I and 9a-II, ratio 1:1.1

9a-I – ¹H NMR (400 MHz, CDCl₃) δ 2.50 (m, 4H), 3.6 – 3.7 (m, 4H), 3.50-3.86 (d, 1H), 4.53 (d, *J* = 4.97 Hz, 2H), 5.28 (d, *J* = 6.40 Hz, 1H), 6.14 (dd, *J* = 9.96, 2.85, 2H), 6.39 (d, *J* = 3.48 Hz, 1H), 7.13 (d, *J* = 3.50 Hz, 1H), 9.51 (s, 1H).

9a-II – ¹H NMR (400 MHz, CDCl₃) δ 2.75 (m, 4H), 3.6 – 3.7 (m, 4H), 3.82 (d, *J* = 9.69 Hz, 1H), 4.54 (s, 2H), 5.12 (d, *J* = 10.51 Hz, 1H), 6.08 (s, 1H), 6.10 (s, 1H), 6.45 (d, *J* = 3.48 Hz, 1H), 7.10 (d, *J* = 3.50 Hz, 1H), 9.45 (s, 1H).

9a-I and *9a-II*⁻¹³C NMR (100 MHz, CDCl₃) δ 177.6, 177.5, 161.1, 160.5, 155.0, 154.4, 152.3, 152.0, 149.9, 148.4, 122.6, 119.6, 111.5, 111.4, 110.7, 109.8, 109.1, 108.3, 67.3, 67.2, 67.1, 67.0, 66.8, 66.5, 66.2, 64.1, 57.5, 57.3.

(5-(2-acetoxy-2-(5-formylfuran-2-yl)-1-morpholinoethyl)furan-2-yl)methyl acetate, 10a

Isolated as a mixture of diastereoisomers, 10a-I and 10a-II, ratio 1:1.05

10a-I – ¹H NMR (400 MHz, CDCl₃) δ 1.90-2.15 (2 x s, 2 x 3H), 3.25-3.80 (m, 4H or 2 x 2H), 3.4-3.7 (m, 4H), 4.16 (d, *J* = 10.56 Hz, 1H), 5.00 (d, *J* = 9.57 Hz, 2H), 6.21 (m, t_{ap}, *J* = 3.0 Hz, 2H), 6.47 (d, *J* = 10.56 Hz, 1H), 6.56 (d, *J* = 3.49 Hz, 1H), 7.20 (d, *J* = 3.52 Hz, 1H), 9.62 (s, 1H).

10a-II –¹H NMR (400 MHz, CDCl₃) δ 1.90-2.15 (2 x s, 2 x 3H), 3.25-3.80 (m, 4H or 2 x 2H), 3.4-3.7 (m, 4H), 4.27 (d, *J* = 10.34 Hz, 1H), 4.93 (s, 2H), 6.04 (d, *J* = 3.08 Hz, 1H), 6.34 (d, *J* = 3.40 Hz, 1H), 6.37 (d, *J* = 11.02 Hz, 1H), 6.39 (d, *J* = 3.70 Hz, 1H), 7.04 (d, *J* = 3.54 Hz, 1H), 9.53 (s, 1H).

10a-I + *10a*-II $-^{13}$ C NMR (100 MHz, CDCl₃) δ 177.8, 177.8, 170.7, 170.6, 169.8, 169.5, 157.7, 156.4, 152.6, 152.4, 150.6, 150.5, 149.7, 149.6, 122.0, 121.4, 112.1, 112.0, 111.1, 111.1, 110.9, 110.6, 67.5, 67.2, 66.1, 65.1, 64.6, 63.9, 58.2, 58.0, 50.3, 50.3, 21.1, 21.1, 21.0, 20.7. CHN Calculated for C₂₀H₂₃NO₈: C: 59.25; H: 5.72; N: 3.46, found: C: 59.4; H: 5.78; N: 3.18.

8. Cross reaction

General Procedure:

To a solution of **1** (90 mg, 0.375 mmol) and the desired aldehyde (2 equiv., 0.75 mmol) in anhydrous acetonitrile (3 mL), morpholine (2 equiv., 0.75 mmol) was added via gas-tight syringe followed by the addition of $Dy(OTf)_3$ (10 mol%) in one portion. The reaction mixture was allowed to stir at 40 °C for 3 d. The solvent was then evaporated and the product was purified by flash chromatography using hexane/ethyl acetate. Compound **11** was isolated in 20% yield when 4-nitrobenzaldeyde was used as aldehyde.

Product characterization

5-(1-((tert-butyldimethylsilyl)oxy)-2-morpholino-2-(4-nitrophenyl)ethyl)furan-2carbaldehyde, 11

11-I – ¹H NMR (400 MHz, CDCl₃) δ -0.18 (s, 3H), 0.00 (s, 3H), 0.77 (s, 9H), 2.44 (m, 4H), 3.58 (m, 4H), 3.76 (d, *J* = 5.58 Hz, 1H), 5.35 (d, *J* = 5.58 Hz, 1H), 6.10 (d, *J* = 3.42 Hz, 1H), 7.10 (d, *J* = 3.44 Hz, 1H), 7.34 (d, *J* = 8.43 Hz, 1H), 8.12 (d, *J* = 8.42 Hz, 1H), 9.57 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ -5.1, -4.5, 18.1, 25.6, 51.5, 67.1, 68.3, 74.4, 110.5, 122.8, 130.56, 130.60, 144.0, 147.5, 151.8, 162.3, 177.4. CHN Calculated for (C₂₃H₃₂N₂O₆Si)₅(CHCl₃)₃: C: 53.26; H: 6.17; N: 5.26, found: C: 53.53; H: 6.14; N: 5.19.

11-II – ¹H NMR (400 MHz, CDCl₃) δ -0.12 (s, 3H), 0.05 (s, 3H), 0.86 (s, 9H), 2.45 (m, 2H), 2.66 (m, 2H), 3.58 (m, 4H), 3.69 (d, *J* = 5.5 Hz, 1H), 5.33 (d, *J* = 5.52 Hz, 1H), 6.00 (d, *J* = 3.4 Hz, 1H), 7.07 (d, *J* = 3.4 Hz, 1H), 7.34 (d, *J* = 8.4 Hz, 1H), 8.05 (d, *J* = 8.4 Hz, 1H), 9.55 (s, 1H).

9. Investigation of reaction mechanism

Reaction followed by ¹H NMR

A NMR tube was charged with **1** (30 mg, 0.125 mmol), 0.4 mL acetonitrile-d₃, morpholine (11 μ L, 0.125 mmol) and Sc(OTf)₃ (10 mol%). The heterogeneous mixture was allowed to react in the NMR at 40°C. The ¹H NMR data was acquired during 16h.

Stability of 1 in presence of amines

To study the stability of aldehyde 1 in the presence of morpholine or pyrrolidine, NMR tubes were charged with amine, $CDCl_3$ and 1. The mixture was kept at r.t. and ¹H NMR was performed at 0 min, 1 h, 4 h, 2 d.

No reactive amines

For non-reactive amines, the formation of the aminal intermediate was not observed after 16h.

Determination of kinetic isotope effect (KIE)

a) **Furan-2,5-dicarboxylic acid, FDCA.** To a solution of sodium hydroxide (30 g) in water (300 mL), HMF (4.1 g, 32.5 mmol) was added at 20 °C, followed by the addition of potassium permanganate (11 g, 70 mmol). After 10 minutes stirring at 20°C the precipitate was filtered off and a concentrated HCl solution was added to the filtrate until pH 1. The resulted precipitate was separated by filtration, washed with water and dried under vacuum to give FDCA (4.26 g, 84% yield) as a white powder. ¹H NMR (300 MHz, D₂O) δ 7.25 (s).

b) **Diethyl furan-2,5-dicarboxylate.** To a round bottom flask equipped with a Dean-Stark a solution of FDCA (2.53 g, 16.2 mmol) in ethanol (70 mL) was charged, followed by the addition of a catalytic amount of sulfuric acid (3 drops). The mixture was allowed to stir at reflux for 16h. The mixture was neutralized with a saturated aqueous solution of NaHCO₃, extracted with ethyl acetate, dried over MgSO₄, filtered and evaporated to give the crude product as a yellow solid. The product was purified by column chromatography to give the product as a white solid (1.36 g, 40% yield).

¹H NMR (400 MHz, CDCl₃) δ 1.39 (t, *J* = 7.12 Hz, 6H), 4.40 (t, *J* = 7.13 Hz, 2H), 7.20 (s_{app}, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 14.4, 61.8, 118.4, 147.1, 158.2.

c) Ethyl 5-(hydroxymethyl)furan-2-carboxylate-d₂. To a suspension of LiAlD₄ (19 mg, 2 equiv.) in anhydrous THF (1 mL), a solution of diethyl furan-2,5-dicarboxylate (47.8 mg, 0.225 mmol) in THF (1 mL) was added slowly at 0 °C. The mixture was allowed to stir for 22h at RT. Water was added and the product extracted with ethyl acetate (3 x 10 mL). The product was then purified by column chromatography to yield the product as a yellow oil (9 mg, 23% yield). *Notes*: Scale up of the reaction was not reproducible, so small scale reactions were performed to synthesize the compound. The full reduction (incorporation of four D atoms) occurred as side reaction to give the diol as a minor product. The low overall yield of the reaction was due to low conversion of the starting material.

¹H NMR (400 MHz, CDCl₃) δ 1.36 (t, *J* = 7.13 Hz, 3H), 2.34 (bs, 1H) 4.35 (t, *J* = 7.13 Hz, 2H), 6.40 (d, *J* = 3.40 Hz, 1H), 7.12 (d, *J* = 3.39 Hz, 1H).

d) Ethyl 5-(((tert-butyldimethylsilyl)oxy)methyl)furan-2-carboxylate-d₂. To a solution of ethyl 5-(hydroxymethyl)furan-2-carboxylate-d₂ (43.9 mg, 0.255 mmol) in anhydrous DCM (0.4 mL) were added imidazole (35 mg, 0.5 mmol, 2 equiv.) and *tert*-butyldimethylsilyl chloride (58 mg, 0.382 mmol, 1.5 equiv.) at 0 °C. The solution was stirred for 15 min at RT. The reaction was quenched with water and the silylated compound was extracted with DCM (5 x 20 mL). The collected organic layers were dried over MgSO₄, and the solvent removed to give the crude product as a pale yellow oil that was used without further purification in the next step.

e) (5-(((tert-butyldimethylsilyl)oxy)methyl)furan-2-yl)methanol-d₂. To a suspension of LiAlH₄ (20 mg, 2 equiv.) in anhydrous THF (1.5 mL), a solution of ethyl 5-(((tert-butyldimethylsilyl)oxy) methyl)furan-2-carboxylate-d₂ (0.255 mmol) in THF (1 mL) was added slowly at 0°C. The mixture was allowed to stir for 15 minutes at RT and then the reaction was quenched with water. The product was extracted with ethyl acetate (3 x 10 mL), dried over Mg₂SO₄ and filtered to give the crude product (51.4 mg) that was used in the next step without further purification.

f) **5-(((tert-butyldimethylsilyl)oxy)methyl)furan-2-carbaldehyde-d**₂. To a solution of crude (5-(((tert-butyldimethylsilyl)oxy)methyl)furan-2-yl)methanol-d₂ (51.4 mg) in anhydrous THF (1.5 mL), stabilized 2-iodoxybenzoic acid (SIBX, 1.6 equiv.) was added and the mixture was allowed to stir for 8h at 60°C. The crude product was purified by column chromatography to yield the desired product (22.7 mg, 37% yield - 3 steps).

¹H NMR (400 MHz, CDCl₃) δ 0.11 (s, 6H), 0.92 (s, 9H), 6.47 (d, *J* = 3.53 Hz, 1H), 7.20 (d, *J* = 3.52 Hz, 1H), 9.59 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ -5.2, 18.5, 25.9, 109.6, 122.7, 152.3, 161.5, 177.7.

Calculated for [C₁₂H₁₉D₂O₃Si]⁺: 243.1380 m/z, found: 243.1380 m/z.

Procedure for determination of kinetic isotope effect (KIE)

To a mixture of **1** (11 mg, 45.76 μ mol) and **1-d**₂ (9.6 mg, 39.61 μ mol), anhydrous acetonitrile (0.5 mL), morpholine (7.3 μ L, 2 equiv.) and DyOTf₃ (5 mg, 10 mol%) were added. The mixture was allowed to stir for 59 h at 40 °C. The mixture was filtered through a pad of silica gel and the crude reaction mixture was analyzed by ¹H NMR.

Total amount of starting material (SM) initial = $45.8 + 39.6 = 85.4 \mu mol$

Starting material conversion = A(products)/[A(products)+A(SM)/2] = (0.3+0.3)/[0.6+0.5] = 55%

Total amount of SM final = $85.4 \times 0.45 = 38.4 \mu mol$

The amount of 1 in the final starting material crude can be calculated using the expression $n(1)/[n(1)+n(1-d_2)] = 0.66/2 = 33\%$

Thus, $n(1) = 12.7 \mu mol$ and $n(1-d_2) = 25.7 \mu mol$

Therefore, n(1) that reacted is $45.8 - 12.7 = 33.1 \mu mol$ and for $1-d_2$ is 39.6 - 25.7 = 13.9

Accordingly, SM KIE = $k_H/k_D = 33.1/13.9 = 2.4$

This kinetic isotope effect is relative to the starting material conversion, however this is not the desired KIE since the reaction involves two molecules of the starting material. In fact, the enrichment of the isotope is different for R_1 (trienamine) and for R_2 (iminium) as shown by the different areas of the peaks in the products. To calculate this two different KIE, the area of the corresponding atoms was used.

A 1H furan (products) = 0.3 + 0.3 = 0.6

KIE for $R_1 = 0.48/(0.6-0.48) = 4.0$

KIE for $R_2 = 0.57/(0.6 \times 2 - 0.57) = 0.9$

10. DFT Calculations

Computational Details

All calculations were performed using the Gaussian 09 software package.¹¹ The optimized geometries were obtained using B3LYP¹² functional and a standard 6-31G(d,p) basis set,¹³ without symmetry constraints. B3LYP functional includes the Becke three parameter hybrid functional devised by Becke in 1993¹² and the correlation functional LYP of Lee, Yang, and Parr, which includes both local and non-local terms¹⁴. Transition state optimizations were performed with the Synchronous Transit-Guided Quasi-Newton Method (STQN) developed by Schlegel *et al.*¹⁵ following extensive searches of the potential energy surface. Frequency calculations were performed to confirm the nature of the stationary points, yielding one imaginary frequency for the transition states and none for the minima. Each transition state was further confirmed by following its vibrational mode downhill on both sides and obtaining the minima presented on the energy profile. Single point energy (E2) calculations were performed using M06-2X functional and the $6-311++G(d,p)^{16}$ basis set, with solvent effects (acetonitrile) calculated by means of the Polarizable Continuum Model (PCM) initially devised by Tomasi and coworkers,¹⁷ with radii and non-electrostatic terms of the SMD solvation model, developed by Truhler et al.¹⁸ M06-2X is a hybrid meta-GGA functional developed by Truhlar and Zhao,¹⁹ and it was shown to perform very well for main-group kinetics, providing a good description of long range effects such as van der Waals interactions or π - π stacking.²⁰ The electronic energies (E_1) obtained at the B3LYP/6-31G(d,p) level of theory were converted to free energy at 298.15 K and 1 atm (G₁) by using zero point energy and thermal energy corrections based on structural and vibration frequency data calculated at the same level. The free energy values presented along the text (G_2^{soln}) were derived from the electronic energy values obtained at the M06-2X/6-311++G(d,p)//B3LYP/6-31G(d,p) level, including solvent effects (E₂^{soln}), according to the following expression: $G_2^{\text{soln}} = E_2^{\text{soln}} + G_1 - E_1$.

Results

Free energy profile (kcal.mol⁻¹) calculated for the formation of iminium-ion **C** by dehydration of aminal **B** catalyzed by *para*-toluenesulfonic acid (PTSA). The minima and the transition state were optimized and the energy values are referred to **B** after thermal correction to Gibbs Free Energy in acetonitrile. PTSA was used as the acid due to computational convenience.

Free energy profile profile (kcal.mol⁻¹) calculated for the conversion of iminium-ion C into trienamine D using morpholine as a base. The minima and the transition state were optimized and the energy values are referred to C after thermal correction to Gibbs Free Energy in acetonitrile. The lengths (Å) of the *C*-*H* that is being broken are indicated for the relevant structures.

Free energy profile (kcal.mol⁻¹) calculated for the reaction of trienamine **D** with iminium-ion **C** to yield the two diastereoisomers **E-I** and **E-II**. The minima and the transition state were optimized and the energy values are referred to **D** after thermal correction to Gibbs Free Energy in acetonitrile.

Atomic coordinates for all the optimized species

1

A			
6	1.868295000	0.040588000	-0.006053000
6	1.986515000	1.405285000	0.008894000
6	3.382846000	1.673583000	0.014200000
6	4.022322000	0.456795000	0.002026000
8	3.086687000	-0.549952000	-0.010452000
6	0.688293000	-0.878712000	-0.016653000
6	5.433197000	0.117050000	0.001164000
8	5.890121000	-1.012845000	-0.010471000
8	-0.491728000	-0.107297000	-0.011517000
14	-2.054877000	-0.750614000	0.009950000
6	-3.189321000	0.784440000	-0.008627000
6	-2.306102000	-1.839377000	-1.512674000
6	-2.280889000	-1.791435000	1.569612000
6	-4 669149000	0 342733000	0.010140000
6	-2.923638000	1 615377000	-1 282643000
6	-2.907002000	1 662090000	1 230104000
1	1 169073000	2 108824000	0.015611000
1	3 865874000	2.100024000	0.025708000
1	0.746356000	-1 525605000	-0.906401000
1	0.746032000	-1.523003000	0.96090000
1	6 089370000	1.01/822000	0.000390000
1	2 136620000	1.014022000	2 440053000
1	-2.130020000	-1.283182000	-2.440033000
1	-3.324322000	-2.241811000	-1.545485000
1	-1.023247000	-2.090237000	-1.309/41000
1	-2.094243000	-1.200920000	2.473928000
1	-3.298878000	-2.191201000	1.032332000
1	-1.598851000	-2.048938000	1.381433000
1	-5.32//11000	1.221493000	0.000614000
1	-4.916201000	-0.235946000	0.907615000
1	-4.929772000	-0.205390000	-0.803009000
1	-1.880492000	1.941034000	-1.3404/6000
1	-3.149383000	1.051/45000	-2.194778000
1	-3.55650/000	2.513101000	-1.289863000
1	-3.543548000	2.55/198000	1.214/62000
1	-1.864/89000	1.995220000	1.260108000
I	-3.116505000	1.131488000	2.165643000
Mo	rnholine		
7	0.000022000	1 364253000	-0 325703000
6	-1 205274000	0.718372000	0.199902000
6	-1 174857000	-0 755696000	-0 198392000
8	0.000057000	-1 394054000	0.291929000
6	1 174829000	-0.755606000	-0 198403000
6	1 205195000	0.718497000	0.199925000
1	-0.000040000	2 351997000	-0.087755000
1	_2 001070000	1 200227000	-0 229801000
1	_1 283322000	0 780981000	1 301533000
1	-1 2205522000	-0 836470000	_1 296396000
1	_2 023432000	-1 295895000	0.231513000
1	2.023432000	-1 29562000	0.231659000
1	1 220991000	-0 836766000	-1 296422000
1	1 283057000	0.780508000	1 30160000
	1.203037000	0.70000000	1.201000000

В			
6	-0.077992000	-2.315595000	-0.204253000
6	0.563378000	-3.032352000	-1.170940000
6	1.957243000	-2.723894000	-1.056179000
6	2.068635000	-1.830792000	-0.032434000
8	0.836016000	-1.581165000	0.505486000
6	-1.505031000	-2.179105000	0.193492000
6	3.239884000	-1.121596000	0.589854000
7	3.451715000	0.224395000	0.047775000
8	-1.988955000	-0.885059000	-0.148615000
14	-3.470346000	-0.231800000	0.311740000
6	-3.351527000	1.590432000	-0.249020000
6	-4.876654000	-1.152583000	-0.552940000
6	-3.699008000	-0.386834000	2.182440000
6	-4.671675000	2.331842000	0.052246000
6	-3 068584000	1 648995000	-1 765855000
6	-2 195128000	2 283874000	0 503087000
6	4 387186000	0.995270000	0.880371000
6	4 753227000	2 293854000	0.169409000
8	3 596488000	3.067261000	-0 119224000
6	2 682882000	2 326930000	-0.918591000
6	2.082882000	1.026955000	-0.239203000
8	4 432104000	-1 866180000	0.400834000
1	4.432104000	-3.704021000	-1 877922000
1	2 769501000	-3.704021000	-1.677922000
1	2.709301000	-3.123383000	-1.043430000
1	-2.070555000	-2.902939000	-0.322283000
1	-1.003314000	-2.330033000	1.275554000
1	3.078041000	-1.09/03/000	0.250140000
1	-4.904009000	-2.203490000	-0.230140000
1	-4./08124000	-1.125152000	-1.041039000
1	-3.830/82000	-0./18/30000	-0.301300000
1	-4.024/00000	0.10349/000	2.503/14000
1	-3./6/6/0000	-1.435103000	2.494002000
1	-2.8/1311000	0.070027000	2./34209000
1	-5.521591000	1.893960000	-0.483582000
l	-4.598567000	3.382401000	-0.259942000
l	-4.912476000	2.3294/5000	1.121704000
l	-2.970308000	2.692544000	-2.095298000
1	-2.140924000	1.127287000	-2.020397000
1	-3.878007000	1.199095000	-2.352052000
1	-2.367649000	2.308014000	1.584824000
1	-1.241104000	1.776520000	0.327644000
1	-2.090419000	3.324486000	0.166764000
1	3.942531000	1.235374000	1.864135000
1	5.282277000	0.391331000	1.052262000
1	5.393271000	2.913205000	0.804474000
1	5.298361000	2.061487000	-0.760352000
1	1.815410000	2.973123000	-1.079870000
1	3.136412000	2.093862000	-1.895955000
1	1.688553000	1.267165000	0.677012000
1	1.593160000	0.473586000	-0.908268000

2.091046000 1.200300000 -0.229639000

1	4.731929000	-1.629282000	-0.490395000
DTS	5A		
6 r - ~	2.670598000	0.007596000	0.027725000
6	-0.120429000	-0.007865000	-0.075580000
6	1.959651000	-1.201160000	0.032181000
6	1.948875000	1.208609000	-0.032089000
6	0.568485000	-1.220243000	-0.023088000
6	0.557471000	1.211787000	-0.084576000
6	4.179429000	0.015491000	0.052273000
16	-1.901469000	-0.017587000	-0.131491000
8	-2.280145000	-0.076404000	1.473152000
8	-2.344094000	-1.271457000	-0.724532000
8	-2.384399000	1.277707000	-0.614801000
1	2.503019000	-2.140957000	0.075348000
1	2.483810000	2.154267000	-0.041281000
1	0.021314000	-2.156214000	-0.034537000
1	0.001144000	2.140538000	-0.145112000
1	4.576144000	-0.866846000	0.561962000
1	4.56/139000	0.905230000	0.556513000
1 1	4.585725000	0.014//0000	-0.900028000
1	-2.830173000	0.700341000	1.040132000
B'			
6	-5.535266000	-2.778504000	-1.179590000
6	-3.532831000	-1.461831000	0.258996000
6	-4.278807000	-2.540457000	-1.753445000
6	-5.763605000	-2.343499000	0.134226000
6	-3.274290000	-1.885534000	-1.044214000
6	-4.771258000	-1.690775000	0.860395000
6	-6.609180000	-3.514457000	-1.943392000
16	-2.264324000	-0.6083/0000	1.178253000
8	-0.94903/000	-0.939/0/000	0.596/38000
ð	-2.500818000	-0.821031000	2.002052000
8	-2.3/6441000	0.927296000	0.800447000
6	2.870309000	0.814999000	-2.090333000
6	2 306827000	2.012748000	-2.391098000
6	1 353382000	2.304039000	-1 528406000
8	1.678159000	0.986382000	-1.450826000
6	3.428285000	-0.569824000	-2.123577000
6	0.029692000	2.692727000	-0.923948000
8	-0.199039000	1.858208000	0.265752000
7	-0.045307000	4.080971000	-0.641838000
6	-1.373350000	4.704764000	-0.595045000
6	-1.956473000	4.762470000	0.821401000
8	-1.044888000	5.399780000	1.708317000
6	0.192192000	4.692611000	1.766416000
6	0.852853000	4.633222000	0.385411000
8	3.698826000	-1.025887000	-0.810383000
14	3.365780000	-2.560243000	-0.189269000
6	3.506769000	-2.329512000	1.700321000
0	1.044136000	-3.123346000	-0./19301000
U	+.0+2/00000	-2.10/200000	-0.033++0000

6	2.510469000	-1.244291000	2.164029000
6	4.939067000	-1.884840000	2.068064000
6	3.185991000	-3.657260000	2.420247000
1	-4.082494000	-2.875768000	-2.768161000
1	-6.730611000	-2.522618000	0.596445000
1	-2 298456000	-1 715487000	-1 485185000
1	-4 943473000	-1 368797000	1 881311000
1	-6 440991000	-3 462553000	-3 022431000
1	-7 601520000	-3 104806000	-1 732335000
1	-6 630492000	-4 575093000	-1 664555000
1	1 680112000	1 277515000	-1.004555000
1	4 212320000	2 185315000	3 1/1086000
1	4.212323000	2.185515000	-3.141080000
1	2.301313000	4.040239000	-2.438020000
1	2.710004000	-1.232941000	-2.0309/1000
1	4.348844000	-0.555969000	-2./221/8000
1	-0.///169000	2.46088/000	-1.6339/5000
1	0.211318000	0.981452000	0.1423//000
1	-2.048963000	4.168454000	-1.269869000
1	-1.274965000	5.733038000	-0.968194000
1	-2.200692000	3.751324000	1.183044000
1	-2.872740000	5.361403000	0.833063000
1	0.826815000	5.241266000	2.469413000
1	0.032775000	3.675214000	2.150291000
1	1.126583000	5.652558000	0.081821000
1	1.767043000	4.036451000	0.423443000
1	1.431398000	-4.117884000	-0.306507000
1	1.564138000	-3.214471000	-1.809230000
1	0.859078000	-2.445716000	-0.375024000
1	5.664713000	-3.471953000	-0.621483000
1	4.496332000	-4.788426000	-0.432064000
1	4.566057000	-3.880863000	-1.942978000
1	2.589422000	-1.097112000	3.249983000
1	1.471297000	-1.510678000	1.944947000
1	2.717791000	-0.283423000	1.682180000
1	5.018013000	-1.717660000	3.151119000
1	5 686865000	-2 640377000	1 800838000
1	5 211084000	-0.950469000	1 566648000
1	2 164244000	-3 997430000	2 218172000
1	3 873019000	-4 461400000	2.131040000
1	3 275099000	-3 530569000	3 507618000
1	5.275077000	5.550507000	5.507010000
TS1			
6	4 813675000	-3 260955000	1 353744000
6	2 855916000	-2.085326000	-0.276284000
6	2.855910000	2 823157000	1 803648000
6	5.025568000	-2.823137000	0.024077000
6	2 610568000	-3.099843000	-0.024077000
0 6	4.054059000	-2.238941000	1.088330000
0 6	4.030938000	-2.32223/000	-0.039943000
0	3.838132000	-3.922282000	2.221213000
10	1.024859000	-1.309069000	-1.33034/000
ð	0.3058/2000	-1.238898000	-0.522466000
ð	1.5/2485000	-2.0/9508000	-2.5/7833000
8	2.152654000	0.121178000	-1.532060000
6	-2.400147000	1.551217000	2.135195000
6	-2.207797000	2.785346000	2.686954000

6	-0.942705000	3.254919000	2.213102000	1	-4.484809000	-2.379328000	-3.332377000
6	-0.453572000	2.275762000	1.393264000				
8	-1.328986000	1.226894000	1.355716000				
6	-3.484459000	0.526502000	2.232715000	В"			
6	0.800707000	2.053490000	0.655575000	6	-5.790083000	-2.778552000	-0.337409000
8	0.169729000	1.495641000	-0.937657000	6	-3.401931000	-1.306949000	-0.224860000
7	1.659302000	3.071206000	0.453228000	6	-5.072171000	-2.482026000	-1.504068000
6	3.081461000	2.802060000	0.166240000	6	-5.289615000	-2.311830000	0.885627000
6	3.441032000	3.184314000	-1.271702000	6	-3.885252000	-1.753297000	-1.455273000
8	3.062382000	4.530120000	-1.546508000	6	-4.103692000	-1.582346000	0.948995000
6	1.661411000	4.696846000	-1.401030000	6	-7.058144000	-3.597138000	-0.394681000
6	1.218656000	4.413365000	0.039023000	16	-1.835155000	-0.426890000	-0.147076000
8	-3.953701000	0.177066000	0.949545000	8	-1.743865000	0.328438000	-1.442721000
14	-4.134147000	-1.395757000	0.341792000	8	-0.766339000	-1.440317000	0.025397000
6	-4.258002000	-1.146336000	-1.546664000	8	-1.970480000	0.498181000	1.032842000
6	-2.665913000	-2.467975000	0.839423000	6	3.503046000	1.265973000	-1.371651000
6	-5.715249000	-2.138256000	1.066935000	6	3.922024000	2.553359000	-1.120788000
6	-2.979461000	-0.451379000	-2.064706000	6	2.760245000	3.311192000	-0.855174000
6	-5.481012000	-0.266070000	-1.883044000	6	1.685332000	2.442684000	-0.956398000
6	-4.408039000	-2.515535000	-2.245338000	8	2.159811000	1.196107000	-1.293955000
1	3.411076000	-2.947058000	2.957441000	6	4.237977000	-0.011192000	-1.642553000
1	5.960637000	-3.438343000	-0.463459000	6	0.264573000	2.505452000	-0.918388000
1	1.669119000	-1.919881000	1.501944000	8	0.325920000	1.743666000	1.877120000
1	4.219010000	-2.419381000	-1.907609000	7	-0.486641000	3.478016000	-0.477486000
1	5.732608000	-3.655583000	3.274444000	6	-1.955839000	3.439935000	-0.690819000
1	6.870056000	-3.637678000	1.916545000	6	-2.694806000	3.683871000	0.624739000
1	5.795109000	-5.015211000	2.150339000	8	-2.247358000	4.890938000	1.236881000
1	1.024422000	0.995517000	-1.312984000	6	-0.875719000	4.783380000	1.568579000
1	-2.888300000	3.302519000	3.347463000	6	-0.005275000	4.623905000	0.310596000
1	-0.460123000	4.188277000	2.461751000	8	4.246558000	-0.820732000	-0.491534000
1	-3.098012000	-0.348584000	2.776969000	14	3.559373000	-2.361924000	-0.275738000
1	-4.295579000	0.951937000	2.838876000	6	3.074801000	-2.398244000	1.571630000
1	1.295499000	1.115938000	0.899260000	6	2.092124000	-2.616196000	-1.424819000
1	-0.388790000	0.711745000	-0.740011000	6	4.898379000	-3.636939000	-0.673364000
1	3.286410000	1.742988000	0.332365000	6	2.201001000	-1.167774000	1.900959000
1	3.681076000	3.400122000	0.863628000	6	4.341520000	-2.374959000	2.453117000
1	2.963645000	2.489876000	-1.976300000	6	2.264987000	-3.679652000	1.869652000
1	4.524023000	3.127233000	-1.409883000	1	-5.450698000	-2.822044000	-2.465089000
1	1.435294000	5.734950000	-1.661409000	1	-5.838868000	-2.518144000	1.801120000
1	1.116630000	4.031526000	-2.088108000	1	-3.340748000	-1.511050000	-2.361382000
1	1.671152000	5.152291000	0.712021000	1	-3.727699000	-1.208418000	1.894958000
1	0.133610000	4.479552000	0.119410000	1	-7.589938000	-3.447790000	-1.339243000
1	-2.808461000	-3.486733000	0.461087000	1	-7.738948000	-3.340037000	0.422333000
1	-2.573787000	-2.550644000	1.928909000	1	-6.840545000	-4.669419000	-0.310897000
1	-1.715566000	-2.096960000	0.443351000	1	-0.479137000	1.224601000	1.645511000
1	-6.589213000	-1.514401000	0.855580000	1	4.944388000	2.901478000	-1.124131000
1	-5.910204000	-3.138462000	0.664417000	1	2.720169000	4.368935000	-0.644967000
1	-5.636388000	-2.238252000	2.155774000	1	3.771335000	-0.508488000	-2.503959000
1	-3.044150000	-0.300671000	-3.150904000	1	5.267337000	0.244980000	-1.924610000
1	-2.078699000	-1.043193000	-1.870569000	1	-0.271539000	1.637400000	-1.321741000
1	-2.848064000	0.533244000	-1.602869000	1	0.852430000	1.135658000	2.410204000
1	-5.538257000	-0.094475000	-2.966707000	1	-2.212433000	2.467010000	-1.116401000
1	-6.423497000	-0.735957000	-1.578880000	1	-2.190087000	4.241631000	-1.401445000
1	-5.420118000	0.711829000	-1.394358000	1	-2.556070000	2.820978000	1.286175000
1	-3.545926000	-3.166029000	-2.062218000	1	-3.760911000	3.805726000	0.417569000
1	-5.309869000	-3.048572000	-1.921585000	1	-0.590664000	5.707142000	2.080163000

1	-0.686777000	3.922978000	2.224145000	6	-3.015989000	-1.647470000	-0.503977000
1	-0.059584000	5.523902000	-0.313019000	6	-3.692884000	0.016933000	2.097246000
1	1.023114000	4.437833000	0.612085000	6	-4.454172000	1.160496000	-0.667203000
1	1.784848000	-3.667739000	-1.383288000	6	-4.376646000	-2.380285000	-0.499742000
1	2.343940000	-2.407622000	-2.471372000	6	-1.995802000	-2.472063000	0.310382000
1	1.221636000	-2.013526000	-1.146689000	6	-2.513757000	-1.514015000	-1.958093000
1	5.816961000	-3.448370000	-0.109021000	6	4.797785000	-0.687155000	-0.706808000
1	4.563722000	-4.654081000	-0.439842000	6	5.147973000	-1.624902000	0.457486000
1	5.152854000	-3.615701000	-1.739294000	8	4.147807000	-2.611924000	0.616331000
1	1.927680000	-1.185340000	2.966821000	6	2.889523000	-2.037565000	0.917139000
1	1.273858000	-1.157453000	1.319356000	6	2.418353000	-1.119808000	-0.220201000
1	2.741943000	-0.235600000	1.705434000	1	0.180528000	4.620309000	-0.015507000
1	4.063498000	-2.365347000	3.516206000	1	2.789039000	4.070813000	-0.534564000
1	4,972878000	-3.255796000	2.290923000	1	-1.449640000	2.160161000	1.668815000
1	4.951911000	-1.485045000	2.263541000	1	-2.033597000	2.843206000	0.147698000
1	1 322470000	-3 699911000	1 313300000	1	4 181529000	1 789433000	-0 678495000
1	2 826309000	-4 591277000	1 630305000	1	-3 775542000	1 019360000	2 532300000
1	2 014246000	-3 727167000	2 938069000	1	-2 966147000	-0 546572000	2 690978000
1	2.011210000	5.727107000	2.990009000	1	-4 668584000	-0.463617000	2 227892000
				1	-5 459645000	0.728623000	-0.622239000
				1	-4 526900000	2 166682000	-0 239162000
[nT	SA-OHI-			1	-4 185783000	1 264777000	-1 723026000
6	2 878534000	0 176821000	-0.002904000	1	-4.772531000	-2 513277000	0.513256000
6	0 107774000	-0.323623000	-0.002904000	1	-4.772551000	-3 380458000	-0.938008000
6	2 385/23000	-0.323023000	-0.008203000	1	-5.131876000	-1.849816000	-1.080811000
6	1.052088000	1 222228000	0.002203000	1	1 862085000	-1.849810000	-1.039811000
6	1.932988000	1.233336000	0.002808000	1	-1.802983000	-3.403903000	-0.140/30000
6	0.581771000	-1.383483000	-0.003788000	1	-1.01438/000	-1.984443000	1 244204000
6	0.381771000	0.994729000	0.003011000	1	-2.322404000	-2.020100000	2 500060000
0 16	4.304/04000	0.434/39000	0.003333000	1	-5.225055000	-0.908993000	-2.390009000
10	-1.081//5000	-0.03/18/000	0.002026000	1	-1.552590000	-0.991555000	-2.008140000
ð 0	-1.81015/000	-2.115585000	0.011197000	1	-2.3/9/92000	-2.50/415000	-2.4058/4000
8	-2.168/15000	0.025/38000	-1.24/455000	1	4./53664000	-1.258120000	-1.640016000
8	-2.169219000	0.040585000	1.243547000	1	5.533297000	0.113407000	-0.810282000
1	3.085455000	-1.965354000	-0.014549000	l	6.083969000	-2.1435/1000	0.238526000
1	2.316602000	2.259877000	0.005085000	1	5.276620000	-1.040340000	1.381/86000
1	0.61/803000	-2.394952000	-0.009/90000	1	2.179708000	-2.859247000	1.034010000
1	-0.131054000	1.816531000	0.00/956000	1	2.9315/2000	-1.4/1483000	1.860416000
1	4.943812000	-0.4/0090000	-0.084372000	l	2.312333000	-1.702775000	-1.141338000
1	4.6/9//8000	0.954290000	0.9288/0000	1	1.469938000	-0.643321000	0.013182000
1	4.65/4/6000	1.110668000	-0.825686000				
8	-2.364096000	2.641604000	-0.006774000				
1	-2.404604000	1.99/396000	0.724343000	C'	0.010(01000	0.470522000	2 102002000
I	-2.400134000	2.002809000	-0.742380000	6	-0.313601000	0.478533000	2.193083000
				6	0.035689000	0.299383000	3.519567000
-				6	1.314818000	-0.282906000	3.524864000
C				6	1.688570000	-0.440646000	2.193348000
6	0.032588000	2.434266000	0.186482000	8	0.677103000	0.030663000	1.390112000
6	0.654436000	3.650053000	-0.037608000	6	-1.488168000	1.109050000	1.509463000
6	2.002279000	3.364765000	-0.305616000	6	2.904427000	-0.925734000	1.677335000
6	2.139729000	1.980384000	-0.240712000	7	3.307986000	-1.078772000	0.437171000
8	0.919024000	1.426649000	0.069298000	8	-1.916355000	0.338758000	0.409396000
6	-1.369496000	2.073922000	0.570600000	14	-3.267191000	-0.705749000	0.420935000
6	3.289522000	1.205242000	-0.467077000	6	-3.314145000	-1.415967000	-1.347369000
7	3.459840000	-0.097470000	-0.474482000	6	-2.994292000	-2.040065000	1.729326000
8	-1.671699000	0.782783000	0.128785000	6	-4.804491000	0.295587000	0.849327000
14	-3.228474000	0.080261000	0.271270000	6	-4.457350000	-2.451017000	-1.453679000

6	-1.973835000	-2.108433000	-1.676892000	6	2.024979000	1.161423000	1.544697000
6	-3.559668000	-0.283107000	-2.367866000	8	0.835258000	0.679562000	0.991371000
6	4.700071000	-1.495755000	0.147297000	6	-1.526226000	0.896523000	1.344278000
6	4.704629000	-2.645211000	-0.865582000	6	3.278509000	0.864651000	1.051556000
8	4.007993000	-2.267664000	-2.035850000	7	3.673271000	0.114971000	0.015781000
6	2.648479000	-1.994149000	-1.752285000	8	-1.770246000	-0.118756000	0.408872000
6	2,495789000	-0.819176000	-0.776877000	14	-2.221714000	-1.703429000	0.880573000
1	-0 568185000	0 562810000	4 375324000	6	-2 311095000	-2 685059000	-0 753912000
1	1 905194000	-0.562556000	4 386975000	6	-0.922407000	-2 388341000	2 064134000
1	-2 269597000	1 273202000	2 263707000	6	-3 887609000	-1 613826000	1 760424000
1	-1 168456000	2.096695000	1 134459000	6	-2 709988000	-4 146579000	-0.445241000
1	3 632748000	-1 191701000	2 /39382000	6	-0.936095000	-2 67/997000	-1 456368000
1	-2 860105000	-1.604603000	2.437382000	6	-3 363/03000	-2.065714000	-1.608506000
1	2 115373000	-1.004003000	1 512505000	6	5.000466000	-2.003/14000	-1.098590000
1	2 850604000	-2.033708000	1.312303000	6	5.099400000	-0.0028/2000	-0.323033000
1	-5.659004000	-2.708334000	1.789927000	0	3.470187000	-1.4/9201000	-0.463630000
1	-5.099/84000	-0.3344/3000	0.813257000	8	4.034951000	-2.109885000	-1.43/125000
1	-4./53882000	0./15064000	1.860290000	6	3.2/6554000	-2.06484/000	-1.034568000
1	-4.953290000	1.125482000	0.152085000	0	2.786125000	-0.618894000	-0.901088000
1	-4.31395/000	-3.298146000	-0.773909000	l	-0.270536000	2.4296/4000	3.564331000
l	-4.505520000	-2.85/329000	-2.4/1966000	l	2.405413000	2.443679000	3.311951000
l	-5.43599/000	-2.008382000	-1.237902000	l	-2.257848000	0.987184000	2.1536/0000
1	-1.999936000	-2.519759000	-2.694334000	1	-1.905330000	2.103898000	0.514245000
1	-1.136178000	-1.404108000	-1.623745000	1	4.090474000	1.325722000	1.606562000
1	-1.763318000	-2.941113000	-0.995949000	1	-0.818422000	-1.753409000	2.950498000
1	-4.524097000	0.211252000	-2.209557000	1	0.062724000	-2.469359000	1.594952000
1	-2.778005000	0.482688000	-2.320665000	1	-1.207937000	-3.385507000	2.415689000
1	-3.567429000	-0.687459000	-3.388392000	1	-4.215081000	-2.612481000	2.068506000
1	5.218723000	-0.631349000	-0.281076000	1	-3.831844000	-1.006098000	2.670353000
1	5.190273000	-1.781029000	1.080783000	1	-4.670731000	-1.191803000	1.122859000
1	5.733780000	-2.869421000	-1.154976000	1	-1.983478000	-4.644808000	0.206031000
1	4.261024000	-3.546909000	-0.415112000	1	-2.763557000	-4.727831000	-1.374507000
1	2.167721000	-1.733416000	-2.697481000	1	-3.692621000	-4.214058000	0.034033000
1	2.152231000	-2.887167000	-1.341692000	1	-0.984334000	-3.239375000	-2.396596000
1	2.845990000	0.117033000	-1.226860000	1	-0.612661000	-1.656182000	-1.697429000
1	1.454048000	-0.693830000	-0.494995000	1	-0.160193000	-3.140770000	-0.838068000
7	-0.248720000	3.894772000	-0.414192000	1	-4.364742000	-2.063117000	-1.254702000
6	1.146123000	4.301596000	-0.206517000	1	-3.110635000	-1.033937000	-1.967095000
6	2.027382000	3.060598000	-0.313668000	1	-3.423924000	-2.641146000	-2.631319000
8	1.866299000	2.397137000	-1.567136000	1	5.276227000	0.519994000	-1.277547000
6	0.497376000	2.085838000	-1.850153000	1	5.701181000	0.472716000	0.449253000
6	-0.397655000	3.317151000	-1.756874000	1	6.500148000	-1.566476000	-0.856996000
1	-0.861994000	4.699530000	-0.314584000	1	5.409486000	-1.987207000	0.489214000
1	1 485369000	5 044092000	-0 948984000	- 1	2 698984000	-2 581458000	-1 804961000
1	1 255942000	4 744393000	0 789261000	1	3 139168000	-2 593027000	-0.077541000
1	3 085377000	3 329360000	-0 244411000	1	2 827702000	-0 129537000	-1 882913000
1	1 779301000	2 373889000	0.511676000	1	1 763020000	-0 587191000	-0 533531000
1	0.485639000	1 675013000	-2 863536000	1 7	-2 371186000	2 971536000	-0.240053000
1	0.485059000	1 323351000	-1.150387000	6	-2.3/1180000	2.971330000 1 000102000	-0.240033000
1	0.124809000	1.525551000	-1.130387000	6	-1.394407000	4.090492000	-0.417093000
1 1	-0.1192/9000	3 010524000	-2.333940000	0	-0.217752000	3.003773000	-1.203780000
1	-1.439020000	5.019554000	-1.912328000	8	-0.0089/9000	3.073384000	-2.308808000
				0	-1.3240/3000	1.9/2109000	-2.525205000
TC				0	-2.777000000	2.303/0/000	-1.348/23000
182	0 100025000	1 1/005/000	1 7/0210000	1	-3.200//6000	3.310834000	0.245398000
0	-0.199035000	1.140956000	1.748319000	1	-1.8981/7000	4.924009000	-0.91/18/000
6	0.319465000	1.94/549000	2./98461000	1	-1.0623/9000	4.414/62000	0.5/2983000
6	1.689612000	1.949551000	2.668321000	1	0.445557000	4.442581000	-1.483002000

1	0.350861000	2.838248000	-0.717712000	1	1.831125000	-0.906820000	-0.405373000
1	-1.803846000	1.618396000	-3.320078000	7	-1.454134000	2.197313000	-0.152827000
1	-1.003110000	1.162784000	-1.794316000	6	-2.643653000	2.973600000	-0.649721000
1	-3.357796000	3.103903000	-2.112592000	6	-2.245542000	4.435512000	-0.842054000
1	-3.398781000	1.493585000	-1.336513000	8	-1.131706000	4.543283000	-1.711120000
				6	0.014486000	3.895387000	-1.185340000
				6	-0.237016000	2.399344000	-1.017607000
D'				1	-1.670961000	1.167420000	-0.042605000
6	-0.036755000	0.329949000	2.345086000	1	-2.940609000	2.524589000	-1.599942000
6	0.601037000	0.772100000	3.564075000	1	-3.453090000	2.853944000	0.074132000
6	1.939391000	0.817465000	3.331421000	1	-3.069804000	4.983368000	-1.303426000
6	2.190436000	0.416561000	1.980951000	1	-2.027505000	4.903004000	0.132703000
8	0.942901000	0.139925000	1.382812000	1	0.828674000	4.055480000	-1.895234000
6	-1.347296000	0.120894000	2.067816000	1	0.307774000	4.343958000	-0.221547000
6	3.395208000	0.267367000	1.360873000	1	-0.455208000	1.932998000	-1.981205000
7	3.734588000	-0.215036000	0.132698000	1	0.591829000	1.876598000	-0.536714000
8	-1.777803000	-0.276754000	0.798795000				
14	-2.452803000	-1.865956000	0.572140000				
6	-2.667612000	-2.028502000	-1.318670000	D			
6	-1.237959000	-3.107853000	1.283439000	6	2.148128000	-0.267342000	-0.198641000
6	-4.087012000	-1.915835000	1.501557000	6	1.659992000	1.033010000	0.207805000
6	-3.331440000	-3.393601000	-1.619101000	6	0.304695000	1.017946000	0.161252000
6	-1.294823000	-1.971878000	-2.022934000	6	-0.110191000	-0.289686000	-0.283107000
6	-3.571493000	-0.908490000	-1.876083000	8	1.027185000	-1.052114000	-0.502016000
6	5.088449000	0.011499000	-0.385658000	6	3.358492000	-0.865213000	-0.335467000
6	5.539306000	-1.191783000	-1.213848000	6	-1.335418000	-0.812231000	-0.494643000
8	4.599127000	-1.475369000	-2.240952000	7	4.643214000	-0.331152000	-0.249943000
6	3.331590000	-1.794335000	-1.691556000	8	-2.461155000	-0.043136000	-0.345169000
6	2.766437000	-0.622165000	-0.885708000	14	-3.954339000	-0.609042000	0.222182000
1	0.080966000	0.995708000	4.484467000	6	-5.145317000	0.846465000	-0.104638000
1	2.713092000	1.089847000	4.037210000	6	-4.440456000	-2.162420000	-0.736308000
1	-2.108262000	0.258259000	2.828223000	6	-3.804063000	-1.025883000	2.055788000
1	-1.231834000	2.479933000	0.809187000	6	-6.554031000	0.502818000	0.426229000
1	4.247010000	0.552276000	1.971170000	6	-4.627818000	2.113021000	0.610949000
1	-1.093671000	-2.938165000	2.354803000	6	-5.224569000	1.124792000	-1.621099000
1	-0.257373000	-3.044015000	0.802937000	6	5.636438000	-1.180761000	0.414879000
1	-1.608243000	-4.131106000	1.160301000	6	7.044170000	-0.693312000	0.087424000
1	-4.557085000	-2.900076000	1.404464000	8	7.204603000	0.675455000	0.436888000
1	-3.936260000	-1.739079000	2.571764000	6	6.281568000	1.481434000	-0.281430000
1	-4.800188000	-1.170717000	1.135459000	6	4.834188000	1.087914000	0.015782000
1	-2.728743000	-4.234545000	-1.259805000	1	2.277425000	1.859960000	0.523475000
1	-3.453049000	-3.522951000	-2.701847000	1	-0.375057000	1.817981000	0.416030000
1	-4.326809000	-3.476024000	-1.169918000	1	3.341734000	-1.918091000	-0.603848000
1	-1.418716000	-2.065325000	-3.109301000	1	-1.456822000	-1.833878000	-0.843679000
1	-0.772927000	-1.026771000	-1.829730000	1	-5.447566000	-2.492624000	-0.458524000
1	-0.637745000	-2.785687000	-1.699268000	1	-3.759294000	-2.993479000	-0.523104000
1	-4.559267000	-0.896749000	-1.403887000	1	-4.430552000	-1.992567000	-1.817390000
1	-3.125348000	0.085202000	-1.741949000	1	-4.735926000	-1.443888000	2.452108000
1	-3.726677000	-1.044434000	-2.953849000	1	-3.014899000	-1.769487000	2.211682000
1	5.104288000	0.912482000	-1.018002000	1	-3.548079000	-0.144980000	2.652635000
1	5.771895000	0.171614000	0.452966000	1	-7.244137000	1.337067000	0.241385000
1	6.491515000	-0.978301000	-1.705631000	1	-6.976821000	-0.380418000	-0.066426000
1	5.667098000	-2.067743000	-0.558901000	1	-6.553910000	0.316278000	1.506209000
1	2.671871000	-2.026365000	-2.532131000	1	-5.300922000	2.959978000	0.420092000
1	3.404724000	-2.682936000	-1.044598000	1	-3.630372000	2.393376000	0.258488000
1	2.568989000	0.218493000	-1.571904000	1	-4.575224000	1.978369000	1.697247000

1	-5.884880000	1.980488000	-1.817805000
1	-4.240321000	1.359939000	-2.038414000
1	-5.628592000	0.269341000	-2.174078000
1	5.507475000	-2.211146000	0.065964000
1	5.493337000	-1.176263000	1.509283000
1	7.244763000	-0.836476000	-0.986862000
1	7.786751000	-1.254358000	0.661708000
1	6.462605000	2.515737000	0.024621000
1	6.467306000	1.396193000	-1.364396000
1	4.592890000	1.343604000	1.063400000
1	4.167406000	1.659052000	-0.637032000
[Mo	orpholine-H] ⁺		
7	0.002343000	1.381110000	0.224422000
6	1.264451000	0.659536000	-0.230330000
6	1.173054000	-0.801380000	0.207305000
8	-0.002882000	-1.402578000	-0.300732000
6	-1.175838000	-0.796531000	0.208447000
6	-1.261923000	0.663562000	-0.231405000
1	0.002095000	1.441746000	1.249539000
1	0.004306000	2.346140000	-0.121236000
1	2.121359000	1.179267000	0.203903000
1	1.291525000	0.743543000	-1.318550000
1	1.213435000	-0.877659000	1.306347000
1	2.024312000	-1.350579000	-0.200444000
1	-2.029787000	-1.343028000	-0.197267000
1	-1.214851000	-0.870692000	1.307699000
1	-1.286710000	0.745686000	-1.319800000
1	-2.117493000	1.187312000	0.200615000
DC-	-II		
6	-0.519046000	1.750778000	-1.529988000
6	-0.115263000	1.558678000	-2.846320000
6	1.291435000	1.495776000	-2.836576000
6	1.687025000	1.656910000	-1.524494000
8	0.608649000	1.796704000	-0.728389000
6	-1.736305000	1.836304000	-0.813944000
7	-2.921987000	2.224969000	-1.273364000
6	3.043248000	1.888809000	-0.928330000
8	3.147361000	1.392514000	0.381019000
6	-4.978911000	3.387226000	-0.568654000
6	-4.116684000	2.135330000	-0.413063000
6	-3.198927000	2.604456000	-2.665904000
6	-4.140035000	3.817112000	-2.699731000
8	-5.307026000	3.593916000	-1.933377000
14	3.963990000	2.243714000	1.615596000
6	3.214049000	3.969546000	1.765942000
6	1.139773000	-1.758368000	-0.909058000
6	1.168375000	-1.741953000	0.521733000
6	-0.083064000	-1.442678000	0.974568000
6	-0.929705000	-1.275203000	-0.171651000
8	-0.172095000	-1.461352000	-1.305612000
6			1
0	2.026363000	-1.975447000	-1.931506000

6	-2.254161000	-0.966601000	-0.280805000
8	-3.039591000	-0.802621000	0.827170000
6	3.681618000	1.199532000	3.185125000
6	5.786444000	2.381983000	1.151323000
6	4.368262000	1.881539000	4.390003000
6	4.283570000	-0.209952000	2.998472000
6	2.168259000	1.075084000	3.465989000
14	-3.970945000	-2.031638000	1.596720000
6	-3.134220000	-3.691105000	1.297636000
6	-5.755958000	-2.002291000	0.903044000
6	-3.924930000	-1.560707000	3.415697000
6	-6.484617000	-0.714631000	1.342553000
6	-6.525928000	-3.223423000	1.457268000
6	-5.741044000	-2.078162000	-0.638713000
6	5.193062000	-3.649789000	-0.895288000
6	4.006134000	-2.714159000	-0.649139000
6	4.181740000	-2.089556000	-3.038393000
6	5.332583000	-3.085792000	-3.148761000
8	6.041137000	-3.163389000	-1.921836000
1	-0.754625000	1.426215000	-3.705845000
1	1.943900000	1.356697000	-3.686112000
1	-1.666273000	1.705919000	0.260222000
1	3.783197000	1.423872000	-1.595207000
1	3.227957000	2.975511000	-0.970672000
1	-5.918909000	3.257087000	-0.027588000
1	-4.455347000	4.264977000	-0.158803000
1	-3.797243000	1.984395000	0.619501000
1	-4.692226000	1.254952000	-0.720787000
1	-2.261700000	2.859375000	-3.159679000
1	-3.659415000	1.754065000	-3.185067000
1	-4.458189000	3.999235000	-3.728966000
1	-3.602656000	4,707107000	-2.336402000
1	3.687159000	4.520660000	2.585876000
1	3.362504000	4.567692000	0.860141000
1	2.139269000	3,929437000	1.968125000
1	2.041163000	-1.899912000	1.134961000
1	-0.400076000	-1.326729000	2.000183000
1	1.631535000	-1.813973000	-2.930398000
1	-2 736511000	-0 940823000	-1 254399000
1	6.352775000	2.901134000	1.931907000
1	5.921315000	2.952712000	0.225549000
1	6.246502000	1.399870000	1.004252000
1	4.214692000	1.286114000	5.299172000
1	3.962675000	2.880088000	4.586247000
1	5 450056000	1 979898000	4 247888000
1	4 102349000	-0.823473000	3 890845000
1	3 839917000	-0 727445000	2 141211000
1	5 367456000	-0.176375000	2 843524000
1	1 710483000	2 050182000	3 666172000
1	1 997606000	0.450070000	4 352774000
1	1 635786000	0.621585000	2 623740000
1	-2.086614000	-3 666916000	1 613277000
1	-3 633812000	-4 476772000	1 873785000
1 1	-3 15376/000	-3 987806000	0 244517000
1	_4 22100300	-0 519016000	3 572891000
1 1	-2 918008000	-1 687465000	3 826443000
1	<i>∠.</i> , , , , , , , , , , , , , , , , , , ,	1.00/ 100000	J.020TTJ000

1	-4 601555000	-2 189754000	4 003788000	6	6 788630000	3 054952000	0 100836000
1	-7 499065000	-0.686647000	0.924292000	6	5 398070000	1 810767000	-1 582116000
1	-5.965886000	0.188245000	0.924292000	6	-4 710593000	1.510707000	0.000300000
1	-5.903880000 6 570756000	0.188245000	2 431264000	0	2 741120000	4.307930000	0.090309000
1	-0.379730000	-0.048909000	1 105218000	0	-3.741130000	2 402020000	1 804080000
1	-7.303427000	-3.200370000	1.103218000	0	-4.463634000	2.402029000	-1.004009000
1	-0.08/843000	-4.1/1130000	1.12//19000	0	-5.38/409000	3.623120000	-1.955200000
1	-0.558449000	-3.230330000	2.552/01000	8	-5.818530000	4.084937000	-0.084053000
1	-5.233936000	-2.9///30000	-1.00512/000	1	1.541292000	-1.09009/000	-3.3026/4000
1	-6.766144000	-2.102505000	-1.030609000	1	-1.048629000	-1.241298000	-4.08/241000
1	-5.245205000	-1.208539000	-1.086412000	1	1.236224000	-1.554215000	0./38501000
1	5.798235000	-3.724965000	0.011503000	l	-3.401923000	-1.641218000	-2.645150000
1	4.821773000	-4.654103000	-1.152988000	l	-2.919044000	-3.136469000	-1.851802000
1	3.30/020000	-3.208242000	0.029689000	l	4.989183000	-3.8552/5000	1.798218000
1	4.347346000	-1.778895000	-0.178217000	1	3.561116000	-4.549387000	0.988048000
1	3.582701000	-2.098211000	-3.954511000	1	2.992551000	-2.267306000	1.804375000
1	4.595433000	-1.076993000	-2.907704000	1	4.427643000	-1.601571000	1.008737000
1	6.043633000	-2.755651000	-3.910093000	1	2.915369000	-2.529357000	-2.358522000
1	4.946086000	-4.077205000	-3.432783000	1	4.352183000	-1.703501000	-1.707375000
				1	4.988981000	-3.999283000	-2.246927000
				1	3.574283000	-4.657978000	-1.387283000
TS ₃ .	·II			1	-3.488033000	-4.647587000	1.739966000
6	0.709759000	-1.583713000	-1.323090000	1	-2.856995000	-4.662992000	0.099383000
6	0.693696000	-1.332800000	-2.678810000	1	-2.064776000	-3.675887000	1.333992000
6	-0.665026000	-1.384617000	-3.087341000	1	-1.616013000	2.333220000	1.927936000
6	-1.403740000	-1.668436000	-1.966429000	1	0.894927000	1.568813000	2.395176000
8	-0.584545000	-1.776714000	-0.889956000	1	-2.022990000	1.707049000	-2.084416000
6	1.673086000	-1.617237000	-0.252086000	1	2.502636000	0.720132000	-1.198943000
7	2.882564000	-2.190758000	-0.289925000	1	-6.289915000	-3.887334000	0.449695000
6	-2.844472000	-2.039113000	-1.786151000	1	-5.554112000	-3.787634000	-1.146837000
8	-3.378741000	-1.553719000	-0.575387000	1	-6.446251000	-2.405418000	-0.502725000
6	4.324067000	-3.756783000	0.936963000	1	-5.458292000	-1.611799000	4.006673000
6	3.661868000	-2.378781000	0.948506000	1	-4.699254000	-3.116226000	3.483780000
6	3.614890000	-2.496233000	-1.523256000	1	-6.237340000	-2.602722000	2.771979000
6	4.323791000	-3.850898000	-1.392906000	1	-5.526516000	0.429156000	2.484268000
8	5.122971000	-3.909095000	-0.226125000	1	-4.848777000	0.348183000	0.845784000
14	-4.169918000	-2.567241000	0.542285000	1	-6.332138000	-0.530561000	1.242369000
6	-3.037090000	-4.017257000	0.965936000	1	-2.545637000	-1.782190000	3.004468000
6	-1.133694000	1.899757000	-0.207010000	1	-3.346429000	-0.287518000	3.493955000
6	-0.893083000	2.022596000	1.188713000	1	-2.575164000	-0.400135000	1.899428000
6	0.397005000	1.624656000	1.438951000	1	2.614704000	3.712092000	1.504217000
6	0.979306000	1.267725000	0.187732000	1	4.174087000	4.466309000	1.166119000
8	0.046090000	1.427919000	-0.795715000	1	3.194954000	3.833871000	-0.160464000
6	-2.184742000	2.080499000	-1.077427000	1	5.232333000	0.680421000	3.032873000
7	-3.373640000	2.688995000	-0.884190000	1	4.007599000	1.852732000	3.535835000
6	2.225281000	0.767239000	-0.149582000	1	5.652830000	2.388867000	3.187050000
8	3.232506000	0.733460000	0.777495000	1	7.529704000	0.476485000	-0.501005000
6	-4.500703000	-1.450010000	2.052248000	1	6.072206000	-0.359255000	0.034523000
6	-5.761004000	-3.215788000	-0.235153000	1	7.065524000	0.528307000	1.200104000
6	-5.266021000	-2.246923000	3.132213000	1	7.671959000	2.975297000	-0.545478000
6	-5 350097000	-0 233942000	1 626267000	1	6 289804000	3 997423000	-0 147390000
6	-3.162450000	-0.953396000	2.639651000	1	7.151932000	3.127701000	1.132068000
14	4.373054000	1.990579000	1.081206000	1	4.814567000	2.699179000	-1.847797000
6	3.506192000	3.649929000	0.872617000	1	6.264272000	1.779638000	-2.255535000
6	5 864775000	1 831821000	-0 110249000	1	4 786588000	0 927915000	-1 804185000
6	4.864042000	1.698222000	2.871469000	1	-5.105741000	4.890706000	1.034401000
6	6.670965000	0.547602000	0.178926000	1	-4.174998000	5.322676000	-0.422023000
~				-		2.2220,0000	

1	-2.834752000	3.753345000	0.827905000		1	5.250972000	-3.984451000	1.676019000
1	-4.199698000	2.632303000	1.058795000		1	3.953846000	-4.678536000	0.665606000
1	-4.071463000	2.107859000	-2.772825000		1	3.047135000	-2.736570000	1.868444000
1	-5.071564000	1.559838000	-1.410892000		1	4.403894000	-1.722632000	1.341605000
1	-6.283407000	3.360791000	-2.522085000		1	3.164097000	-2.110101000	-2.248523000
1	-4.853539000	4.424991000	-2.492168000		1	4.467591000	-1.287599000	-1.356997000
					1	5.389773000	-3.318583000	-2.312971000
					1	4.044169000	-4.301565000	-1.675015000
E-II	[1	-4.876145000	-4.291402000	2.454323000
6	0.774744000	-1.618812000	-1.027714000		1	-3.705889000	-4.927370000	1.307823000
6	0.585714000	-1.393324000	-2.363188000		1	-3.238868000	-3.621623000	2,402049000
6	-0.701695000	-1.927747000	-2.689798000		1	-1.440753000	2.218255000	2.086067000
6	-1.217058000	-2.436835000	-1.534069000		1	0.949904000	1.053552000	2.495285000
8	-0 323457000	-2 253007000	-0 513642000		1	-1 727530000	1 998717000	-2 001027000
6	1 875274000	-1 336229000	-0.040624000		1	2 526697000	0 482302000	-1 113382000
7	2 983712000	-2 258457000	-0.168590000		1	-6 833349000	-3 820431000	-0.014958000
6	-2 503874000	-3 103046000	-1 192631000		1	-5 573130000	-4 418038000	-1 088873000
8	-3 328031000	-2.226867000	-0.426553000		1	-6 291260000	-2.830194000	-1 377189000
6	4 602556000	-3 801062000	0.815095000		1	-6 830811000	-0 502031000	2 712116000
6	3 750750000	-2 554684000	1 047820000		1	-6 231878000	-2 130229000	3 034683000
6	3 811218000	-2 173342000	-1 368327000		1	-7 313516000	-1 838020000	1 664772000
6	4 683681000	-3 425048000	-1 485099000		1	-6.007554000	0.824459000	0.705852000
8	5 454079000	-3 623711000	-0 310049000		1	-4 818068000	0.114944000	-0.417363000
14	-4 636701000	-2 743098000	0.510804000		1	-6 482235000	-0.483935000	-0 377663000
6	-4 057106000	-4 006180000	1 785311000		1	-3 829943000	-1 178636000	3 011931000
6	-0.930184000	1 962905000	-0.061070000		1	-4 463797000	0.426644000	2 649098000
6	-0.745499000	1.902903000	1 324531000		1	-3 232939000	-0.309602000	1 592768000
6	0.488529000	1 282904000	1.524551000		1	2 467456000	3 573671000	1.175512000
6	1 020859000	0.987371000	0.296056000		1	3 950789000	4 270408000	0.528548000
8	0.182312000	1 395714000	-0.667766000		1	2 902677000	3 326081000	-0 524104000
6	-1 924448000	2 322884000	-0.982264000		1	5 161349000	0.950960000	3 152443000
7	-3.055818000	2.922004000	-0.802610000		1	3 758215000	1 990063000	3 422644000
6	2 249275000	0 220834000	-0.083353000		1	5 336494000	2 708485000	3 088978000
8	3 282458000	0.466453000	0.832631000		1	7 593047000	0 384809000	-0 292418000
6	-5 254055000	-1 128108000	1 334301000		1	6 116902000	-0.490394000	0.115246000
6	-5.954649000	-3 517633000	-0.594616000		1	6.970201000	0.435278000	1 356371000
6	-5.934049000	-1 423729000	2 233232000		1 1	7 675107000	2 876645000	-0.392293000
6	-5.661442000	-1.423729000	0.245170000		1 1	6 261/29000	2.870043000	-0.066903000
6	-3.001442000	-0.113022000	2 102170000		1	7.060805000	3.008460000	-0.000903000
14	-4.120038000	-0.313898000	2.192179000		1	1.000893000	2 572054000	1.2342/3000
14 6	4.284843000	2 288172000	0.995080000		1 1	4.993244000 6.446223000	2.572034000	-1.893892000
6	5 869422000	1 600855000	-0.06000000		1 1	0.440223000 4 015713000	0.801548000	-2.172428000
6	1 673202000	1.099833000	-0.009900000		1 1	4.913/13000	5 284522000	-1.840339000
6	4.073292000	0.433800000	0.302338000		1 1	-4.381983000	5.284522000	0.055614000
6	6 756255000	2 020002000	0.302338000		1	-3.343/30000	2 658522000	-0.033014000
6	0.730333000 5.526000000	2.939093000	0.2044/0000		1 1	-2.029400000	2 871760000	1.155451000
6	3.326900000	1.070019000	-1.3/3843000		1 1	-4.21/202000	2.8/1/09000	0.937740000
0	-4.124961000	4.935050000	0.242029000		l 1	-3.5//459000	2.757061000	-2.83010/000
6	-3.493003000	2.050087000	1 804714000		1 1	-4.838092000	2.554078000	-1.00130/000
0	-4.033324000	3.03998/000 1.176601000	-1.094/14000		1	-3.440398000	4.49241/000	-2.703937000
0 Q	-4.021963000	4.4/0001000	-1.70//01000		1	-3.043/89000	3.1/8801000	-2.328/8/000
0	-3.143049000	4.8/0241000	-0./334/3000					
1 1	1.2/1000000	-0.902142000 1 020070000	-3.038784000	1	nc	т		
1	-1.1/0449000	-1.9300/0000	-3.037032000	1	υ ι -	0.504175000	1 712002000	1 202200000
1 1	2 001094000	-1.304431000	0.734001000		5 5	0.3741/3000	-1./13893000	1.275279000
1	-3.001984000	-3.363434000	-2.129/04000		5 5	0.790307000	1 55000000	2.000102000
1	-2.294384000	-4.02/40/000	-0.03030/000		0	2.109/24000	-1.550980000	2.000043000

6	2.775689000	-1.597999000	1.620025000	1		-1.824174000	2.612665000	-1.720228000
8	1.827288000	-1.682286000	0.667683000	1		-5.438692000	-0.071529000	1.199367000
6	-0.473870000	-1.798651000	0.365105000	1		-0.766418000	0.869234000	1.735948000
7	-1.724800000	-2.178975000	0.546026000	1		5.610648000	-3.554647000	-2.568537000
6	4.208299000	-1.675895000	1.186178000	1		4.053221000	-3.487503000	-1.743924000
8	4.420410000	-0.948204000	0.008912000	1		5.521362000	-3.911683000	-0.848252000
6	-3 418628000	-3 588474000	-0 550711000	1		9 140341000	-1 190168000	-1 979830000
6	-2.661557000	-2.259440000	-0 592198000	1		7 791987000	-0 909067000	-3.082002000
6	-2 330837000	-2 489642000	1 850400000	1		8 033228000	-2 509626000	-2 362189000
6	-3 151682000	-3 783897000	1 755668000	1		8 774477000	-1 574604000	0.475605000
8	-4 084259000	-3 731680000	0.693652000	1		7 170731000	-1 482208000	1 199521000
14	5 386147000	-1 419155000	-1 314511000	1		7.611188000	-2 867958000	0 183348000
6	4 700292000	-0.408924000	-2 741972000	1		7 108039000	1 087001000	-1 591074000
6	-4 251570000	0.925643000	_0 197194000	1		8 427799000	0.738728000	-0.471955000
6	-3 702007000	1 7/3066000	-1.284243000	1		6 766509000	0.843884000	0.128007000
6	-3.792997000	2.005382000	1 102266000	1		1 215160000	4 430072000	1 427233000
6	-2.408/44000	2.003382000	-1.102200000	1		-1.213100000	4.439072000	1.427233000
0	-2.030122000	0.608360000	0.113001000	1		0.109114000	5.002375000	0.052761000
0 6	-5.1492/8000	0.098309000	0.049193000	1		1 000266000	1.051087000	-0.032701000
6	-3.440733000	1 227602000	0.211023000	1		0.405276000	1.931987000	2.010093000
0	-0.839348000	1.557092000	0.739084000	1		1.070192000	2.729273000	3.30/884000
0 6	0.234014000	1.901098000	0.243338000	1		1.979188000	2 744247000	5.238921000
6	7.222043000	-1.01/498000	-0.933704000	1		4.434248000	2.744347000	-0.314320000
6	2.119877000 8.086006000	-3.203120000	-1.033038000	1		3.109399000	2 51 57 65000	-0.141014000
6	7 711802000	-1.432983000	-2.103/04000	1		3.914073000	2.313703000	0.252172000
6	7.711892000	-1./82330000	0.294920000	1		4.024809000	5.252801000	-0.233173000
0	/.383033000	0.498030000	-0./09113000	1		2.432006000	5.862394000	0.1/313/000
14	0.9/1202000	3.323938000	0.982827000	1		3.4200/9000	5.040345000	1.392352000
0	-0.2/0110000	4.742196000	0.904200000	1		1.3/9551000	4.525571000	-1.//2255000
0	2.5098/1000	3.0/2333000	-0.083063000	1		2.99/300000	3.955/10000	-2.1896/0000
0	1.598100000	2.8/08//000	2.703812000	1		1.094999000	2.780131000	-1.921443000
6	3.337023000	2.33/180000	0.1194/0000	1		-9.923443000	-0.307728000	0.0/149/000
0	3.122490000	2.725220000	0.557524000	1		-9.382420000	1.0/3400000	-0.80121/000
07	2.115055000	3.735359000	-1.5/4544000	1		-/.94/148000	0.910390000	1.155659000
	-0.043099000	0.316942000	-0.421/88000	1		-/./3//39000	-0.842891000	0.942787000
6	-9.085619000	0.0624/8000	-0.481800000	1		-5.912054000	0.628464000	-2.341550000
6	-7.843550000	0.109812000	0.409291000	l		-7.181250000	1.759495000	-1.8/328/000
6	-6.859693000	0.709425000	-1.806562000	l		-7.370762000	-1.083/25000	-2.939511000
6	-/.8846/6000	-0.228500000	-2.490//4000	I		-8.38/385000	0.327250000	-3.296519000
8	-8.839213000	-0.778851000	-1.591705000					
1	0.040289000	-1.586106000	3.435016000	T	c			
1	2.706893000	-1.4649//000	3.812467000	T	S ₃₋	I	1 175(50000	1 2 42 0 7 0 0 0 0
1	-0.179333000	-1.632/03000	-0.666511000	6		0.6/6214000	-1.1/5652000	1.3430/9000
1	4.825087000	-1.298327000	2.013716000	6		0.902374000	-1.114855000	2.699287000
1	4.461751000	-2.741859000	1.064987000	6		2.312/29000	-1.154465000	2.879283000
1	-4.184828000	-3.596840000	-1.329285000	6		2.865861000	-1.244569000	1.628520000
1	-2.731904000	-4.431662000	-0.722934000	8		1.884596000	-1.241433000	0.688724000
1	-2.097509000	-2.150021000	-1.521017000	6		-0.464063000	-1.159308000	0.446048000
1	-3.377193000	-1.435647000	-0.506551000	7		-1.532996000	-1.971242000	0.565954000
1	-1.545845000	-2.610913000	2.594447000	6		4.270628000	-1.475426000	1.166176000
1	-2.967570000	-1.642896000	2.129360000	8		4.581328000	-0.690441000	0.040926000
1	-3.719030000	-3.920014000	2.679415000	6		-2.789016000	-3.665006000	-0.685355000
1	-2.473224000	-4.642484000	1.632665000	6		-2.452525000	-2.176578000	-0.560112000
1	5.288754000	-0.551648000	-3.654235000	6		-1.977018000	-2.581607000	1.822871000
1	3.669729000	-0.706899000	-2.960758000	6		-2.385224000	-4.040181000	1.582053000
1	4.694295000	0.659882000	-2.509635000	8		-3.332374000	-4.148788000	0.532422000
1	-4.411100000	2.124109000	-2.083621000	14	4	5.544537000	-1.175459000	-1.273368000

6	5.067305000	0.022827000	-2.640160000
6	-4.420791000	0.777284000	-0.192600000
6	-3.914538000	1.438363000	-1.345244000
6	-2.573705000	1.667126000	-1.154727000
6	-2.237065000	1.162579000	0.131579000
8	-3.355769000	0.629325000	0.707502000
6	-5 635720000	0 318735000	0 275729000
6	-1 025124000	1 078269000	0 806644000
8	0.067160000	1 703999000	0 280050000
6	7 401064000	-1 045472000	-0.821689000
6	5.069737000	-2 937577000	-1 767853000
6	8 255668000	-1 464188000	-2 039610000
6	7 744645000	-1.969/96000	0.367110000
6	7.744045000	0.411010000	-0.439563000
14	0.600161000	3 18000000	0.439303000
14 6	0.090101000	J.189000000	0.894930000
0	-0.084001000	4.4/0010000	0.803982000
0	2.101001000	3.005//3000	-0.230052000
6	1.18/524000	2.919669000	2.692433000
6	3.330011000	2.632118000	0.025234000
6	2.628263000	5.049560000	0.061413000
6	1.738081000	3.505/10000	-1./18194000
7	-6.831545000	0.224900000	-0.331503000
6	-9.263955000	-0.128523000	-0.378670000
6	-8.025175000	-0.016492000	0.508680000
6	-7.060352000	0.495556000	-1.748565000
6	-8.041241000	-0.533070000	-2.361209000
8	-9.000538000	-1.028690000	-1.436466000
1	0.158898000	-1.008171000	3.476089000
1	2.851356000	-1.124517000	3.815223000
1	-0.202628000	-0.903265000	-0.575625000
1	4.934642000	-1.247098000	2.011188000
1	4.387125000	-2.549936000	0.952878000
1	-3.549837000	-3.811187000	-1.456339000
1	-1.890462000	-4.236946000	-0.964259000
1	-1.985192000	-1.801314000	-1.473722000
1	-3.381966000	-1.621384000	-0.384682000
1	-1.165027000	-2.544218000	2.548253000
1	-2.828842000	-2.009299000	2.213318000
1	-2.855520000	-4.445760000	2.481136000
1	-1.489633000	-4.638643000	1.353833000
1	5.655257000	-0.148282000	-3.547837000
1	4.010451000	-0.096632000	-2.899818000
1	5.217640000	1.061792000	-2.333230000
1	-4.492591000	1.744732000	-2.204418000
1	-1.885002000	2.164849000	-1.820486000
1	-5.632813000	-0.012765000	1.311329000
1	-1.047965000	0.897047000	1.878641000
1	5.566029000	-3.210926000	-2.705435000
1	3.989911000	-3.012275000	-1.936744000
1	5.347136000	-3.694098000	-1.026923000
1	9.323434000	-1.377506000	-1.799800000
1	8.069293000	-0.829493000	-2.913054000
1	8.074219000	-2.503860000	-2.334170000
1	8.817987000	-1.916010000	0.591700000
1	7.213928000	-1.679843000	1.281059000
1	7.511830000	-3.019811000	0.158770000

1	7.575623000	1.103163000	-1.271692000
1	8.802302000	0.492782000	-0.158885000
1	7.148509000	0.760753000	0.410869000
1	-1.581010000	4.142385000	1.337251000
1	-0.360999000	5.413266000	1.270024000
1	-0.974350000	4.703091000	-0.226886000
1	1.884582000	2.083600000	2.799312000
1	0.317507000	2.719489000	3.327489000
1	1.674551000	3.815419000	3.093122000
1	4.171364000	2.870104000	-0.638916000
1	3.058003000	1.588352000	-0.155883000
1	3.702789000	2.708069000	1.052423000
1	3.493753000	5.299576000	-0.565261000
1	1.849596000	5.790283000	-0.150487000
1	2.940458000	5.177898000	1.104427000
1	0.918188000	4.192090000	-1.960589000
1	2.581498000	3.768521000	-2.369735000
1	1.421235000	2.491044000	-1.979642000
1	-10.093078000	-0.541889000	0.199544000
1	-9.577759000	0.858307000	-0.751546000
1	-8.146254000	0.796200000	1.236218000
1	-7.881267000	-0.955399000	1.054846000
1	-6.110729000	0.418692000	-2.278185000
1	-7.428554000	1.521761000	-1.878635000
1	-7.490748000	-1.407057000	-2.721243000
1	-8.538924000	-0.065017000	-3.223014000

E-I

6	0.858853000	-0.860224000	1.300948000
6	1.173824000	-0.651374000	2.614643000
6	2.571156000	-0.935880000	2.747218000
6	3.013931000	-1.298744000	1.509474000
8	1.974184000	-1.257789000	0.620051000
6	-0.395641000	-0.782079000	0.478634000
7	-1.230258000	-1.959973000	0.633962000
6	4.344558000	-1.711864000	0.978480000
8	4.813469000	-0.768604000	0.031147000
6	-2.472156000	-3.829579000	-0.325669000
6	-2.036359000	-2.374897000	-0.509015000
6	-1.859652000	-2.214668000	1.927282000
6	-2.318417000	-3.671594000	1.996985000
8	-3.169224000	-3.991989000	0.901782000
14	5.820757000	-1.069939000	-1.293326000
6	5.331166000	0.245266000	-2.547815000
6	-4.520247000	0.639135000	-0.344775000
6	-3.979432000	1.234287000	-1.490316000
6	-2.602694000	1.351458000	-1.285665000
6	-2.341023000	0.830480000	-0.023315000
8	-3.481763000	0.423869000	0.553350000
6	-5.764054000	0.238749000	0.166309000
6	-1.057003000	0.654475000	0.719175000
8	-0.137761000	1.599078000	0.241797000
6	7.655714000	-0.900545000	-0.767501000
6	5.457598000	-2.788670000	-1.993385000
6	8.575255000	-1.166833000	-1.979540000

1	2.986767000	5.472756000	-0.345078000
1	1.300073000	5.848955000	0.013701000
1	2.370619000	5.246751000	1.291267000
1	0.559175000	4.273584000	-1.911629000
1	2.264624000	3.966212000	-2.244582000
1	1.169634000	2.606583000	-1.965711000
1	-10.040762000	-1.116937000	0.116953000
1	-9.812342000	0.317528000	-0.893064000
1	-8.398690000	0.713767000	1.056389000
1	-7.858244000	-0.984830000	1.087528000
1	-6.300433000	0.576907000	-2.358720000
1	-7.800674000	1.377954000	-1.885596000
1	-7.326528000	-1.489980000	-2.830086000
1	-8.631262000	-0.360733000	-3.259185000

6	7.989340000	-1.914262000	0.348075000
6	7.910854000	0.527378000	-0.239286000
14	0.244658000	3.136636000	0.886196000
6	-1 249687000	4 274133000	0 662456000
6	1 745504000	3 691898000	-0 144992000
6	0.617437000	2 98/639000	2 726423000
6	2 052082000	2.984039000	2.720423000
6	2.933083000	2.771314000	0.140130000
0	2.111939000	5.145825000	0.231124000
6	1.4061//000	3.62/948000	-1.650306000
7	-6.951362000	0.183161000	-0.400048000
6	-9.305401000	-0.561146000	-0.468063000
6	-8.138089000	-0.152377000	0.437149000
6	-7.233484000	0.443521000	-1.817699000
6	-8.019335000	-0.745127000	-2.430717000
8	-8.819236000	-1.424618000	-1.475814000
1	0.506813000	-0.318962000	3.397207000
1	3.169237000	-0.872689000	3.644789000
1	-0.072842000	-0.754735000	-0.566987000
1	5.032035000	-1.790313000	1.830958000
1	4.263148000	-2.712665000	0.530477000
1	-3.158718000	-4.129016000	-1.122818000
1	-1.588402000	-4.485035000	-0.354041000
1	-1.435423000	-2.283393000	-1.420758000
1	-2.948735000	-1.765041000	-0.644322000
1	-1 128440000	-2 031349000	2 720008000
1	-2.731902000	-1 560979000	2 107844000
1	-2 896475000	-3 849069000	2 907975000
1	-1 439614000	-4 334094000	1 999912000
1	5 976214000	0 229145000	-3 432571000
1	4 301270000	0.021901000	-2 882094000
1	5 382238000	1 247745000	2.112374000
1	1 518066000	1.247745000	2 363637000
1	-4.318000000	1.370320000	-2.303037000
1	-1.804914000	0.075044000	-1.931090000
1	-3.730302000	-0.073944000	1.207419000
1	-1.268018000	0./5845/000	1./93346000
1	5.996076000	-2.931/48000	-2.936510000
1	4.389299000	-2.902055000	-2.208510000
1	5./54041000	-3.604242000	-1.326052000
1	9.628769000	-1.058212000	-1.689240000
1	8.392978000	-0.461797000	-2.798370000
l	8.453052000	-2.180/61000	-2.376782000
l	9.046504000	-1.834477000	0.634402000
1	7.397042000	-1.734984000	1.252399000
1	7.818597000	-2.949523000	0.031813000
1	7.738496000	1.284997000	-1.011434000
1	8.952133000	0.633069000	0.093576000
1	7.264727000	0.765208000	0.612599000
1	-2.131140000	3.891838000	1.190401000
1	-1.038323000	5.266381000	1.075587000
1	-1.520078000	4.406713000	-0.389833000
1	1.432193000	2.281889000	2.918181000
1	-0.257028000	2.654464000	3.298730000
1	0.908990000	3.960248000	3.130804000
1	3.811755000	3.081718000	-0.469417000
1	2.744515000	1.723920000	-0.096479000
1	3.268114000	2.821674000	1.187793000

11. ¹H and ¹³C NMR Spectra

Compound 1

Compound **3**

Compound 4

Compound 5 0 0 0 -- 9.64 $\begin{cases} 7.26 \\ 7.21 \\ 7.20 \\ 6.59 \\ 6.58 \end{cases}$ -5.12 -2.11B (d) 7.21 J(3.55) A (d) 6.59 J(3.55) 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm) -- 121.82 -- 112.73 ~ 155.57 ~ 152.99 r 77.58 --77.16 - 76.74 - 57.94 — 20.84 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm) 80 70 60 50 40 30 20 10 0

Compound CIMF

Compound S1 = 9a-I

Mixture of compounds 6b-I and 6b-II

Compound 6b-I

Mixture of compounds 6c-I and 6c-II

Mixture of compounds 6d-I and 6d-II

Compound 6f-I

Mixture of compounds 7a-I and 7a-II

Mixture of compounds 8a-I and 8a-II

Mixture of compounds compound 9a-I and 9a-II

Identification of the aminal of 1 and morpholine

12. References

- (1) Cottier, L.; Descotes, G.; Soro, Y. J. Carbohyd. Chem. 2005, 24, 55.
- (2) Bognar, R.; Herczegh, P.; Zsely, M.; Batta, G. Carbohydr. Res. 1987, 164, 465.
- (3) Cottier, L.; Descotes, G.; Eymard, L.; Rapp, K. Synthesis 1995, 303.
- (4) Svilen, P.; Coelho, J. A. S.; Afonso, C. A. M. Chemsuschem 2012, 5, 1388.
- (5) Sanda, K.; Rigal, L.; Gaset, A. Carbohydr. Res. 1989, 187, 15.
- (6) Bruker AXS: SAINT+, release 6.22. Bruker Analytical Systems: Madison, WI 2005.
- (7) Bruker AXS:SADABS. Bruker Analytical Systems: Madison, WI 2005.
- (8) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Cryst. 1999, 32, 115.
- (9) Sheldrick, G. M. Acta Crystallographica Section A 2008, 64, 112.
- (10) Farrugia, L. J. J. Appl. Cryst. 1999, 32, 837.
- (11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Jr., J. A. M.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Ö. Farkas; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; GAUSSIAN 09 (Revision A.01), Gaussian, Inc.: Wallingford CT, **2009**.
- (12) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
- (13) (a) Ditchfie.R; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724(b) Hehre, W. J.; Ditchfie.R; Pople, J. A. J. Chem. Phys. 1972, 56, 2257(c) Harihara.Pc; Pople, J. A. Mol. Phys. 1974, 27, 209(d) Gordon, M. S. Chem. Phys. Lett. 1980, 76, 163(e) Harihara.Pc; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.
- (14) (a) Lee, C. T.; Yang, W. T.; Parr, R. G. *Physical Review B* 1988, 37, 785(b) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. *Chem. Phys. Lett.* 1989, 157, 200.
- (15) (a) Peng, C. Y.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. J. Comput. Chem. 1996, 17, 49(b) Peng, C. Y.; Schlegel, H. B. Isr. J. Chem. 1993, 33, 449.
- (16) (a) Mclean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639(b) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650(c) Wachters, A. J. J. Chem. Phys. 1970, 52, 1033(d) Raghavachari, K.; Trucks, G. W. J. Chem. Phys. 1989, 91, 1062(e) Hay, P. J. J. Chem. Phys. 1977, 66, 4377(f) Binning, R. C.; Curtiss, L. A. J. Comput. Chem. 1990, 11, 1206(g) Mcgrath, M. P.; Radom, L. J. Chem. Phys. 1991, 94, 511(h) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. J. Comput. Chem. 1983, 4, 294(i) Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265.
- (17) (a) Cances, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107, 3032(b) Cossi, M.; Barone, V.; Mennucci, B.; Tomasi, J. Chem. Phys. Lett. 1998, 286, 253(c) Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 106, 5151(d) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999.
- (18) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.
- (19) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
- (20) (a) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157(b) Zhao, Y.; Truhlar, D. G. Chem. Phys. Lett. 2011, 502, 1.