Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

Synthesis of oligonucleotides containing *N*,*N*-disubstituted 3-deazacytosine nucleobases by post-elongation modification and their triplex-forming ability with double-stranded DNA

Masaaki Akabane-Nakata, Satoshi Obika,* Yoshiyuki Hari*

*Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Contents

1.	Synthesis of new secondary amines	Page	S1–S6
2.	Representative HPLC charts of crude TFOs before HPLC purificat	ion F	age S7
3.	Representative UV-melting curves of triplexes	F	age S7
4.	¹ H, ¹³ C and ³¹ P spectra for the new compounds	Page	S8–S24
5.	HPLC charts and MALDI-TOF-Mass spectra for TFOs	Page	S25–S35

General: Melting points are uncorrected. All moisture-sensitive reactions were carried out in welldried glassware under a N₂ atmosphere. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) were recorded on JEOL JNM-ECS-400 spectrometers. Chemical shifts are reported in parts per million downfield from an internal standard [tetramethylsilane (0.00 ppm) for ¹H NMR, or CD₃OD (49.00 ppm) or CDCl₃ (77.00 ppm) for ¹³C NMR]. IR spectra were recorded on a JASCO FT/IR-4200 spectrometers. Optical rotations were recorded on a JASCO P-2200 instrument. Mass spectra were measured on a JEOL JMS-700 mass spectrometer. For silica gel flash column chromatography, Fuji Silysia PSQ-100B, FL-100D was used. For amine silica gel column chromatography, Fuji Silysia DM-1020 was used.

Synthesis of secondary amines: All new secondary amines S1-S4 used in this study were synthesized in Scheme S1.

Scheme S1. Synthesis of guanidinomethylpyrrolidines. *Reagents and conditions*: (i) NaN₃, DMF, 60 °C, 10 h, 88% (S6), 95% (S11); (ii) *n*-Bu₃P, THF–H₂O, room temperature, 10 h, quant. (S7), quant. (S12); (iii) (BocNH)₂CS, DIPEA, EDCI•HCl, CH₂Cl₂, room temperature, 5–13 h, 71% (S8), 66% (S13), 64% (S15), 89% (S17); (iv) TFA, CH₂Cl₂, room temperature, 2–10 h; (v) H₂, 20% Pd(OH)₂-C, MeOH, room temperature, 10–13 h, 97% (S1), 79% (S2), 75% (S3), 87% (S4); (vi) MsCl, Et₃N, DMAP, CH₂Cl₂, room temperature, 3 h, quant.

(3S)-3-Azidomethyl-1-[(R)-1-phenylethyl]pyrrolidine (S6): Under a N₂ atmosphere, NaN₃ (459 mg, 7.06 mmol) was added to a solution of compound S5¹) (1.0 g, 3.53 mmol) in anhydrous DMF (50 mL) and the resulting mixture was stirred at 60 °C for 10 h. After addition of saturated aqueous NaHCO₃ solution, the reaction mixture was extracted with Et₂O. The organic extracts were washed with water and brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography (*n*-hexane/AcOEt = 5/1) to give compound S6 (715 mg, 88%) as a yellow syrup.

 $[\alpha]_D^{28}$ +38.3 (*c* 1.0, CHCl₃). IR v_{max} (KBr) 3061, 3028, 2971, 2930, 2872, 2784, 2095, 1492, 1452, 1368, 1280, 1150 cm⁻¹. ¹H NMR (CDCl₃) δ 1.36 (3H, d, *J* = 6.4 Hz), 1.41–1.53 (1H, m), 1.95–2.04

(1H, m), 2.26 (1H, dd, J = 6.4 and 13.2 Hz), 2.32–2.43 (2H, m), 2.55–2.67 (2H, m), 3.17 (2H, q, J = 6.4 Hz), 3.25 (2H, d, J = 7.3 Hz), 7.20–7.33 (5H, m). ¹³C NMR (CDCl₃) δ 23.02, 28.12, 37.15, 52.23, 55.64, 56.52, 65.47, 126.85, 127.04, 128.24, 145.39. MS (FAB) *m/z* 231 (M+H⁺). HRMS (FAB): Calcd for C₁₃H₁₉N₄ (M+H⁺), 231.1604; found, 231.1610.

(3*R*)-3-Aminomethyl-1-[(*R*)-1-phenylethyl]pyrrolidine (S7): *n*-Bu₃P (1.52 mL, 6.08 mmol) was added to a solution of compound S6 (700 mg, 3.04 mmol) in THF (30 mL) and H₂O (6 mL), and the resulting mixture was stirred at room temperature for 10 h. After the reaction mixture was concentrated *in vacuo*, the residue was purified by amine silica gel column chromatography (CH₂Cl₂/MeOH = 100/1 to 20/1) to give compound S7 (639 mg, quant.) as a yellow syrup.

 $[\alpha]_D^{25}$ +53.2 (*c* 1.0, CHCl₃). IR v_{max} (KBr) 3335, 2969, 2785, 2596, 2158, 1750, 1491, 1452, 1372, 1309, 1219, 1148 cm⁻¹. ¹H NMR (CDCl₃) δ 1.08 (2H, brs), 1.37 (3H, d, *J* = 6.4 Hz), 1.38–1.46 (1H, m), 1.95–2.04 (1H, m), 1.93–2.03 (1H, m), 2.08–2.22 (2H, m), 2.34 (1H, ddd, *J* = 6.4, 8.3 and 13.6 Hz), 2.59–2.69 (3H, m), 2.75 (1H, ddd, *J* = 6.4, 8.3 and 13.6 Hz), 3.16 (2H, q, *J* = 6.4 Hz), 7.19–7.33 (5H, m). ¹³C NMR (CDCl₃) δ 23.09, 28.28, 40.84, 47.03, 52.50, 57.35, 65.86, 126.73, 127.09, 128.18, 145.60. MS (FAB) *m*/*z* 205 (M+H⁺). HRMS (FAB): Calcd for C₁₃H₂₁N₂ (M+H⁺), 205.1699; found, 205.1709.

(3*R*)-3-[*N*,*N*'-bis(*tert*-buthoxycarbonyl)guanidinomethyl]-1-[(*R*)-1-phenylethyl]pyrrolidine (S8): Under a N₂ atmosphere, EDCI-HCl (141 mg, 0.734 mmol) was added to a solution of compound S7 (100 mg, 0.489 mmol), (BocNH)₂CS²) (135 mg, 0.489 mmol), and DIPEA (0.256 mL, 1.47 mmol) in anhydrous CH₂Cl₂ (10 mL); the resulting mixture was stirred at room temperature for 8 h. After addition of saturated aqueous NaHCO₃ solution, the reaction mixture was extracted with CH₂Cl₂. The organic extracts were washed with water and brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography (*n*-hexane/AcOEt = 1/1) to give compound **S8** (155 mg, 71%) as a colorless syrup.

[α]_D³⁰ +10.3 (*c* 1.0, CHCl₃). IR v_{max} (KBr) 3330, 3280, 3129, 2975, 2931, 2876, 2783, 1795, 1722, 1639, 1415, 1366, 1318, 1133, 1056, 1027 cm⁻¹. ¹H NMR (CDCl₃) δ 1.37 (3H, d, J = 6.4 Hz), 1.50 (18H, s), 1.92–2.01 (1H, m), 2.37–2.53 (5H, m), 3.15 (1H, q, J = 6.4 Hz), 3.37 (1H, ddd, J = 7.0, 7.0 and 13.3 Hz), 3.47 (1H, ddd, J = 7.0, 7.0 and 13.3 Hz), 7.20–7.38 (5H, m), 8.51 (1H, s), 11.5 (1H, s). ¹³C NMR (CDCl₃) δ 23.42, 28.26, 28.35, 28.42, 28.58, 36.31, 46.13, 52.98, 56.99, 65.93, 79.45, 83.14, 127.05, 127.51, 128.48, 145.91, 149.00, 153.34, 156.73, 163.92. MS (FAB) *m/z* 447 (M+H⁺). HRMS (FAB): Calcd for C₂₄H₃₉N₄O₄ (M+H⁺), 447.2966; found, 447.2970.

(3*R*)-3-Guanidinomethylpyrrolidine, TFA salt (S1): TFA (5 mL) was added to a solution of S8 (1.0 g, 2.42 mmol) in CH_2Cl_2 (5 mL) and the resulting mixture was stirred at room temperature for 10 h. After the reaction mixture was concentrated *in vacuo*, the crude product was dissolved in MeOH (5 mL). Under a H₂ atmosphere, the solution was added to a solution of 20% Pd(OH)₂-C (1.0 g) in MeOH (5 mL) and the resulting mixture was stirred at room temperature for 10 h. After the reaction

mixture was filtered, the filtrate was concentrated *in vacuo*. The residue was purified by amine silica gel column chromatography (CHCl₃/MeOH = 1/1) to give compound **S1** (600 mg, 97%) as a yellow syrup.

 $[\alpha]_D^{24}$ –6.22 (*c* 1.0, MeOH). IR v_{max} (KBr) 3141, 2152, 1679, 1511, 1436, 1202, 1139 cm⁻¹. ¹H NMR (CD₃OD) δ 1.44 (1H, dddd, *J* = 5.0, 6.9, 6.9 and 14.7 Hz), 1.98 (1H, dddd, *J* = 5.0, 6.9, 6.9 and 14.7 Hz), 2.37 (1H, ddd, *J* = 6.9, 6.9 and 14.7 Hz), 2.55 (1H, dd, *J* = 7.3 and 11.4 Hz), 2.82–2.97 (2H, m), 3.02 (1H, dd, *J* = 7.3 and 11.4 Hz), 3.15 (2H, d, *J* = 7.3 Hz). ¹³C NMR (CD₃OD) δ 30.85, 39.89, 45.78, 46.92, 50.93, 118.16 (q, *J* = 293 Hz), 158.84, 163.21 (q, *J* = 34.5 Hz). MS (FAB) *m/z* 143 (M+H⁺). HRMS (FAB): Calcd for C₆H₁₅N₄ (M+H⁺), 143.1291; found, 143.1299.

(3*R*)-3-Methanesulfonyloxymethyl-1-[(*R*)-1-phenylethyl]pyrrolidine (S10): Under a N₂ atmosphere, MsCl (0.566 mL, 7.31 mmol) was added to a solution of compound S9³) (1.0 g, 4.87 mmol), DMAP (59.5 mg, 0.487 mmol), and Et₃N (2.04 mL, 14.6 mmol) in anhydrous CH₂Cl₂ (40 mL) at 0 °C; the resulting mixture was stirred at room temperature for 3 h. After addition of saturated aqueous NaHCO₃ solution, the reaction mixture was extracted with AcOEt. The organic extracts were washed with water and brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography (*n*-hexane/AcOEt = 1/1) to give compound S10 (1.43 mg, quant.) as a yellow syrup.

 $[\alpha]_D^{25}$ +40.9 (*c* 1.0, CHCl₃). IR v_{max} (KBr) 3616, 3027, 2971, 2936, 2876, 2789, 1492, 1453, 1415, 1355, 1283, 1174 cm⁻¹. ¹H NMR (CDCl₃) δ 1.37 (3H, d, *J* = 6.4 Hz), 1.46–1.54 (1H, m), 1.93–2.02 (1H, m), 2.28 (1H, dd, *J* = 4.5 and 9.0 Hz), 2.36 (1H, ddd, *J* = 8.7, 8.7 and 8.7 Hz), 2.51–2.63 (2H. m), 2.71 (1H, ddd, *J* = 5.0, 8.7 and 8.7 Hz), 2.94 (3H, s), 3.20 (1 H, q, *J* = 6.4 Hz), 4.07–4.14 (2H, m), 7.20–7.30 (5H, m). ¹³C NMR (CDCl₃) δ 23.06, 26.74, 36.50, 37.15, 51.84, 55.35, 65.19, 72.66, 126.92, 126.97, 145.29. MS (FAB) *m*/*z* 284 (M+H⁺). HRMS (FAB): Calcd for C₁₄H₂₂NO₃S (M+H⁺), 284.1315; found, 284.1317.

(3*R*)-3-Azidomethyl-1-[(*R*)-1-phenylethyl]pyrrolidine (S11): Under a N₂ atmosphere, NaN₃ (642 mg, 9.88 mmol) was added to a solution of compound S10 (1.4 g, 4.94 mmol) in anhydrous DMF (30 mL) and the resulting mixture was stirred at 60 °C for 10 h. After addition of saturated aqueous NaHCO₃ solution, the reaction mixture was extracted with Et₂O. The organic extracts were washed with water and brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography (*n*-hexane/AcOEt = 2/1) to give compound S11 (1.08 g, 95%) as a yellow syrup.

[α]_D²¹ +59.3 (*c* 1.0, CHCl₃). IR v_{max} (KBr) 3061, 3027, 2970, 2931, 2872, 2785, 2095, 1491, 1451, 1367, 1280, 1151 cm⁻¹. ¹H NMR (CDCl₃) δ 1.35 (3H, d, J = 6.4 Hz), 1.41–1.49 (1H, m), 1.90–1.99 (1H, m), 2.18 (1H, dd, J = 5.5 and 9.6 Hz), 2.59 (1H, ddd, 5.5, 9.2 and 9.2 Hz), 2.68 (1H, dd, 7.8 and 9.6 Hz), 3.14–3.25 (3H, m), 7.18–7.31 (5H, m). ¹³C NMR (CDCl₃) δ 23.08, 28.07, 36.95, 52.08, 55.67, 56.44, 65.33, 126.71, 126.85, 128.16, 145.32. MS (FAB) *m/z* 231 (M+H⁺). HRMS (FAB): Calcd for C₁₃H₁₉N₄ (M+H⁺), 231.1604; found, 231.1609.

(3*S*)-3-Aminomethyl-1-[(*R*)-1-phenylethyl]pyrrolidine (S12): *n*-Bu₃P (2.17 mL, 8.68 mmol) was added to a solution of compound S11 (1.0 g, 4.34 mmol) in THF (60 mL) and H₂O (12 mL), and the resulting mixture was stirred at room temperature for 10 h. After the reaction mixture was concentrated *in vacuo*, the residue was purified by amine silica gel column chromatography (CH₂Cl₂/MeOH = 50/1) to give compound S12 (887 mg, quant.) as a yellow syrup.

[α]_D²³ +54.1 (*c* 1.0, CHCl₃). IR v_{max} (KBr) 3277, 2970, 2783, 2602, 2151, 1570, 1490, 1453, 1373, 1310, 1220, 1147 cm⁻¹. ¹H NMR (CDCl₃) δ 1.09 (1H, brs), 1.37 (3H, d, J = 6.4 Hz), 1.38–1.46 (1H, m), 1.88–1.97 (1H, m), 2.11 (1H, dd, J = 6.0 and 8.7 Hz), 2.14–2.25 (1H, m), 2.41 (1H, ddd, J = 6.0, 8.7 and 8.7 Hz), 2.52 (1H, ddd, J = 6.0, 8.7 and 8.7 Hz), 2.64 (1H, dd, J = 1.9 and 6.8 Hz), 2.64 (1H, dd, J = 7.8 and 8.7 Hz), 3.16 (2H, q, J = 6.4 Hz), 7.19–7.33 (5H, m). ¹³C NMR (CDCl₃) δ 23.44, 28.59, 40.91, 47.42, 52.83, 57.44, 66.07, 126.95, 127.26, 128.44, 145.92. MS (FAB) *m*/*z* 205 (M+H⁺). HRMS (FAB): Calcd for C₁₃H₂₁N₂ (M+H⁺), 205.1699; found, 205.1707.

(3S)-3-[N,N'-bis(tert-buthoxycarbonyl)guanidinomethyl]-1-[(R)-1-phenylethyl]pyrrolidine (S13):

Under a N₂ atmosphere, EDCI•HCl (3.66 g, 19.1 mmol) was added to a solution of compound **S12** (3.0 g, 14.7 mmol), (BocNH)₂CS (4.06 g, 14.7 mmol), and DIPEA (7.67 mL, 44.0 mmol) in anhydrous CH₂Cl₂ (30 mL); the resulting mixture was stirred at room temperature for 5 h. After addition of saturated aqueous NaHCO₃ solution, the reaction mixture was extracted with CH₂Cl₂. The organic extracts were washed with water and brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography (*n*-hexane/AcOEt = 5/1 to 2/1) to give compound **S13** (4.02 g, 66%) as a colorless syrup.

[α]_D³¹ –13.7 (*c* 1.0, CHCl₃). IR v_{max} (KBr) 3330, 3288, 3128, 2975, 2932, 2877, 2785, 1795, 1722, 1639, 1415, 1366, 1314, 1134, 1055, 1027 cm⁻¹. ¹H NMR (CDCl₃) δ 1.38 (3H, d, J = 6.4 Hz), 1.44–1.58 (19 H, m), 1.98 (1H, dddd, J = 5.0, 5.0, 9.6 and 19.2 Hz), 2.22 (1H, dd, J = 5.0 and 9.6 Hz), 2.31–2.50 (2H, m), 2.61 (1H, dd, J = 7.8 and 9.2 Hz), 2.75 (1H, ddd, J = 5.0, 5.0 and 9.6 Hz), 3.16 (1H, q, J = 6.4 Hz), 3.32 (1H, ddd, J = 5.0, 6.0 and 13.4 Hz), 3.46 (1H, ddd, J = 6.0, 6.0 and 13.4 Hz), 7.19–7.38 (5H, m), 8.62 (1H, s), 11.5 (1H, s). ¹³C NMR (CDCl₃) δ 23.05, 27.89, 27.97, 28.20, 35.90, 45.95, 52.16, 57.06, 65.66, 79.03, 82.67, 126.68, 128.16, 145.57, 152.91, 156.25, 163.54. MS (FAB) m/z 447 (M+H⁺). HRMS (FAB): Calcd for C₂₄H₃₉N₄O₄ (M+H⁺), 447.2966; found, 447.2972.

(3*S*)-3-Guanidinomethylpyrrolidine, TFA salt (S2): TFA (5 mL) was added to a solution of compound S13 (800 mg, 1.93 mmol) in CH₂Cl₂ (5 mL) and the resulting mixture was stirred at room temperature for 3 h. After the reaction mixture was concentrated *in vacuo*, the crude product was dissolved in MeOH (5 mL). Under a H₂ atmosphere, the solution was added to a solution of 20% Pd(OH)₂-C (1.0 g) in MeOH (5 mL) and the resulting mixture was stirred at room temperature for 10 h. After the reaction mixture was filtered, the filtrate was concentrated *in vacuo*. The residue was purified by amine silica gel column chromatography (CHCl₃/MeOH = 1/1 to 1/5) to give compound

S2 (390 mg, 79%) as a yellow syrup.

[α]_D²⁴ +6.63 (*c* 1.0, MeOH). IR v_{max} (KBr) 3158, 2494, 1681, 1511, 1430, 1201, 1136 cm⁻¹. ¹H NMR (CD₃OD) δ 1.40–1.49 (1H, m), 1.94–2.02 (1H, m), 2.36 (1H, ddd, *J* = 7.8, 7.8 and 14.8 Hz), 2.54 (1H, dd, *J* = 6.0 and 7.8 Hz), 2.83–2.97 (2H, m), 3.02 (1H, dd, *J* = 7.8 and 7.8 Hz), 3.15 (2H, d, *J* = 7.8 Hz). ¹³C NMR (CD₃OD) δ 30.88, 39.93, 45.77, 46.95, 50.96, 118.16 (q, *J* = 293 Hz), 158.86, 163.21 (q, *J* = 34.5 Hz). MS (FAB) *m*/*z* 143 (M+H⁺). HRMS (FAB): Calcd for C₆H₁₅N₄ (M+H⁺), 143.1291; found, 143.1298.

(2*R*)-1-Benzyloxycarbonyl-2-[*N*,*N*'-bis(*tert*-buthoxycarbonyl)guanidinomethyl]pyrrolidine (S15):

Under a N₂ atmosphere, EDCI•HCl (1.06 g, 5.55 mmol) was added to a solution of commercially available compound **14** (1.0 g, 4.27 mmol), (BocNH)₂CS (1.18 g, 4.27 mmol), and DIPEA (2.23 mL, 12.8 mmol) in anhydrous CH₂Cl₂ (30 mL); the resulting mixture was stirred at room temperature for 5 h. After addition of saturated aqueous NaHCO₃ solution, the reaction mixture was extracted with CH₂Cl₂, washed with water and brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography (*n*-hexane/AcOEt = 5/1 to 3/1) to give compound **S15** (1.30 g, 64%) as a yellow syrup.

[α]_D²⁷ +37.4 (*c* 0.5, CHCl₃). IR v_{max} (KBr) 3327, 3287, 3136, 2936, 2887, 1706, 1639, 1575, 1450, 1413, 1369, 1329, 1137, 1056 cm⁻¹. ¹H NMR (CDCl₃, as a mixture of atropisomers) δ 1.47 (6H, s), 1.50 (12H, s), 1.78–2.04 (4H, m), 3.40–3.70 (4H, m), 4.07–4.12 (1H, m), 5.08–5.30 (2H, m), 7.28–7.38 (5H, m), 8.51 (0.5H, s), 8.59 (0.5H, s), 11.49 (1H, s). ¹³C NMR (CDCl₃, as a mixture of atropisomers) δ 22.98, 23.81, 27.94, 28.21, 28.70, 29.47, 43.70, 44.15, 46.61, 46.88, 56.11, 56.96, 66.68, 66.77, 79.01, 79.09, 82.78, 82.97, 127.70, 127.78, 127.86, 128.33, 136.79, 152.87, 152.99, 154.98, 155.30, 156.43, 156.51, 163.50. MS (FAB) *m/z* 477 (M+H⁺). HRMS (FAB): Calcd for $C_{24}H_{37}N_4O_7$ (M+H⁺), 477.2708; found, 477.2717.

(2*R*)-2-Guanidinomethylpyrrolidine, TFA salt (S3): TFA (2 mL) was added to a solution of compound S15 (1.3 g, 2.73 mmol) in CH₂Cl₂ (2 mL) and the resulting mixture was stirred at room temperature for 3 h. After the reaction mixture was concentrated *in vacuo*, the crude product was dissolved in MeOH (5 mL). Under a H₂ atmosphere, the solution was added to a solution of 20% Pd(OH)₂-C (1.0 g) in MeOH (5 mL) and the resulting mixture was stirred at room temperature for 10 h. After the reaction mixture was filtered, the filtrate was concentrated *in vacuo*. The residue was purified by amine silica gel column chromatography (CHCl₃/MeOH = 2/1 to 1/5) to give compound S3 (526 mg, 75%) as a yellow syrup.

 $[\alpha]_D^{24}$ –0.34 (*c* 1.0, MeOH). IR v_{max} (KBr) 3143, 1676, 1523, 1420, 1200, 1137 cm⁻¹. ¹H NMR (CD₃OD) δ 1.43 (1H, ddd, *J* = 5.0, 6.8, 6.8 and 13.6 Hz), 1.67-1.84 (2H, m), 1.91–2.00 (1H, m), 2.84 (1H, ddd, *J* = 6.8, 6.8 and 13.6 Hz), 2.93 (1H, ddd, *J* = 5.0, 6.8 and 13.6 Hz), 3.12 (1H, dd, *J* = 6.8 and 13.6 Hz), 3.20 (1H, dd, *J* = 5.0 and 13.6 Hz). ¹³C NMR (CD₃OD) δ 26.74, 29.93, 47.06, 47.72, 58.83, 118.19 (q, *J* = 292 Hz), 159.71, 163.18 (q, *J* = 34.5 Hz). MS (FAB) *m/z* 143 (M+H⁺). HRMS (FAB): Calcd for C₆H₁₅N₄ (M+H⁺), 143.1291; found, 143.1288.

(2*S*)-1-Benzyloxycarbonyl-2-[*N*,*N*'-bis(*tert*-buthoxycarbonyl)guanidinomethyl]pyrrolidine (S17): Under a N₂ atmosphere, EDCI-HCl (1.23 g, 6.41 mmol) was added to a solution of commercially available compound **S16** (1.0 g, 4.27 mmol), (BocNH)₂CS (1.18 g, 4.27 mmol), and DIPEA (2.23 mL, 12.8 mmol) in anhydrous CH₂Cl₂ (30 mL); the resulting mixture was stirred at room temperature for 13 h. After addition of saturated aqueous NaHCO₃ solution, the reaction mixture was extracted with CH₂Cl₂. The organic extracts were washed with water and brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography (*n*-hexane/AcOEt = 10/1 to 5/1) to give compound **S17** (1.81 g, 89%) as a yellow syrup.

[α]_D³¹ –39.4 (*c* 1.0, CHCl₃). IR v_{max} (KBr) 3328, 3288, 3127, 2935, 2887, 1707, 1639, 1576, 1447, 1412, 1367, 1327, 1138, 1056 cm⁻¹. ¹H NMR (CDCl₃, as a mixture of atropisomers) δ 1.47 (6H, s), 1.50 (12H, s), 1.77-2.04 (4H, m), 3.40–3.71 (4H, m), 4.07–4.12 (1H, m), 5.08–5.30 (2H, m), 7.28–7.38 (5H, m), 8.51 (0.5H, s), 8.59 (0.5H, s), 11.49 (1H, s). ¹³C NMR (CDCl₃, as a mixture of atropisomers) δ 22.75, 23.58, 27.71, 27.98, 28.47, 29.24, 43.49, 43.92, 46.37, 46.64, 55.84, 56.71, 66.43, 66.51, 78.71, 78.79, 82.49, 82.68, 127.45, 127.55, 127.60, 128.11, 136.55, 152.62, 152.73, 154.70, 155.05, 156.20, 156.27, 163.27. MS (FAB) *m/z* 477 (M+H⁺). HRMS (FAB): Calcd for C₂₄H₃₇N₄O₇ (M+H⁺), 477.2708; found, 477.2707.

(2*S*)-2-Guanidinomethylpyrrolidine, TFA salt (S4): TFA (5 mL) was added to a solution of compound S17 (900 mg, 1.89 mmol) in CH₂Cl₂ (5 mL) and the resulting mixture was stirred at room temperature for 2 h. After the reaction mixture was concentrated *in vacuo*, the crude product was dissolved in MeOH (5 mL). Under a H₂ atmosphere, the solution was added to a solution of 20% Pd(OH)₂-C (1.0 g) in MeOH (5 mL) and the resulting mixture was stirred at room temperature for 13 h. After the reaction mixture was filtered, the filtrate was concentrated *in vacuo*. The residue was purified by amine silica gel column chromatography (CHCl₃/MeOH = 1/1) to give compound S4 (421 mg, 87%) as a yellow syrup.

 $[\alpha]_D^{25}$ +1.12 (*c* 1.0, MeOH). IR ν_{max} (KBr) 3143, 1680, 1517, 1426, 1202, 1137 cm⁻¹. ¹H NMR (CD₃OD) δ 1.34 (1H, ddd, J = 5.0, 6.8, 6.8 and 13.6 Hz), 1.59–1.77 (2H, m), 1.81–1.90 (1H, m), 2.74 (1H, ddd, J = 6.8, 6.8 and 13.6 Hz), 2.81 (1H, ddd, J = 5.0, 6.8 and 13.6 Hz), 3.03 (1H, dd, J = 6.8 and 13.6 Hz), 3.10 (1H, dd, J = 5.0 and 13.6 Hz). ¹³C NMR (CD₃OD) δ 26.75, 29.93, 47.06, 47.73, 58.85, 119.06 (q, J = 292 Hz), 159.73, 163.19 (q, J = 34.5 Hz). MS (FAB) *m/z* 143 (M+H⁺). HRMS (FAB): Calcd for C₆H₁₅N₄ (M+H⁺), 143.1291; found, 143.1298.

References

- (1) C. Fava, R. Galeazzi, G. Mobbili, M. Orena, Heterocycles, 1999, 51, 2463.
- (2) S. Robinson, E. J. Roskamp, *Tetrahedron*, **1997**, *53*, 6697; B. R. Linton, A. J. Carr, B. P. Orner, A. D. Hamilton, J. Org. Chem., **2000**, *65*, 1566.
- (3) L. Nielsen, L. Brehm, P. Krogsgaard-Larsen, J. Med. Chem., 1992, 33, 71.

Fig. S1. Representative HPLC charts of crude TFOs before HPLC purification.

Fig. S2. Representative UV-melting curves of triplexes. Conditions: 10 mM sodium cacodylate buffer (pH 6.8), 100 mM KCl and 50 mM MgCl₂. The concentration of each oligonucleotide used was 1.89μ M.

1H NMR (CDCl3)

1H NMR (CDCl3)

1H NMR (CDCl3)

1H NMR (CDCl3)

13C NMR (CDCl3)

1H NMR (CDCl3)

1H NMR (CD3OD)

)0

PPM

13C NMR (CDCl3)

1H NMR (CDCl3)

13C NMR (CDCl3)

1H NMR (CD3OD)

1H NMR (CDCl3)

1H NMR (CD3OD)

13C NMR (CDCl3)

1H NMR (CDCl3)

1H NMR (CD3OD)

TFO 7a

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 μ m, 4.6 \times 50 mm

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer

Flow rate : 1.0 mL/min

Column temp. : 50 °C

MALDI-TOF-Mass

TFO 7b

HPLC

Column : Waters XBridge® MS $C_{18}\,2.5$ µm, 4.6×50 mm

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer

Flow rate : 1.0 mL/min

Column temp. : 50 °C

TFO 7c

HPLC

Column : Waters XBridge® MS $C_{18}\,2.5$ µm, 4.6×50 mm

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer

Flow rate : 1.0 mL/min

Column temp. : 50 °C

TFO 7d

HPLC

Column : Waters XBridge® MS $C_{18}\,2.5$ µm, 4.6×50 mm

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer

Flow rate : 1.0 mL/min

Column temp. : 50 °C

TFO 7e

HPLC

Column : Waters XBridge® MS $C_{18}\,2.5$ µm, 4.6×50 mm

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer

Flow rate : 1.0 mL/min

Column temp. : 50 °C

TFO 7f

HPLC

Column : Waters XBridge® MS $C_{18}\,2.5$ µm, 4.6×50 mm

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer

Flow rate : 1.0 mL/min

Column temp. : 50 °C

TFO 7g

HPLC

Column : Waters XBridge® MS $C_{18}\,2.5$ µm, 4.6×50 mm

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer

Flow rate : 1.0 mL/min

Column temp. : 50 °C

TFO 7h

HPLC

Column : Waters XBridge® MS $C_{18}\,2.5$ µm, 4.6×50 mm

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer

Flow rate : 1.0 mL/min

Column temp. : 50 °C

TFO 7i

HPLC

Column : Waters XBridge® MS $C_{18}\,2.5$ µm, 4.6×50 mm

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer

Flow rate : 1.0 mL/min

Column temp. : 50 °C

TFO 7j

HPLC

Column : Waters XBridge® MS $C_{18}\,2.5$ µm, 4.6×50 mm

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer

Flow rate : 1.0 mL/min

Column temp. : 50 °C

TFO 7k

HPLC

Column : Waters XBridge® MS $C_{18}\,2.5$ µm, 4.6×50 mm

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer

Flow rate : 1.0 mL/min

Column temp. : 50 °C

MALDI-TOF-Mass

