Thermodynamic epimeric equilibration and crystallisationinduced dynamic resolution of lobelanine, norlobelanine and related analogues

Z. Amara,^{*a*} G. Bernadat,^{*b*} P.-E. Venot,^{*a*} B. Retailleau,^{*c*} C. Troufflard,^{*d*} E. Drège,^{*a*} F. Le Bideau,^{**a*} and D. Joseph^{**a*}

^{*a*} Université Paris-Sud, UMR CNRS 8076 BioCIS, LabEx Lermit, Equipe de Chimie des Substances Naturelles, 5, rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry, France.

^b Université Paris-Sud, UMR CNRS 8076 BioCIS, LabEx Lermit, Molécules Fluorées et Chimie Médicinale, 5, rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry, France.

^c Institut de Chimie des Substances Naturelles, UPR CNRS 2301, Bât. 27, 1 avenue de la Terrasse, F-91198 Gifsur-Yvette.

^d Université Paris-Sud, UMR CNRS 8076 BioCIS, Service commun d'analyses, 5, rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry, France

page

Table of contents:

	1 0
¹ H NMR spectra of <i>cis-</i> 2 a	S4
¹ H NMR spectra of mixtures of <i>cis</i> -2a and <i>trans</i> -2a	S5
JMOD spectrum of a mixture of <i>cis</i> -2a and <i>trans</i> -2a	S 6
COSY spectrum of <i>cis</i> -2a	S 7
HMBC spectrum of <i>cis</i> -2a	S 8
HSQC spectrum of <i>cis-2a</i>	S9
NOESY spectrum of <i>cis-2a</i>	S10
¹ H NMR spectra of <i>cis</i> -9a and of a mixture of <i>cis</i> -9a and <i>trans</i> -9a	S11
¹³ C NMR spectrum of <i>cis</i> - 9a and ¹ H NMR spectrum of <i>cis</i> - 9b	S12
¹ H NMR spectrum of a mixture of <i>cis</i> - 9b and <i>trans</i> - 9b and ¹³ C NMR spectrum of <i>cis</i> - 9b	S13
¹ H NMR and ¹³ C NMR spectra of a mixture of <i>cis</i> -9c and <i>trans</i> -9c	S14
¹ H NMR spectra of <i>cis</i> -9d and of mixture of <i>cis</i> -9d and <i>trans</i> -9d	S15
¹³ C NMR spectrum of <i>cis</i> - 9d and ¹ H NMR spectrum of <i>cis</i> - 3a	S16
¹ H NMR spectra of mixtures of <i>cis</i> - 3a and <i>trans</i> - 3a	S17
¹³ C NMR spectrum of a mixture of <i>cis</i> - 3a and <i>trans</i> - 3a	S18

¹ H NMR and JMOD spectra of mixtures of <i>cis</i> -4b and <i>cis</i> -4b'	S19
COSY spectrum of a mixture of <i>cis</i> -4b and <i>cis</i> -4b'	S20
HMBC spectrum of a mixture of <i>cis</i> -4b and <i>cis</i> -4b'	S21
HSQC spectrum of a mixture of <i>cis</i> -4b and <i>cis</i> -4b'	S22
NOESY spectrum of a mixture of <i>cis</i> -4b and <i>cis</i> -4b'	S23
¹³ C NMR and ¹ H NMR spectra of <i>trans</i> -4b	S24
¹ H NMR spectra of mixtures <i>cis</i> - 2b and <i>trans</i> - 2b	S25
JMOD spectrum of <i>cis</i> - 2b and ¹³ C NMR spectrum of a mixture of <i>cis</i> - 2b and <i>trans</i> - 2b	S26
¹ H NMR spectrum of a mixture of <i>cis</i> - 3b and <i>trans</i> - 3b and JMOD spectrum of <i>cis</i> - 3b	S27
¹ H NMR spectra of a mixture of <i>cis</i> -10a and <i>trans</i> -10a and of <i>cis</i> -10a	S28
¹³ C NMR spectrum of <i>cis</i> -10a and ¹ H NMR spectrum of <i>cis</i> -10b	S29
¹ H NMR spectra of a mixture of <i>cis</i> -10b and <i>trans</i> -10b and ¹³ C NMR spectrum of <i>cis</i> -10b	S30
¹ H NMR spectra of mixture of <i>cis</i> -10c and <i>trans</i> -10c and of <i>cis</i> -10c	S31
¹³ C NMR spectrum of <i>cis</i> -10c and ¹ H NMR spectrum of a mixture of <i>cis</i> -10d and <i>trans</i> -10d	S32
¹³ C NMR spectrum of <i>cis</i> -10d	S33
¹ H NMR and ¹³ C NMR spectra of mixtures of <i>cis</i> -2c and <i>trans</i> -2c	S34
¹ H NMR and ¹³ C NMR spectra of mixtures of <i>cis</i> - 3c and <i>trans</i> - 3c	S35
¹ H NMR and ¹³ C NMR spectra of <i>cis</i> - 2d	S36
¹ H NMR and JMOD spectra of mixtures of 6d,d '	S37
COSY spectrum of <i>cis</i> -2d	S38
HMBC spectrum of <i>cis</i> -2d	S39
HSQC spectrum of <i>cis</i> -2d	S40
NOESY spectrum of <i>cis</i> -2d	S41
¹ H NMR and ¹³ C NMR spectra of cis- 3d	S42
¹ H NMR and ¹³ C NMR spectra of 8a	S43
¹ H NMR and ¹³ C NMR spectra of 8b	S44
¹ H NMR and ¹³ C NMR spectra of 8c	S45

¹ H NMR and ¹³ C NMR spectra of 8d	S46
Isomerization of <i>cis</i> -2b in <i>trans</i> -2b	S47
Isomerization of <i>trans</i> -2b in <i>cis</i> -2b	S48
Kinetic studies: progress curves:	S49
RMSD for superimposition of theoretical models with X-ray structures	S 51
Model coordinates for DFT calculations	S52
X-Ray crystal structure determination	S55
References	S57

Isomerization of *cis*-2b in *trans*-2b:

¹H NMR spectra (300 MHz) of A) C_6D_6 solution (0.085 M) of compound *cis*-**2b** containing 10% of *trans*-**2b**. B) same solution after 5 hours at room temperature and containing 42% of *trans*-**2b** C) same solution after 23 hours at room temperature and total equilibration, containing 55% of *trans*-**2b**.
Isomerization of *trans*-2b in *cis*-2b:

¹H NMR spectra (300 MHz) of A) C₆D₆ solution of compound *trans*-**2b** containing 11% of *cis*-**2b**. B) same solution after total equilibration containing 55% of *trans*-**2b**.

Kinetic studies: progress curves:

 \uparrow Rate of disappearence of *cis*-**2b** at various concentrations in C₆D₆.

 \uparrow Rate of disappearence of *cis*-**2b** at various concentrations in CDCl₃.

 \uparrow Rate of disappearence of *cis*-**2b** at various temperatures in C₆D₆.

↑ Rate of disappearence of *cis*-2b in various solvents.

RMSD for superimposition of theoretical models with X-ray structures:

Alignment based on heavy atoms and depiction of the result were performed with UCSF Chimera

[1,2].

Compound	Superimposition	RMSD (Å)
Cis-2a		0.264
Cis-2d		0.191
Cis-3a		0.288

Model coordinates for DFT calculations:

Compound *cis*-**2a** (E(RB3LYP) = -1019.29973521 Ha, Lowest Frequency: 14.0494 cm⁻¹, Sum of electronic and thermal Free Energies = -1018.954641 Ha):

С	1.23360	2.06179	-0.33164
С	1.25658	3.50020	0.20596
С	0.00000	4.26899	-0.21618
С	-1.25659	3.50021	0.20595
С	-1.23361	2.06180	-0.33166
N	-0.00001	1.38638	0.09882
С	2.44855	1.28287	0.18682
С	-2.44856	1.28288	0.18679
С	2.65512	-0.08248	-0.45909
0	1.87598	-0.50618	-1.30213
С	-2.65515	-0.08246	-0.45913
0	-1.87598	-0.50618	-1.30214
С	-3.84249	-0.90441	-0.04808
С	-4.02627	-2.15177	-0.66615
С	-5.10905	-2.95653	-0.32609
С	-6.02413	-2.52596	0.63942
С	-5.85028	-1.28860	1.26196
С	-4.76553	-0.48107	0.92040
С	3.84248	-0.90442	-0.04806
С	4.02627	-2.15177	-0.66614
С	5.10906	-2.95652	-0.32610
С	6.02416	-2.52594	0.63939
С	5.85030	-1.28859	1.26194
С	4.76554	-0.48107	0.92040
Н	1.30107	2.10758	-1.43529
Н	1.31325	3.46679	1.30329
Н	2.16013	4.01115	-0.15185
Н	0.00000	5.27599	0.21964
Н	0.00001	4.39778	-1.30832
Н	-1.31326	3.46679	1.30328
Н	-2.16013	4.01116	-0.15188
Н	-1.30106	2.10758	-1.43531
Н	-0.00001	0.46466	-0.33745
Н	3.36113	1.87574	0.03072
Н	2.34929	1.14889	1.27309
Н	-2.34931	1.14889	1.27306
Н	-3.36113	1.87576	0.03069
Н	-3.30218	-2.46521	-1.41108
Н	-5.24224	-3.91991	-0.81092
Н	-6.87018	-3.15404	0.90594
Н	-6.55906	-0.95207	2.01368
Н	-4.64265	0.47746	1.41460
Н	3.30217	-2.46522	-1.41106
Н	5.24226	-3.91989	-0.81095

Н	6.87022	-3.15401	0.90589
Н	6.55910	-0.95205	2.01364
Н	4.64265	0.47746	1.41461

Compound *cis*-2d (E(RB3LYP) = -1520.68535899 Ha, Lowest Frequency: 7.1884 cm⁻¹, Sum of

electronic and thermal Free Energies = -1520.161661 Ha):

С	-1.69598	-1.50375	-0.62007
С	-3.00320	-2.28414	-0.52855
0	-2.96437	-3.50395	-0.41889
С	-4.32428	-1.57445	-0.54568
С	-5.48653	-2.35105	-0.39760
С	-6.74223	-1.75391	-0.40636
С	-6.85647	-0.36819	-0.56166
С	-5.70963	0.41263	-0.70881
С	-4.44916	-0.18619	-0.70282
Н	-2.04985	-0.11144	0.96812
Н	-1.76590	-0.72614	-1.38932
H	-0.95536	-2.23314	-0.94580
H	-5.37290	-3.42351	-0.27846
H	-7.63417	-2.36412	-0.29169
Н	-7.83774	0.09946	-0.56757
Н	-5.78927	1.48966	-0.82612
H	-3.57159	0.43978	-0.82112
С	-1.26927	-0.83976	0.73689
С	-1.24260	-1.83989	1.90787
С	-0.00060	-2.73077	1.89593
С	1.24194	-1.84064	1.90784
С	1.26914	-0.84045	0.73692
N	0.00013	-0.07159	0.69642
С	1.69556	-1.50469	-0.62001
С	3.00292	-2.28488	-0.52863
0	2.96429	-3.50465	-0.41845
С	4.32390	-1.57502	-0.54654
С	5.48632	-2.35144	-0.39880
С	6.74194	-1.75414	-0.40825
С	6.85594	-0.36844	-0.56390
С	5.70893	0.41220	-0.71071
С	4.44855	-0.18679	-0.70406
H	-1.25261	-1.25954	2.84030
H	-2.15590	-2.44219	1.89517
H	-0.00078	-3.38963	2.77270
H	-0.00083	-3.38731	1.01743
Н	1.25238	-1.26038	2.84032
H	2.15486	-2.44351	1.89502
Н	2.05008	-0.11252	0.96818
Н	0.95495	-2.23427	-0.94534
Н	1.76521	-0.72731	-1.38952
Н	5.37288	-3.42389	-0.27934

H	7.63401	-2.36421	-0.29383
Н	7.83714	0.09933	-0.57033
Н	5.78839	1.48922	-0.82826
Н	3.57085	0.43906	-0.82208
С	0.00064	1.09638	-0.20187
Н	0.00143	0.78561	-1.26210
С	2.76869	3.24869	1.38430
Н	3.12469	3.51430	2.37624
С	1.70167	2.36232	1.24927
Н	1.23366	1.93619	2.13179
С	1.23116	1.99582	-0.02003
С	1.85231	2.54743	-1.14658
Н	1.49665	2.27910	-2.13920
С	2.91556	3.44508	-1.01499
Н	3.37902	3.86545	-1.90375
С	3.37854	3.79736	0.25263
Н	4.20567	4.49385	0.36025
С	-2.76879	3.25013	1.37987
Н	-3.12542	3.51695	2.37125
С	-1.70155	2.36377	1.24660
Н	-1.23394	1.93899	2.12998
С	-1.23020	1.99574	-0.02195
С	-1.85077	2.54582	-1.14957
Н	-1.49450	2.27626	-2.14164
С	-2.91424	3.44349	-1.01976
Н	-3.37722	3.86265	-1.90933
С	-3.37804	3.79728	0.24713
Н	-4.20531	4.49382	0.35337

Compound *cis*-**3a** (E(RB3LYP) = -979.980587405 Ha, Lowest Frequency: 9.0140 cm⁻¹, Sum of

electronic and thermal Free Energies = -979.665233 Ha):

2.21803	-0.51732	-1.36058
2.88974	0.02537	-0.49334
4.16577	-0.60762	-0.02032
4.97001	-0.04342	0.98154
6.14671	-0.67650	1.38157
6.53173	-1.87827	0.78456
5.73606	-2.44844	-0.21392
4.56174	-1.81771	-0.61222
2.45114	1.35149	0.12021
1.16849	1.91317	-0.49079
0.77607	3.30347	0.06241
-0.77621	3.30350	0.06229
-1.16860	1.91316	-0.49086
-2.45126	1.35150	0.12013
-2.88953	0.02509	-0.49303
-4.16570	-0.60778	-0.02025
	2.21803 2.88974 4.16577 4.97001 6.14671 6.53173 5.73606 4.56174 2.45114 1.16849 0.77607 -0.77621 -1.16860 -2.45126 -2.88953 -4.16570	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

С	-4.97046	-0.04311	0.98094
С	-6.14727	-0.67609	1.38078
С	-6.53191	-1.87823	0.78425
С	-5.73572	-2.44886	-0.21356
С	-4.56129	-1.81823	-0.61167
0	-2.21743	-0.51792	-1.35977
Ν	-0.00006	1.09132	-0.16262
Н	4.68117	0.88926	1.45558
Н	6.76226	-0.23211	2.15895
Н	7.44922	-2.37026	1.09672
Н	6.03389	-3.38427	-0.67909
Н	3.92756	-2.24155	-1.38397
Н	2.30239	1.21013	1.19993
Н	3.27068	2.07628	0.01002
Н	1.31371	1.99107	-1.58353
Н	1.15923	3.43002	1.08139
Н	1.20045	4.10877	-0.54579
Н	-1.15953	3.43018	1.08118
Н	-1.20045	4.10875	-0.54607
Н	-1.31378	1.99099	-1.58361
Н	-2.30266	1.21054	1.19992
Н	-3.27091	2.07612	0.00955
Н	-4.68193	0.88986	1.45460
Н	-6.76322	-0.23133	2.15764
Н	-7.44949	-2.37013	1.09626
Н	-6.03325	-3.38497	-0.67836
Н	-3.92671	-2.24242	-1.38290
Н	-0.00003	0.23286	-0.70968

X-Ray crystal structure determination:

Crystals were grown by recrystallization (*cis*-2a) in toluene, (*cis*-2d) in C_6D_6 and (*cis*-3a) in ethyl acetate.

Crystals were mounted on a nylon loop with some Paratone® oil. Regarding *cis*-**2a**, X-ray crystallographic data were collected at a low temperature (193(2) K) on a Rigaku diffractometer constituted by a MM007 HF copper rotating-anode generator, equipped with Osmic confocal optics, and a Rapid II curved Image Plate using filtered Cu-K α radiation ($\lambda = 1.54187$ Å). A total of 72 oscillation images were collected, from four sweeps of data using ω oscillations in 5.0° steps. The exposure rate was 120.0 sec per °. Regarding the two other structures, a full hemisphere of data completed by three ω scans for a total of 109° *wrt cis*-**2d** (one for a total of 97.3° *wrt cis*-**3a**) were collected at room temperature with 37.5s frames (120s frames) on a Enraf-Nonius Kappa diffractometer fitted with a CCD based detector using MoK α radiation (0.71073 Å). Data reduction

and scaling were carried out using $Fs_Process^3$ wrt cis-2a or Scalepack⁴ wrt the two other structures. The space group assignment, for each case was based upon systematic absences, *E*-statistics, agreement factors for equivalent reflections, and successful refinement of the structure. The structures were solved by direct methods (*SHELXS-97*),⁵ completed by subsequent Fourier syntheses and refined with full-matrix least-squares methods against $|F|^2|$ data (*SHELXL-2012*).⁵ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were treated as idealized contributions except for those borne by a nitrogen atom with *Uiso* = 1.2*Ueq*(N) and N–H = 0.87(1) Å wrt cis-3a.

Crystal structure data for *cis*-**2a**: C₂₁H₂₃NO₂, M = 321.40, monoclinic, a = 6.377 (1), b = 10.614 (1), c = 26.405 (2) Å, β = 103.339(6) °, V = 1739.1 (2) Å³, T = 193(2) K, space group P21/c, Z = 4, D_c = 1.228 gcm⁻³, μ (Cu-K α) = 0.617 mm⁻¹, F(000)= 688, λ = 1.54187 Å, 2 θ_{max} = 136.5 ° (d_{min} = 0.83Å), - 5 ≤ h ≤ 7, -8 ≤ k ≤ 12, -31 ≤ 1 ≤ 31, 8145 measured reflections, 3103 independent, R(int)= 0.040, 221 parameters were refined against 3103 reflections, R1 = 0.0512 for 1792 F_o > 4\sigma F_o and 0.1039 for all data, wR2 = 0.1894, $\Delta \rho_{max}$ = -0.292 and 0.255 e.Å⁻³, GOF = 1.131.

Crystal structure data for *cis*-**2d**: $C_{34}H_{33}NO_2$, M = 487.61, monoclinic, a = 23.678(6), b = 14.550(2), c = 19.515(4) Å, β = 126.678(5) °, V = 5392.0(19) Å³, T = 293(2) K, space group C2/c, Z = 8, D_c = 1.201 gcm⁻³, μ (Mo-K α) = 0.074 mm⁻¹, F(000) = 2080, λ = 0.71073 Å, $2\theta_{max}$ = 41.5 °(d_{min} = 1.00 Å), - 23 ≤ h ≤ 23, -14 ≤ k ≤ 14, -19 ≤ 1 ≤ 19, 29604 measured reflections, 2782 independent, R(int)= 0.044, 335 parameters were refined against 2776 reflections, R1 = 0.0486 for 2048 F_o > 4 σ F_o and 0.0705 for all data, wR2 = 0.1384, $\Delta \rho_{min}$ and $\Delta \rho_{max}$ = -0.140 and 0.134 e.Å⁻³, GOF = 1.045. Crystal structure data for *cis*-**3a**: C₂₀H₂₁NO₂, M = 307.38, monoclinic, a = 5.421(2), b = 11.015(3), c = 28.258(6) Å, β = 100.740(4) °, V = 1657.8(8) Å³, T = 293(2) K, space group P21/c, Z = 4, D_c = 1.232 gcm⁻³, μ (Mo-K α) = 0.079 mm⁻¹, F(000) = 656, λ = 0.71073 Å, $2\theta_{max}$ = 52.7 °(d_{min} = 0.80 Å), -6 ≤ h ≤ 6, -12 ≤ k ≤ 13, -35 ≤ 1 ≤ 35, 9647 measured reflections, 3336 independent, R(int)= 0.031, 211 parameters were refined against 3332 reflections, R1 = 0.0466 for 2141 F_o > 4 σ F_o and 0.0832 for all data, wR2 = 0.1301, $\Delta \rho_{min}$ and $\Delta \rho_{max}$ = -0.179 and 0.120 e.Å⁻³, GOF = 1.035.

CCDC- 964826 *cis*-**2a**, 964827 *cis*-**2d** and 964828 *cis*-**3a** contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via http://www.ccdc.cam.ac.uk/data_request/cif.

References:

[1] Chimera is developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from the National Institutes of Health (National Center for Research Resources grant 2P41RR001081, National Institute of General Medical Sciences grant 9P41GM103311).

[2] E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, *J. Comput. Chem.* 2004, **25**, 1605–1612.

[3] Rigaku. (2009) CrystalClear-SM Expert 2.0 r4 Rigaku Corporation, Tokyo, Japan.

[4] Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Volume 276, Macromolecular Crystallography, part A, edited by C.W. Carter, Jr. & R.M. Sweet, 307-326, 1997, New York: Academic Press.

[5] G.M. Sheldrick, Acta Cryst., 2008, A64, 112-122.