Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Supporting Information

X-Ray diffraction analysis data of 1a

Colorless prismatic crystals from chloroform-hexane, trigonal space group $P3_1$, a = 13.4187(3) Å, b = 13.4187(3) Å, c = 28.8186(6) Å, $\gamma = 120.0$ °, V = 4493.9(2) Å³, Z = 12, $\rho = 1.301$ g/cm³, $\mu = 0.724$ mm⁻¹. The structure was solved by the direct method of full matrix least-squares, where the final *R* and *wR* were 0.1240 and 0.3327 for 9005 reflections. CCDC 1010749.

Figure S1. Perspective view of 1a.

X-Ray diffraction analysis data of 1b

Colorless prismatic crystals from chloroform-hexane, triclinic space group *P*1, a = 5.9167(9) Å, b = 10.9747(17) Å, c = 12.2265(18) Å, $\alpha = 64.4240(19)$ °, $\beta = 82.5940(19)$ °, $\gamma = 89.9950(19)$ °, V = 708.78(19) Å³, Z = 2, $\rho = 1.28$ g/cm³, $\mu = 0.088$ mm⁻¹. The structure was solved by the direct method of full matrix least-squares, where the final *R* and *wR* were 0.0398 and 0.1003 for 9005 reflections. CCDC 1010750.

Figure S2. Perspective view of 1b.

X-Ray diffraction analysis data of photodimer 2a

Colorless prismatic crystals from chloroform-hexane, monoclinic space group $P2_12_12_1$, a = 12.2096(9) Å, b = 13.7443(10) Å, c = 18.0044(14) Å, V = 3021.4(4) Å³, Z = 4, $\rho = 1.290$ g/cm³, $\mu = 0.088$ mm⁻¹. The structure was solved by the direct method of full matrix least-squares, where the final *R* and *wR* were 0.0469 and 0.1150 for 5358 reflections. CCDC 1010751.

Figure S3. Perspective view of 2a.

X-Ray diffraction analysis data of photodimer 2'a

Colorless prismatic crystals from chloroform-hexane, monoclinic space group $P2_12_12_1$, a = 9.7337(10) Å, b = 13.9495(14) Å, c = 22.104(2) Å, V = 3001.3(5) Å³, Z = 4, $\rho = 1.298$ g/cm³, $\mu = 0.088$ mm⁻¹. The structure was solved by the direct method of full matrix least-squares, where the final *R* and *wR* were 0.0424 and 0.0944 for 5287 reflections. CCDC 1010752.

Figure S4. Perspective view of 2'a.

X-Ray diffraction analysis data of photodimer 2b

Colorless prismatic crystals from chloroform-hexane, monoclinic space group $P2_12_12_1$, a = 7.704(18) Å, b = 14.23(3) Å, c = 26.50(6) Å, V = 2906(11) Å³, Z = 4, $\rho = 1.249$ g/cm³, $\mu = 0.086$ mm⁻¹. The structure was solved by the direct method of full matrix least-squares, where the final *R* and *wR* were 0.0629 and 0.1531 for 5433 reflections. CCDC 1010753. The absolute configuration could be determined on the basis of the configuration of (*R*)-1-(*t*-butyl)ethylamine.

Figure S5. Perspective view of 2b.

X-Ray diffraction analysis data of photodimer $\mathbf{2c}$

Colorless prismatic crystals, monoclinic space group $P2_12_12_1$, a = 8.021(3) Å, b = 15.273(5) Å, c = 21.484(7) Å, V = 2631.9(15) Å³, Z = 4, $\rho = 1.389$ g/cm³, $\mu = 0.107$ mm⁻¹. The structure was solved by the direct method of full matrix least-squares, where the final *R* and *wR* were 0.0535 and 0.0896 for 5909 reflections. CCDC 1010754. The absolute configuration could be determined on the basis of the configuration of (*S*)-alanine function.

Figure S6. Perspective view of 2c.

X-Ray diffraction analysis data of photodimer 2'c

This crystal included each one molecule of acetone and *N*-methylbenzamide. Colorless prismatic crystals, monoclinic space group $P6_5$, a = 12.380(5) Å, b = 12.380(5) Å, c = 42.393(17) Å, $\gamma = 120.00$ °, V = 5627(4) Å³, Z = 6, $\rho = 1.317$ g/cm³, $\mu = 0.098$ mm⁻¹. The structure was solved by the direct method of full matrix least-squares, where the final *R* and *wR* were 0.0631 and 0.1416 for 6805 reflections. CCDC 1010755.

Figure S7. Perspective view of 2'c.

Conformational calculation using Gaussian 09 program.

Total energy and dipole moment for two conformations, **1-A** and **1-B**, were estimated by DFT calculation using RB3LYP 6-31G in Gaussian 09W. (Scheme S1, Table S1 and S2).

Scheme S1. Conformational change of 1.

compds	Ground state	ΔH_B - ΔH_A	Dipole moment
	conformation	$(\text{kcal mol}^{-1})^a$	(Deby)
1a	A (more stable)	5 79	6.75
1a	B (less stable)	5.78	2.21
1b	A (more stable)	5 00	6.88
1b	B (less stable)	5.98	2.16
1c	A (more stable)	5 80	7.01
1c	B (less stable)	5.80	3.15

Table S1. Conformational analysis and the dipole moment of ground state of 1a-c

^{*a*}Differences in total energy between stable conformation A and less stable conformation B in the ground state obtained from DFT (RB3LYP 6-31G) calculation in Gaussian 09W. ^{*b*}Dipole moment obtained from DFT (RB3LYP 6-31G) calculation in Gaussian 09W.

Table S2. Conformational analysis and the dipole moment of triplet excited state of 1a-c							
compds	Triplet excited state	ΔH_B - ΔH_A	Dipole moment				
	conformation	$(\text{kcal mol}^{-1})^a$	(Deby)				
1a	A (more stable)	7.37	5.93				
1a	B (less stable)		1.80				
1b	A (more stable)	7.76	5.94				
1b	B (less stable)		1.33				
1c	A (more stable)	7.14	5.61				
1c	B (less stable)		0.61				

^{*a*}Differences in total energy between stable conformation A and less stable conformation B in the ground state obtained from DFT (RB3LYP 6-31G) calculation in Gaussian 09W. ^{*b*}Dipole moment obtained from DFT (RB3LYP 6-31G) calculation in Gaussian 09W.

Figure S8. ¹H NMR spectrum of 1a

Figure S9. ¹³C NMR spectrum of 1a

Figure S10. ¹H NMR spectrum of 1b

Figure S11. ¹³C NMR spectrum of 1b

Figure S12. ¹H NMR spectrum of 1c

Figure S13. ¹³C NMR spectrum of 1c

Figure S14. ¹H NMR spectrum of 2a

Figure S15. ¹³C NMR spectrum of 2a

Figure S16. anti-HH dimer 2'a

Figure S17. anti-HH dimer 2'a

Figure S18. ¹H NMR spectrum of 2b

-

Figure S19. ¹³C NMR spectrum of 2b

.

11454542E

Figure S22. ¹H NMR spectrum of 2c

Figure S23. ¹³C NMR spectrum of 2c

THE REPORT

CRETTWORK MP

Note Call

Figure S24. ¹H NMR spectrum of 2'c

Т

Figure S25. ¹³C NMR spectrum of 2'c

