Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Supporting Information

A metal-free one-pot cascade synthesis of highly functionalized biaryl-2-carbaldehydes†

Chandrasekhar Challa,^{a,b} Jamsheena Vellekkatt,^{a,b} Jaice Ravindran^b and Ravi S. Lankalapalli^{*,a,b}

^aAcademy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.

^bAgroprocessing and Natural Products Division, CSIR-National Institute for Interdisciplinary

Science and Technology, Thiruvananthapuram-695019, Kerala, India.

E-mail: <u>ravishankar@niist.res.in</u>

Table of Contents

General experimental methods	S2
General procedure for synthesis of cinnamaldehydes	S2
Procedure for synthesis of biaryl 4	S2-S3
Optimization of reaction conditions	S3
Synthesis and characterization of 8-12	S4-S7
Spectral data of Trienamine A & A', Biaryl B', 4-6 & 7a-7r	S7-S13
Structural evidence for Trienamine A & A'	S14-S20
¹ H and ¹³ C NMR Copies of Trienamine A & A', Biaryl B', 4-6, 7a-7r & 8-12	S21-S78
HMBC Spectra of 4, 6, 7a, 7e, 7g, 7l, 7m & 7q	S79-S86

General experimental methods:

All the solvents were used without distillation and all biaryl syntheses were carried out at room temperature under inert-free aerobic atmosphere. Silica gel G-60 F_{254} aluminum TLC plates were used to monitor the reactions with short wavelength ultraviolet light to visualize the spots. Flash column chromatography was performed on silica gel 230-400 mesh. ¹H and ¹³C NMR spectra were recorded at 500 and 125 MHz, respectively. Chemical shifts are given in ppm using solvent residual peak of chloroform δ 7.26 ppm as reference, and coupling constants in Hz. ESI- HRMS analysis was recorded using electrospray ionization with ions given in m/z.

General procedure for synthesis of cinnamaldehydes: Cinnamaldehydes were synthesized by following a known procedure employing Wittig reaction.¹ To a 50 mL round bottom flask equipped with a magnetic bar were added toluene (10 mL), pertinent aromatic aldehyde (1.5 mmol), (triphenylphosphoranylidene)acetaldehyde (Wittig reagent) (500 mg, 1 mmol) and the resulting mixture was stirred at 85 °C for overnight. After complete consumption of the Wittig reagent as indicated on TLC, the reaction mixture was concentrated and subjected to flash column chromatography. The product was eluted with DCM/hexane solvent system to afford the desired cinnamaldehyde.

Procedure for synthesis of biaryl 4: To a solution of dienaminodiester **1** (31 mg, 1 eq) in CHCl₃/MeCN (1:1) were added cinnamaldehyde (46.20 μ L, 3 eq), allyl amine (27.5 μ L, 3 eq) and TFA (28.0 μ L, 3 eq) in a sequential manner at room temperature. After immediate addition of TFA, the reaction mixture appears intense red in color indicating the formation of trienamine. After complete consumption of compound **1** as visualized on TLC, the reaction mixture was quenched with saturated aqueous NaHCO₃ (10 mL) and extracted with DCM (1 x 10 mL). The organic layer was dried over anhydrous MgSO₄, concentrated and the crude mixture was subjected to flash column chromatography by eluting with DCM/hexane solvent system to afford

the desired biaryl **4** (24 mg, 60%). This general procedure was followed for the synthesis of the remaining biaryls.

Optimization of reaction conditions:

S.No	Ratio ^a	Solvent ^b	R ₁	Yield ^c
	TFA:2':3"			
1	1:1:1	MeCN/DCM (1:2)	Н	29%
2	3:2:2	МеОН	Н	27%
3	3:2:2	THF	Н	26%
4	3:2:2	toluene	Н	32%
5	3:2:2	MeCN/toluene (1:1)	Н	44%
6	3:3:3	DMF	Н	25%
7	3:3:3	DMSO	OMe	trace
8	3:3:3	DME	OMe	nd
9	3:3:3	DMA	OMe	nd
10	3:3:3	MeCN/MeOH(1:1)	OMe	38%
11	2:1.5:2	MeCN/DCM (1:2)	Н	31%
12	3:1.5:3	MeCN/DCM (1:2)	Н	46%
13	3:1.5:3	MeCN/DCM (1:3)	Н	43%
14	2:1.2:1.4	MeCN/DCM (1:1)	Н	31%

^{*a*}equivalents of TFA, **2'** and **3''** respectively, ^{*b*}undistilled solvents, ^{*c*}isolated yields,

DMA = dimethylacetamide, DME = dimethoxyethane, nd = not detected

Diethyl-2-nitro-6-oxo-6H-benzo[c]chromene-8,10-dicarboxylate (8): To a solution of benzopyrone **70** (14 mg, 1 eq) in DCM (1.5 mL) was added Dess-Martin periodinane (46 mg, 3 eq) at room temperature. After complete consumption of **70** as indicated on TLC, the reaction mixture was quenched with saturated aqueous NaHCO₃ (6 mL) and extracted with DCM (10 mL \times 2). The organic layer was dried over anhydrous Na₂SO₄, concentrated and purified by flash column chromatography (DCM/hexane 1:1) to afford the desired dibenzopyranone **8** (14 mg) in a quantitative yield: ¹H NMR (500 MHz, CDCl₃) δ 1.46 (m, 6H), 4.49 (q, 2H, *J* = 7.0), 4.63 (q, 2H, *J* = 7.0), 7.56 (d, 1H, *J* = 9.0), 8.42 (dd, 1H, *J* = 9.0, 2.0), 8.61 (s, 1H), 8.83 (d, 1H, *J* = 2.0), 9.17 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.9, 14.1, 62.3, 63.4, 116.6, 119.3, 119.8, 122.8, 123.2, 126.6, 131.3, 131.9, 133.8, 136.0, 143.9, 155.3, 158.5, 163.8, 168.2; ESI-HRMS [M+MeOH+Na]⁺ C₂₀H₁₉NO₉Na calcd for m/z 440.0957, found 440.0962.

Diethyl-4-(4,6-bis(ethoxycarbonyl)biphenyl-2-yl)-1-p-tolyl-1,4-dihydropyridine-3,5dicarboxylate (9): To a solution of biaryl-2-carbaldehyde 4 (24 mg, 1 eq) in MeCN (1.5 mL) were added ethyl 3-(allylamino)acrylate (23 mg, 2 eq), *p*-toluidine (8 mg, 1 eq) and TFA (5.68 μ L, 1 eq) in a sequential manner at room temperature. After complete consumption of biaryl **4** as indicated on TLC, the reaction mixture was quenched with saturated aqueous NaHCO₃ (5 mL) and extracted with EtOAc (10 mL × 2). The organic layer was dried over anhydrous Na₂SO₄, concentrated and purified by flash column chromatography (hexane/DCM 2:1) to produce the desired 1,4-DHP **9** (19 mg, 42%): ¹H NMR (500 MHz, CDCl₃) δ 0.89 (t, 3H, *J* = 7.0), 1.15 (t, 6H, *J* = 7.0), 1.39 (t, 3H, *J* = 7.0), 2.38 (s, 3H), 3.89 (q, 2H, *J* = 7.0), 4.05 (m, 4H), 4.39 (q, 2H, *J* = 7.0), 5.24 (s, 1H), 7.03 (d, 2H, *J* = 8.5), 7.22 (d, 2H, *J* = 8.5), 7.29 (s, 1H), 7.32 (t, 2H, *J* = 7.5), 7.36 (s, 2H), 7.45 (d, 2H, *J* = 7.5), 8.19 (s, 1H), 8.32 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.6, 14.2, 14.3, 20.8, 29.6, 60.1, 61.0, 61.1, 110.2, 120.7, 126.8, 127.2, 128.1, 129.0, 130.1, 130.3, 134.9, 136.2, 136.9, 138.2, 140.4, 144.7, 165.8, 166.6, 168.8; ESI-HRMS $[M+Na]^+$ C₃₆H₃₇NO₈Na calcd for m/z 634.2416, found 634.2425.

Diethyl-2-(4,6-bis(ethoxycarbonyl)biphenyl-2-yl)-1-p-tolyl-1,2-dihydropyridine-3,5-

dicarboxylate (10): To a solution of biaryl-2-carbaldehyde **4** (24.3 mg, 1.2 eq) in MeCN (2 mL) were added dienaminodiester **1** (15.7 mg, 1 eq), *p*-toluidine (8 mg, 1.2 eq) and TFA (5 μ L, 1 eq) in a sequential order at room temperature under aerobic atmosphere. After complete consumption of dienaminodiester **1** as observed on TLC, the reaction mixture was quenched with saturated aqueous NaHCO₃ (8 mL) and extracted with EtOAc (15 mL × 2). The organic layer was dried over anhydrous Na₂SO₄, concentrated, and the crude mixture was subjected to flash column chromatography (hexane/DCM/EtOAc 4:2:0.2) to afford the desired 1,2-DHP **10** (19 mg, 50%): ¹H NMR (500 MHz, CDCl₃) δ 0.77 (t, 3H, *J* = 7.0), 1.31 (m, 6H), 1.39 (t, 3H, *J* = 7.0), 2.31 (s, 3H), 3.80 (m, 2H), 4.20 (m, 4H), 4.40 (q, 2H, *J* = 7.0), 5.76 (d, 1H, *J* = 7.5), 6.25 (s, 1H), 6.47 (d, 2H, *J* = 8.0), 6.80 (t, 1H, *J* = 7.5), 7.98 (s, 1H), 8.27 (d, 1H, *J* = 1.5), 8.61 (d, 1H, *J* = 1.5); ¹³C NMR (125 MHz, CDCl₃) δ 13.4, 13.6, 14.3, 14.5, 22.6, 58.2, 59.8, 60.3, 61.0, 61.1, 115.4, 125.1, 126.9, 127.1, 127.2, 128.9, 129.5, 130.0, 130.1, 130.2, 130.7, 133.7, 133.8, 136.9, 137.3, 140.1, 141.3, 143.3, 165.4, 165.5, 165.7, 168.4; ESI-HRMS [M+Na]⁺ C₃₆H₃₇NO₈Na calcd for m/z 634.2416, found 634.2421.

Diethyl-9-phenyl-9H-fluorene-2,4-dicarboxylate (11): To a solution of biaryl-2carbaldehyde 4 (11 mg, 1 eq) in THF (1 mL) was added phenylmagnesium bromide (3M in ether, 56.2 μ L, 5 eq) at 0 °C under argon atmosphere. The reaction was allowed to attain room temperature slowly and after complete consumption of biaryl 4 as indicated on TLC, the reaction mixture was quenched with water (15 mL), 1M HCl (5 mL), and then extracted with EtOAc (10 mL × 2). The solvent was evaporated and the crude residue was directly treated with catalytic amount of *p*-TsOH in toluene (1.5 mL) under reflux conditions. After complete consumption of starting material as indicated on TLC, the reaction mixture was quenched with saturated aqueous NaHCO₃ (5 mL) and extracted with EtOAc (10 mL × 2). The organic layer was dried over anhydrous Na₂SO₄, concentrated and purified by flash column chromatography (hexane/DCM 4:1.5) to afford the desired fluorene **11** (13.6 mg) in a quantitative yield: ¹H NMR (500 MHz, CDCl₃) δ 1.37 (t, 3H, *J* = 7.0), 1.49 (t, 3H, *J* = 7.0), 4.30 (m, 2H), 4.55 (q, 2H, *J* = 7.0), 5.06 (s, 1H), 7.06 (d, 2H, *J* = 6.5), 7.25 (m, 3H), 7.31 (m, 2H), 7.40 (m, 1H), 8.04 (s, 1H), 8.42 (d, 1H, *J* = 7.5), 8.46 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 14.3, 54.1, 61.3, 61.6, 125.2, 125.5, 126.8, 127.2, 127.5, 128.4, 128.6, 128.9, 129.1, 130.7, 138.4, 140.3, 144.1, 149.8, 149.9, 165.9, 167.7; ESI-HRMS [M+1]⁺ C₂₅H₂₃O₄ calcd for m/z 387.1596, found 387.1587.

Diethyl-6-(di(1H-indol-3-yl)methyl)biphenyl-2,4-dicarboxylate (12): Catalytic amount of *p*-TsOH was added to a stirred solution of biaryl-2-carbaldehyde **4** (23.1 mg, 1 eq) and indole (16.5 mg, 2 eq) in ethanol (3 mL). The reaction mixture was kept at reflux temperature and stirred overnight. After complete consumption of biaryl **4** as indicated on TLC, the reaction mixture was quenched with saturated aqueous NaHCO₃ (2 x 5 mL) and extracted with EtOAc (10 mL × 2). The organic layer was dried over anhydrous Na₂SO₄, concentrated, and the crude mixture was subjected to flash column chromatography (hexane/DCM/EtOAc 4:2:1) to afford the desired BIM **12** (30.0 mg, 79%): ¹H NMR (500 MHz, CDCl₃) δ 0.91 (t, 3H, *J* = 7.0), 1.36 (t, 3H, *J* = 7.0), 4.00 (q, 2H, *J* = 7.0), 4.36 (q, 2H, *J* = 7.0), 5.68 (s, 1H), 6.35 (s, 2H), 6.93 (t, 2H, *J* = 7.0), 7.06 (d, 2H, *J* = 8.0), 7.13 (m, 4H), 7.24 (m, 5H), 8.00 (s, 2H), 8.16 (d, 1H, *J* = 1.5), 8.31 (d, 1H, *J* = 1.5); ¹³C NMR (125 MHz, CDCl₃) δ 13.6, 14.2, 36.3, 61.1, 61.5, 111.1, 118.9, 119.5,

121.7, 124.2, 126.5, 127.5, 127.8, 128.1, 128.5, 129.2, 132.6, 133.3, 136.7, 138.6, 144.0, 145.1, 166.5, 168.4; ESI-HRMS [M+Na]⁺ C₃₅H₃₀O₄N₂Na calcd for m/z 565.2103, found 565.2104.

Spectral data of Trienamine A & A', Biaryl B', 4-6 & 7a-7r

Diethyl 2-(4-nitrostyryl)-1-*p*-tolyl-1,2-dihyropyridine-3,5-dicarboxylate (Trienamine A):

¹H NMR (CDCl₃) δ 1.25 (t, 3H, *J* = 7.0), 1.37 (t, 3H, *J* = 7.0), 2.28 (s, 3H), 4.16 (m, 2H), 4.30 (q, 2H, *J* = 7.0), 5.11 (s, 1H), 6.55 (d, 1H, *J* = 13.5), 6.74 (d, 2H, *J* = 8.0), 7.08 (d, 2H, *J* = 8.0), 7.23 (d, 1H, *J* = 13.5), 7.57 (s, 1H), 7.61 (d, 2H, *J* = 8.5), 7.72 (s, 1H), 8.14 (d, 2H, *J* = 8.5); ¹³C NMR (CDCl₃) δ 13.8, 14.2, 14.3, 14.4, 20.6, 21.0, 29.6, 40.7, 60.5, 60.6, 61.6, 61.8, 112.9, 114.9, 115.7, 120.8, 123.3, 123.6, 124.1, 128.5, 129.8, 130.2, 130.3, 132.5, 132.9, 133.5, 135.7, 136.9, 139.5, 143.3, 147.0, 150.3, 155.0, 165.7, 166.4; ESI-HRMS [M+Na]⁺ C₂₆H₂₆N₂O₆Na calcd for m/z 485.1688, found 485.1698.

Dimethyl 6-(4-nitrophenyl)-5-((prop-2-ynylamino)methylene)cyclohexa-1,3-diene-1,3dicarboxylate (Trienamine A'):

¹H NMR (CDCl₃) δ 2.35 (app t, 1H), 3.67 (s, 3H), 3.81 (s, 3H), 3.90 (m, 2H), 4.78 (m, 1H), 4.93 (s, 1H), 6.82 (d, 1H, *J* = 13.5), 7.50 (s, 1H), 7.52 (d, 2H, *J* = 9.0), 7.68 (s, 1H), 8.09 (d, 2H, *J* = 8.5); ¹³C NMR (CDCl₃) δ 37.5, 40.5, 51.6, 74.1, 77.9, 111.2, 113.2, 122.6, 123.9, 128.5, 132.8, 144.2, 146.9, 147.2, 150.3, 166.2, 166.9.

Dimethyl 6-formyl-4'-nitrobiphenyl-2,4-dicarboxylate (Biaryl B'):

¹H NMR (CDCl₃) δ 3.71 (s, 3H), 4.02 (s, 3H), 7.47 (d, 2H, *J* = 8.5), 8.34 (d, 2H, *J* = 8.5), 8.80 (d, 1H, *J* = 1.5), 8.84 (d, 1H, *J* = 1.5), 9.71 (s, 1H); ¹³C NMR (CDCl₃) δ 52.6, 52.9, 123.2, 123.3, 130.1, 131.2, 132.0, 132.2, 135.0, 135.8, 142.4, 146.7, 147.9, 164.8, 165.5, 189.1.

Diethyl 6-formyl-biphenyl-2,4-dicarboxylate (4): Yield: 24.0 mg (60%)

¹H NMR (500 MHz, CDCl₃) δ 0.98 (t, 3H, *J* = 7.0), 1.44 (t, 3H, *J* = 7.0), 4.07 (q, 2H, *J* = 7.0), 4.45 (q, 2H, *J* = 7.0), 7.28 (m, 2H), 7.46 (m, 3H), 8.68 (d, 1H, *J* = 2.0), 8.74 (d, 1H, *J* = 1.5), 9.77 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.6, 14.3, 61.5, 61.7, 128.1, 128.5, 129.3, 130.4, 130.9, 133.8, 134.9, 135.0, 135.2, 148.6, 164.8, 166.7, 190.8. ESI-HRMS [M+MeOH+Na]⁺ C₂₀H₂₂O₆Na calcd for m/z 381.1314, found 381.1318.

Diethyl 6-formyl-4'-methoxybiphenyl-2,4-dicarboxylate (5): Yield: 32.8 mg (55%)

¹H NMR (500 MHz, CDCl₃) δ 1.06 (t, 3H, *J* = 7.0), 1.43 (t, 3H, *J* = 7.0), 3.87 (s, 3H), 4.12 (q, 2H, *J* = 7.0), 4.44 (q, 2H, *J* = 7.0), 6.98 (d, 2H, *J* = 8.5), 7.19 (d, 2H, *J* = 9.0), 8.63 (d, 1H, *J* = 1.5), 8.71 (d, 1H, *J* = 2.0), 9.80 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.8, 14.3, 55.3, 61.5, 61.7, 113.6, 127.1, 130.1, 130.7, 130.8, 134.1, 134.7, 135.3, 148.3, 159.9, 164.8, 166.9, 191.0. ESI-HRMS [M+MeOH+Na]⁺ C₂₁H₂₄O₇Na calcd for m/z 411.1419, found 411.1422.

Diethyl 6-formyl-4'-nitrobiphenyl-2,4-dicarboxylate (6): Yield: 25.0 mg (50%)

¹H NMR (500 MHz, CDCl₃) δ 1.11 (t, 3H, *J* = 7.0), 1.46 (t, 3H, *J* = 7.0), 4.14 (q, 2H, *J* = 7.0), 4.47 (q, 2H, *J* = 7.0), 7.48 (d, 2H, *J* = 8.5), 8.34 (d, 2H, *J* = 8.5), 8.78 (s, 1H), 8.81 (s, 1H), 9.72 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.8, 14.2, 61.9, 62.0, 123.3, 130.2, 131.6, 132.0, 132.6, 134.9, 135.7, 142.6, 146.2, 147.8, 164.4, 165.3, 189.3. ESI-HRMS [M+MeOH+Na]⁺ C₂₀H₂₁NO₈Na calcd for m/z 426.1164, found 426.1171.

Diethyl 6-formyl-4'-methylbiphenyl-2,4-dicarboxylate (7a): Yield: 40.0 mg (60%)

¹H NMR (500 MHz, CDCl₃) δ 1.03 (t, 3H, *J* = 7.0), 1.43 (t, 3H, *J* = 7.0), 2.43 (s, 3H), 4.10 (q, 2H, *J* = 7.0), 4.44 (m, 2H), 7.16 (d, 2H, *J* = 8.0), 7.27 (bs, 2H), 8.65 (d, 1H, *J* = 2.0), 8.72 (d, 1H, *J* = 1.5), 9.78 (s,1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.6, 14.3, 21.2, 29.6, 61.5, 61.7, 128.8,

129.3, 130.2, 130.8, 132.0, 133.9, 134.7, 135.1, 138.5, 148.8, 164.8, 166.7, 190.9. ESI-HRMS [M+MeOH+Na]⁺ C₂₁H₂₄O₆Na calcd for m/z 395.1470, found 395.1471.

Diethyl 6-formyl-4'-chlorobiphenyl-2,4-dicarboxylate (7b): Yield: 29 mg (63%)

¹H NMR (500 MHz, CDCl₃) δ 1.07 (t, 3H, *J* = 7.0), 1.44 (t, 3H, *J* = 7.0), 4.12 (q, 2H, *J* = 7.0), 4.46 (q, 2H, *J* = 7.0), 7.24 (d, 2H, *J* = 8.5), 7.46 (d, 2H, *J* = 8.5), 8.70 (d, 1H, *J* = 1.5), 8.74 (d, 1H, *J* = 2.0), 9.76 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.7, 14.3, 61.7, 61.8, 128.4, 130.6, 130.8, 131.2, 133.5, 133.7, 134.8, 135.1, 135.2, 147.3, 164.6, 166.2, 190.2. ESI-HRMS [M+MeOH+Na]⁺ C₂₀H₂₁ClO₆Na calcd for m/z 415.0924, found 415.0929.

Diethyl 6-formyl-4'-bromobiphenyl-2,4-dicarboxylate (7c): Yield: 88.5 mg (84%)

¹H NMR (500 MHz, CDCl₃) δ 1.07 (t, 3H, *J* = 7.0), 1.44 (t, 3H, *J* = 7.0), 4.11 (q, 2H, *J* = 7.0), 4.46 (q, 2H, *J* = 7.0), 7.16 (d, 2H, *J* = 8.5), 7.60 (d, 2H, *J* = 8.5), 8.71 (s, 1H), 8.74 (d, 1H, *J* = 2.0), 9.76 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.7, 14.3, 61.7, 61.8, 123.0, 130.8, 130.9, 131.2, 131.3, 133.4, 134.2, 135.0, 135.2, 147.3, 164.6, 166.2, 190.2. ESI-HRMS [M+MeOH+Na]⁺ C₂₀H₂₁BrO₆Na calcd for m/z 459.0419, found 459.0417.

Diethyl 6-formyl-4'-cyanobiphenyl-2,4-dicarboxylate (7d): Yield: 38.6 mg (86%)

¹H NMR (500 MHz, CDCl₃) δ 1.08 (t, 3H, *J* = 7.0), 1.45 (t, 3H, *J* = 7.0), 4.13 (q, 2H, *J* = 7.0), 4.48 (q, 2H, *J* = 7.0), 7.43 (d, 2H, *J* = 8.0), 7.78 (d, 2H, *J* = 8.0), 8.77 (d, 1H, *J* = 1.5), 8.79 (d, 1H, *J* = 2.0), 9.70 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.7, 14.2, 61.8, 62.0, 112.5, 118.2, 130.0, 131.4, 131.8, 132.7, 134.8, 135.6, 140.6, 146.5, 164.4, 165.5, 189.4. ESI-HRMS [M+MeOH+Na]⁺ C₂₁H₂₁NO₆Na calcd for m/z 406.1266, found 406.1271.

Diethyl 4',6-diformylbiphenyl-2,4-dicarboxylate (7e): Yield: 20.6 mg (56%)

¹H NMR (500 MHz, CDCl₃) δ 1.05 (t, 3H, J = 7.0), 1.45 (t, 3H, J = 7.0), 4.11 (q, 2H, J = 7.0), 4.47 (q, 2H, J = 7.0), 7.48 (d, 2H, J = 8.0), 8.01 (d, 1H, J = 8.5), 8.78 (s, 2H), 9.73 (s, 1H), 10.12

(s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.7, 14.3, 61.7, 61.9, 129.3, 130.0, 131.2, 131.5, 132.9, 134.9, 135.5, 136.1, 141.9, 147.3, 164.5, 165.8, 189.8, 191.4. ESI-HRMS [M+2MeOH+Na]⁺ C₂₂H₂₆O₈Na calcd for m/z 441.1525, found 441.1520.

Diethyl 6-formyl-2'-bromobiphenyl-2,4-dicarboxylate (7f): Yield: 47.4 mg (74%)

¹H NMR (500 MHz, CDCl₃) δ 1.05 (t, 3H, *J* = 7.0), 1.44 (t, 3H, *J* = 7.0), 4.11 (m, 2H), 4.47 (q, 2H, *J* = 7.0), 7.23 (dd, 1H, *J* = 7.5, 1.0), 7.34 (m, 1H), 7.42 (m, 1H), 7.69 (dd, 1H, *J* = 8.0, 0.5), 8.80 (d, 1H, *J* = 1.5), 8.86 (d, 1H, *J* = 2.0), 9.66 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.6, 14.3, 61.5, 61.8, 123.3, 127.1, 130.0, 130.6, 131.1, 131.5, 132.4, 132.6, 134.9, 135.9, 136.8, 147.3, 164.6, 165.3, 190.0. ESI-HRMS [M+MeOH+Na]⁺ C₂₀H₂₁BrO₆Na calcd for m/z 459.0419, found 459.0426.

Diethyl 6-formyl-2'-ethynylbiphenyl-2,4-dicarboxylate (7g): Yield: 30.7 mg (69%)

¹H NMR (500 MHz, CDCl₃) δ 1.04 (t, 3H, *J* = 7.0), 1.45 (t, 3H, *J* = 7.0), 2.94 (s, 1H), 4.11 (q, 2H, *J* = 7.0), 4.46 (q, 2H, *J* = 7.0), 7.25 (m, 1H), 7.46 (m, 2H), 7.64 (m, 2H), 8.80 (s, 1H), 8.83 (s, 1H), 9.70 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.6, 14.3, 61.4, 61.7, 81.3, 82.1, 122.1, 128.4, 128.5, 129.4, 130.8, 131.2, 132.5, 133.1, 135.2, 135.6, 138.7, 147.4, 164.8, 165.8, 190.2. ESI-HRMS [M+MeOH+Na]⁺ C₂₂H₂₂O₆Na calcd for m/z 405.1314, found 405.1310.

Diethyl 6-formyl-3',5'-dimethoxybiphenyl-2,4-dicarboxylate (7h): Yield: 50.0 mg (67%)

¹H NMR (500 MHz, CDCl₃) δ 1.06 (t, 3H, *J* = 7.0), 1.43 (t, 3H, *J* = 7.0), 3.80 (s, 6H), 4.13 (q, 2H, *J* = 7.0), 4.44 (q, 2H, *J* = 7.0), 6.42 (d, 2H, *J* = 2.0), 6.54 (d, 1H, *J* = 2.0), 8.64 (d, 1H, *J* = 2.0), 8.72 (d, 1H, *J* = 1.5), 9.81 (s,1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.7, 14.3, 55.4, 61.5, 61.7, 100.3, 105.5, 107.9, 130.4, 130.6, 133.6, 134.7, 134.9, 137.0, 148.3, 160.5, 164.7, 166.6, 190.8. ESI-HRMS [M+MeOH+Na]⁺ C₂₂H₂₆O₈Na calcd for m/z 441.1525, found 441.1520.

Diethyl 6-formyl-5'-bromo-2'-methoxybiphenyl-2,4-dicarboxylate (7i): Yield: 60.2 mg (85%) ¹H NMR (500 MHz, CDCl₃) δ 1.09 (t, 3H, *J* = 7.0), 1.43 (t, 3H, *J* = 7.0), 3.71 (s, 3H), 4.15 (m, 2H), 4.46 (q, 2H, *J* = 7.0), 6.86 (d, 1H, *J* = 9.0), 7.24 (d, 1H, *J* = 2.0), 7.55 (dd, 1H, *J* = 2.0, 9.0), 8.75 (s, 2H), 9.73 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.8, 14.3, 55.8, 61.5, 61.7, 112.1, 112.8, 126.3, 130.8, 131.0, 132.9, 133.0, 133.5, 135.0, 135.5, 143.8, 155.7, 164.7, 166.0, 190.5. ESI-HRMS [M+MeOH+Na]⁺ C₂₁H₂₃BrO₇Na calcd for m/z 489.0524, found 489.0535.

Diethyl 6-formyl-4'-chloro-2'-fluorobiphenyl-2,4-dicarboxylate (7j): Yield: 21.2 mg (68%)

¹H NMR (500 MHz, CDCl₃) δ 1.15 (t, 3H, *J* = 7.0), 1.45 (t, 3H, *J* = 7.0), 4.18 (q, 2H, *J* = 7.0), 4.46 (q, 2H, *J* = 7.0), 7.15 (t, 1H, *J* = 7.0), 7.26 (m, 2H), 8.78 (d, 1H, *J* = 2.0), 8.83 (d, 1H, *J* = 2.0), 9.79 (d, 1H, *J* = 1.0); ¹³C NMR (125 MHz, CDCl₃) δ 13.7, 14.3, 61.8, 61.9, 116.2, 116.4, 124.5, 131.5, 131.7, 131.9, 133.2, 135.3, 135.8, 141.2, 160.3, 164.5, 165.4, 189.3. ESI-HRMS [M+MeOH+Na]⁺ C₂₀H₂₀ClFO₆Na calcd for m/z 433.0830, found 433.0831.

Diethyl 6-formyl-2',6'-difluorobiphenyl-2,4-dicarboxylate (7k): Yield: 53 mg (68%)

¹H NMR (500 MHz, CDCl₃) δ 1.15 (t, 3H, *J* = 7.0), 1.45 (t, 3H, *J* = 7.0), 4.21 (q, 2H, *J* = 7.0), 4.47 (q, 2H, *J* = 7.0), 7.04 (m, 2H), 7.47 (m, 1H), 8.83 (d, 1H, *J* = 2.0), 8.93 (d, 1H, *J* = 2.0), 9.83 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.7, 14.3, 30.9, 61.7, 61.9, 111.1-111.3, 112.6, 130.9, 131.0, 131.1, 131.8, 132.2, 133.1, 135.4, 136.0, 136.2, 158.7, 160.7, 164.5, 165.0, 189.5. ESI-HRMS [M+MeOH+Na]⁺ C₂₀H₂₀F₂O₆Na calcd for m/z 417.1125, found 417.1114.

Diethyl 6-formyl-3'-bromo-4'-hydroxy-5'-methoxybiphenyl-2,4-dicarboxylate (7l): Yield: 19 mg (38%)

¹H NMR (500 MHz, CDCl₃) δ 1.11 (t, 3H, *J* = 7.0), 1.44 (t, 3H, *J* = 7.0), 3.89 (s, 3H), 4.16 (q, 2H, *J* = 7.0), 4.46 (q, 2H, *J* = 7.0), 6.12 (bs, 1H), 6.73 (s, 1H), 7.04 (s, 1H), 7.26 (s, 1H), 8.64 (s, 1H), 8.71 (s, 1H), 9.83 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.8, 14.2, 56.5, 61.7, 108.2,

111.3, 125.6, 127.5, 130.6, 130.9, 134.0, 134.8, 135.2, 143.5, 146.7, 164.6, 166.4, 190.5. ESI-HRMS [M+MeOH+Na]⁺ C₂₁H₂₃BrO₈Na calcd for m/z 505.0474, found 505.0470.

Diethyl 4-(5-bromothiophene-2-yl)-5-formylisophthalate (7m): Yield: 54 mg (49%)

¹H NMR (500 MHz, CDCl₃) δ 1.19 (t, 3H, *J* = 7.0), 1.43 (t, 3H, *J* = 7.0), 4.23 (q, 2H, *J* = 7.0), 4.46 (q, 2H, *J* = 7.0), 6.83 (d, 1H, *J* = 3.5), 7.11 (d, 1H, *J* = 3.0), 8.65 (s, 1H), 8.71 (s, 1H), 9.98 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.8, 14.2, 61.9, 114.7, 130.0, 130.2, 130.9, 131.6, 134.8, 134.9, 136.3, 139.4, 164.4, 166.0, 189.8. ESI-HRMS [M+MeOH+Na]⁺ C₁₈H₁₉BrO₆SNa calcd for m/z 464.9983, found 464.9978.

Diethyl 4-(5-iodofuran-2-yl)-5-formylisophthalate (7n): Yield: 38.0 mg (55%)

¹H NMR (500 MHz, CDCl₃) δ 1.26 (t, 3H, *J* = 7.0), 1.43 (t, 3H, *J* = 7.0), 4.28 (q, 2H, *J* = 7.0), 4.44 (q, 2H, *J* = 7.0), 6.52 (d, 1H, *J* = 3.5), 6.76 (d, 1H, *J* = 3.0), 8.63 (d, 1H, *J* = 1.5), 8.71 (d, 1H, *J* = 1.5), 10.06 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 14.1, 14.2, 24.6, 36.6, 61.9, 62.1, 90.5, 116.9, 122.2, 131.2, 131.4, 134.0, 134.6, 134.9, 135.0, 151.4, 162,4, 166.5, 189.9. ESI-HRMS [M+MeOH+Na]⁺ C₁₈H₁₉IO₇Na calcd for m/z 497.0073, found 497.0072.

Diethyl 6-hydroxy-2-nitro-6H-benzo[c]chromene-8,10-dicarboxylate (70): Yield: 36.6 mg (68%)

¹H NMR (500 MHz, CDCl₃) δ 1.36 (t, 3H, *J* = 7.0), 1.43 (t, 3H, *J* = 7.0), 3.85 (d, 1H, *J* = 5.0), 4.44 (m, 3H), 4.55 (m, 1H), 6.52 (d, 1H, *J* = 4.5), 7.28 (s, 1H), 8.20 (d, 1H, *J* = 1.0), 8.25 (dd, 1H, *J* = 9.0, 2.5), 8.34 (d, 1H, *J* = 1.5), 8.52 (d, 1H, *J* = 2.5); ¹³C NMR (125 MHz, CDCl₃) δ 13.9, 14.2, 61.8, 62.7, 93.1, 119.8, 119.9, 120.7, 123.2, 126.0, 128.6, 129.2, 130.4, 130.6, 131.5, 133.5, 142.4, 156.8, 164.7, 168.7. ESI-HRMS [M+Na]⁺ C₁₉H₁₇NO₈Na calcd for m/z 410.0851, found 410.0848.

Diethyl 4-bromo-6-hydroxy-2-methoxy-6H-benzo[c]chromene-8,10-dicarboxylate (7p): Yield: 18.4 mg (77%)

¹H NMR (500 MHz, CDCl₃) δ 1.34 (t, 3H, *J* = 7.0), 1.41 (t, 3H, *J* = 7.0), 3.49 (bs, 1H), 3.93 (s, 3H), 4.41 (m, 4H), 6.48 (s, 1H), 7.08 (s, 1H), 7.26 (s, 1H), 8.17 (d, 1H, *J* = 1.5), 8.28 (d, 1H, *J* = 1.5); ¹³C NMR (125 MHz, CDCl₃) δ 13.9, 14.2, 30.9, 56.4, 61.6, 62.3, 92.8, 114.0, 116.1, 121.6, 121.9, 129.1, 129.9, 130.3, 131.2, 133.9, 140.2, 150.7, 164.9, 169.2. ESI-HRMS [M+Na]⁺ C₂₀H₁₉BrO₇Na calcd for m/z 473.0211, found 473.0206.

Diethyl 2,6-dimethoxy-6H-benzo[c]chromene-8,10-dicarboxylate (7q): Yield: 20 mg (60%) ¹H NMR (500 MHz, CDCl₃) δ 1.32 (t, 3H, J = 7.0), 1.42 (t, 3H, J = 7.0), 3.52 (s, 3H), 3.78 (s, 3H), 4.40 (m, 4H), 5.88 (s, 1H), 6.94 (dd, 1H, J = 9.0, 3.5), 7.07 (d, 1H, J = 3.0), 7.12 (d, 1H, J = 9.0), 8.10 (d, 1H, J = 1.5), 8.25 (d, 1H, J = 1.5); ¹³C NMR (125 MHz, CDCl₃) δ 13.9, 14.3, 30.9, 55.7, 61.4, 62.0, 98.7, 111.9, 117.2, 119.3, 120.6, 129.2, 129.3, 130.0, 131.1, 131.5, 133.4, 145.3, 154.5, 165.1, 169.5. ESI-HRMS [M+Na]⁺ C₂₁H₂₂O₇Na calcd for m/z 409.1263, found 409.1260.

Diethyl 6-butoxy-2-methoxy-6H-benzo[c]chromene-8,10-dicarboxylate (7r): Yield: 15.2 mg (66%)

¹H NMR (500 MHz, CDCl₃) δ 0.84 (t, 3H, *J* = 7.0), 1.25 (m, 3H), 1.32 (t, 3H, *J* = 7.0), 1.42 (t, 3H, *J* = 7.0), 1.51 (m, 2H), 3.70 (m, 1H), 3.78 (s, 3H), 3.84 (m, 1H), 4.42 (m, 4H), 5.96 (s, 1H), 6.92 (dd, 1H, *J* = 9.0, 3.0), 7.06 (m, 2H), 8.08 (d, 1H, *J* = 1.5), 8.23 (d, 1H, *J* = 1.5); ¹³C NMR (125 MHz, CDCl₃) δ 13.9, 14.3, 19.1, 22.6, 29.6, 31.3, 55.7, 61.4, 61.9, 68.5, 97.7, 111.8, 117.1, 119.3, 120.6, 129.1, 129.2, 130.0, 130.9, 131.6, 133.7, 145.6, 154.3, 165.2, 169.6. ESI-HRMS [M+Na]⁺ C₂₄H₂₈O₇Na calcd for m/z 451.1732, found 451.1732.

References:

 J. Kulhnek, S. Bures, O. Pytela, T. Mikysek and J. Ludvk, *Chem. Asian J.* 2011, 6, 1604– 1612. Structural evidence for Trienamine A and A' by 2D NMR experiments:

(A) COSY correlation for Trienamine A:

(B) HSQC correlation for Trienamine A with only one olefinic proton

(c) NH proton exchange experiment by addition of a drop of D₂O in CDCl₃ for trienamine A':

¹H and ¹³C NMR Copies of Trienamine A & A', Biaryl B', 4-6, 7a-7r & 8-12:

000.0------

۱ — 320.4 – ۱ ۱ – 3.714

ττι...

9711	o soo l to deter o soo l to deter	10000000000000000000000000000000000000	H O US 5 MH	ters 8 0 MH 0 0 Hz 0 Hz
cs-38 CS-38	Param 13060 9.4 spec B0 BB 293 6553 6553 CDC1	30.57 15763 71992 48.40 6.0 297. 00000	f1 == 1 12.0 33088	arame 3276 32001 E D 0.3 1.0
Рага	tion 20 m PAB	103 0. 3.1 1.00	NNEL 500.1	ing p 500.1
Data	5 m		= CHAI	ocess
rrent AE PNO DCNO	- Acc ce and DBHD DBHD LPROG	I DRES	1	- Pro
Cui NAN EXF PRC	PRC PULL	AD A	PL1 SFC	F2 ST SSF SSE CB FC

000.0------

· _____ 9.723

L9L.6 _____

rrent Data Parameters IE CS-535 NO 2 CNO 1	- Acquisition Parameters Acquisition Parameters 20130924 12.55 12.55 12.55 12.55 spect 	RES 29761.904 Hz 0.454131 Hz 1.1010548 sec 32800 usec 6.00 usec 6.00 usec 6.00 usec 1.89999998 sec 1.89999998 sec	CHANNEL f1 ======== 13C 12.40 usec -2.00 dB 125.7703643 MHz	PFG2 CHANNEL f2 ====== PPRG2 waltz16 D2 80.00 usec D2 80.00 usec 12 120.00 dB 12 120.00 dB 12 500.1320005 MHz	- Processing parameters 32768 125.7577890 MHz EM 1.00 Hz 1.40	
Cur NAM EXP PRO	F2 THNS PRO SNC SNC SNC SNC SNC SNC SNC SNC SNC SNC	TDDL1 TDDL2 TDDL2 TDDL1 TDDL1 TDDL1	EEE PL SFO SFO	RECP RUC PL11 PL11 SF02 SF03 SF03 SF03 SF03 SF03 SF03 SF03 SF03	F C B B B B B B B B B B B B B B B B B B	비 비 비 비 비 비 비 비 비 비 비 비 비 비 비 비 비 비 비
	13.72					50
						40
	12.19 88.19					- 09
	62.77 77.04 87.04					- 08
6	56°ZZI ¬				-	100
ם ד ד	- 130.82 - 130.92 - 131.22					120
8 5 2 3	22.921 20.221					140
C t t	22 GEL					160
7	27°06T					180
C	,					200

τοο.ο ——

690°0T — ,

HMBC Spectra of 4, 6, 7a, 7e, 7g, 7l, 7m and 7q: Correlation between ortho H and carbonyl carbon is circled.

S**79**

