Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Supporting information

Pd-Catalyzed Oxidative C-H Alkenylation for Synthesizing Arylvinyltriazole Nucleosides

Jingjie Tang, $^{[a]}$ Mei Cong, $^{[a]}$ Yi Xia, $^{[a,b]}$ Gilles Qu $ext{\'e}$ éver, $^{[a]}$ Yuting Fan, $^{[a,c]}$ Fanqi Qu, $^{[c]}$ Ling Peng $^{*[a]}$

- [a] Aix-Marseille Universit é, CNRS, CINaM UMR 7325, 13288, Marseille, Cedex 9, France
- [b] The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, 2660 Oak street, Vancouver, BC V6H 3Z6, Canada
- [c] College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China

E-mail:ling.peng@univ-amu.fr

Table of Contents

Table S1	S2
General	S4
Procedure for Synthesis	S5
References	S5
Characterization of Products	S6
¹ H and ¹³ CNMR Spectra	S25

Table S1: Selection of Representative Conditions Tried for the Heck reaction of Triazole Nucleoside (5) with Styrene

Entry	[Pd]	Ligand	Base	Solvent	Heating mode	Yield
1	Pd(OAc) ₂	PPh ₃	K ₂ CO ₃	DMF	Oil-bath	0
2	Pd(OAc) ₂	Xantphos	K_2CO_3	CH ₃ CN	Oil-bath	0
3	Pd(OAc) ₂	BINAP	Et_3N	CH ₃ CN	Oil-bath	0
4	Pd(OAc) ₂	Synphos	Et_3N	DMF	Oil-bath	0
5	Pd(OAc) ₂	L1	Et_3N	DMF	Oil-bath	0
6	Pd(OAc) ₂	L2	K_2CO_3	Toluene	Microwave	0
7	Pd(OAc) ₂	L3	K_2CO_3	Toluene	Microwave	0
8	Pd(OAc) ₂	L4	K_2CO_3	Toluene	Microwave	0
9	$Pd(OAc)_2$	dppe	Et_3N	DMF	Microwave	0
10	Pd(OAc) ₂	Xantphos: BINAP=3:1	Et_3N	THF: CH ₃ CN=1:1	Microwave	0
11	Pd(OAc) ₂	-	$K_2CO_3 + TBAB$	DMA	Microwave	0
12	Pd(OAc) ₂	Xphos	Et_3N	Toluene	Microwave	0

13	Pd(OAc) ₂	Xphos	Et ₃ N	DMF	Microwave	0
14	$Pd(OAc)_2$	Xphos	Et_3N	CH₃OH	Microwave	0
16	$Pd(OAc)_2$	Xphos	Et_3N	CH ₃ CN	Microwave	0
17	$Pd(OAc)_2$	Xphos	Et_3N	DMF/H ₂ O	Microwave	0
18	$Pd(OAc)_2$	L1	K_2CO_3	Toluene	Microwave	0
19	$Pd(OAc)_2$	L1	K_2CO_3	DMF	Microwave	0
20	$Pd(OAc)_2$	L1	K_2CO_3	Dioxane	Microwave	0
21	$Pd(OAc)_2$	PPh ₃	K_2CO_3	DMF	Microwave	0
22	$Pd(OAc)_2$	PPh ₃	$K_2CO_3 + TBAB$	DMF	Microwave	0
23	$Pd(OAc)_2$	BINAP	Et_3N	THF	Microwave	0
24	$Pd(OAc)_2$	BINAP	K_2CO_3	Toluene	Microwave	0
25	Pd(PPh ₃) ₄	-	Et_3N	DMF	Oil-bath	0
26	Pd(PPh ₃) ₄	-	Et_3N	DMF	Microwave	0
27	Pd(PPh ₃) ₄	-	Li ₂ CO ₃	Dioxane/H ₂ O	Microwave	0

General: All the reactions were carried out using Schlenk tubes. All the chemicals were purchased from Sigma Aldrich or Alfa aesar and used directly without any purification. Triazole nucleosides **1-4**, ^{1,2} methyl 4-vinylbenzoate, ³ *N*-propyl-4-vinylbenzamide, ⁴ 1-(benzyloxy)-4-vinylbenzene⁵ and 4-nitrostyrene⁶ were synthesized following the reported procedures. All the solvents used in the reactions were dried according to described methods and distilled before use except DMF. All the products were purified by flash chromatography on silica gel (Merck 200-300 mesh). ¹H NMR spectra were recorded at 250, 300 or 400 MHz and ¹³C NMR spectra recorded at 62.5 or 100 MHz on Bruker Avance II 250, Bruker Avance III 300, Bruker Avance III 400 or JEOL ECS 400 spectrometers. Chemical shifts (δ) are expressed in parts per million (ppm) with the residual peak of CHCl₃ at 7.26 ppm or TMS at 0.00 as internal reference. The high resolution mass spectra (HRMS) were obtained with an electrospray ionization (ESI) using mass spectrometer QStar Elite (Applied Biosystems SCIEX). The exact mass measurement was done in triplicate with a double internal calibration. Analytical thin layer chromatographies (TLC) were performed using silica gel 60 F₂₅₄ plates 0.2 mm thick with UV light (254 and 364 nm) as revelator.

General Procedure of Synthesis. Triazole 1-4 (0.20 mmol), alkene (0.80-2.0 mmol), Pd(OAc)₂ (0.040 mmol), AgOAc (0.80 mmol), PivOH (0.60 mmol) and AcOH (3.0 mL) were refluxed at 130 °C for 20 hours under air atmosphere. The solvent was then removed under reduced pressure and the crude residue was purified by flash chromatography on silica gel (eluent: Cyclohexane/EtOAc or CH₂Cl₂/CH₃OH) affording the desired products.

References

- (1) R. Zhu, F. Qu, G. Qu d éver and L. Peng, Tetrahedron Lett., 2007, 48, 2389.
- (2) J. Wan, Y. Xia, Y. Liu, M. Wang, P. Rocchi, J. Yao, F. Qu, J. Neyts, J. L. Iovanna and L. Peng, *J. Med. Chem.*, 2009, **52**, 1144.
- (3) M. Schedler, D.-S. Wang and F. Glorius, Angew. Chem. Int. Ed., 2013, 52, 2585.
- (4) G. Quelever, P. Kachidian, C. Melon, C. Garino, Y. Laras, N. Pietrancosta, M. Sheha and J. Louis Kraus, *Org. Biomol. Chem.*, 2005, **3**, 2450.
- (5) Z.-H. Shan, J. Liu, L.-M. Xu, Y.-F. Tang, J.-H. Chen and Z. Yang, *Org. Lett.*, 2012, 14, 3712.
- (6) B. Schmidt and R. Berger, Adv. Synth. Catal., 2013, 355, 463.

Characterization of Products

1a: The desired product was obtained using the general procedure starting from triazole **1** and styrene with a 72% yield (47.6 mg) as a white solid. A total of 46.2 mg (70%) of product was obtained starting from triazole **3** and styrene following the same procedure. ¹H NMR (250 MHz, CDCl₃): δ 7.86 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 7.60-7.56 (m, 2H, -ArH), 7.44-7.39 (m, 3H, -ArH), 7.07-7.00 (m, 2H, CH-vinyl + -C(O)NH), 6.09 (br s, 1H, -C(O)NH), 5.68 (s, 2H, -NCH₂O-), 4.20 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 3.81 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 1.99 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 161.3, 155.4, 155.0, 139.8, 135.0, 129.9, 129.0, 127.6, 110.2, 78.0, 67.6, 62.6, 20.7; HRMS: calcd. for C₁₆H₁₉N₄O₄⁺ 331.1401, found 331.1399.

$$\begin{array}{c|c} O & O \\ \hline -O & N & NH_2 \\ \hline AcO & O & \end{array}$$

1b: The desired product was obtained using the general procedure starting from triazole **1** and methyl 4-vinylbenzoate with a 70% yield (54.4 mg) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, 2H, J = 8.4 Hz, -ArH), 7.89 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 7.64 (d, 2H, J = 8.0 Hz, -ArH), 7.13 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 7.07 (br s, 1H, -C(O)NH), 6.18 (br s, 1H, -C(O)NH), 5.71 (s, 2H,

-NCH₂O-), 4.20 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 3.93 (s, 3H, -OCH₃), 3.81 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 1.99 (s, 3H, -C(O)CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 170.7, 166.5, 160.9, 155.4, 154.5, 139.2, 138.4, 131.0, 130.2, 127.5, 112.4, 78.1, 67.7, 62.6, 52.3, 20.8; HRMS: calcd. for C₁₈H₂₁N₄O₆⁺ 389.1456, found 389.1457.

$$O = \bigvee_{O = \bigvee_{N = N}^{N} NH_{2}} O$$

$$AcO \bigcup_{O = \bigvee_{N = N}^{N} NH_{2}} O$$

1c: The desired product was obtained using the general procedure starting from triazole 1 and 4-acetoxystyrene with a 60% yield (46.6 mg) as a yellow solid. 1 H NMR (250 MHz, CDCl₃): δ 7.85 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 7.59 (d, 2H, J = 8.8 Hz, -ArH), 7.15 (d, 2H, J = 8.8 Hz, -ArH), 7.05 (br s, 1H, -C(O)NH), 6.98 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 5.99 (br s, 1H, -C(O)NH), 5.68 (s, 2H, -NCH₂O-), 4.20 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 3.81 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 2.32 (s, 3H, -OC(O)CH₃), 2.00 (s, 3H, -C(O)CH₃); 13 C NMR (62.5 MHz, CDCl₃): δ 170.7, 169.2, 161.3, 155.3, 154.9, 151.8, 138.7, 132.7, 128.7, 122.2, 110.3, 78.0, 67.7, 62.6, 21.1, 20.8; HRMS: calcd. for C₁₈H₂₁N₄O₆ 389.1456, found 389.1457.

$$\begin{array}{c|c} O & O \\ N & N \\ N & N \\ AcO & O \end{array}$$

1d: The desired product was obtained using the general procedure starting from triazole **1** and *N*-propyl-4-vinylbenzamide with a 63% yield (52.3 mg) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, 1H, J_{trans} = 16.4 Hz, CH-vinyl), 7.80 (d, 2H, J = 8.4 Hz, -ArH), 7.62 (d, 2H, J = 8.0 Hz, -ArH), 7.10 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 7.06 (br s, 1H, -C(O)NH), 6.25 (t, 1H, J = 5.6 Hz, -C(O)NHCH₂-), 6.11 (br s, 1H, -C(O)NH), 5.69 (s, 2H, -NCH₂O-), 4.19 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 3.81 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 3.46-3.41 (m, 2H, -NHCH₂-), 1.99 (s, 3H, -C(O)CH₃), 1.70-1.61 (m, 2H, -NHCH₂CH₂-), 0.99 (t, 3H, J = 7.4 Hz, -CH₂CH₃): δ 170.7, 166.7, 160.9, 155.3, 154.5, 138.5, 137.6, 135.7, 127.6, 127.5, 111.7, 78.0, 67.7, 62.5, 41.8, 22.9, 20.7, 11.4; HRMS: calcd. for C₂₀H₂₆N₅O₅⁺ 416.1928, found 416.1929.

1e: The desired product was obtained using the general procedure starting from triazole **1** and 1-(benzyloxy)-4-vinylbenzene with a 52% yield (45.4 mg) as an orange solid. 1 H NMR (400 MHz, CDCl₃): δ 7.80 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 7.52 (d, 2H, J = 8.4 Hz, phenyl-H), 7.44-7.32 (m, 5H, phenyl-H), 7.08 (br s, 1H, -C(O)NH), 7.00 (d, 2H, J = 8.4 Hz, phenyl-H), 6.88 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 6.31-6.23 (m, 1H, -C(O)NH), 5.66 (s, 2H, -NCH₂O-), 5.10 (s, 2H, PhCH₂O-), 4.19 (t, 2H, J = 4.4 Hz, -CH₂CH₂OAc), 3.80 (t, 2H, J = 4.4 Hz, -CH₂CH₂OAc), 1.99 (s, 3H, -C(O)CH₃); 13 C NMR (100 MHz, CDCl₃): δ 170.8, 161.2, 160.3, 155.4, 155.3, 139.4, 136.5, 129.2, 128.7, 128.2, 128.0, 127.5, 115.3, 107.8, 77.9, 70.1, 67.5, 62.7, 20.8; HRMS: calcd. for C₂₃H₂₅N₄O₅⁺ 437.1819, found 437.1821.

$$\begin{array}{c|c}
 & O \\
 & N \\$$

1f: The desired product was obtained using the general procedure starting from triazole **1** and 4-vinylbiphenyl with a 62% yield (50.4 mg) as a light yellow solid. ¹H NMR (250 MHz, CDCl₃): δ 7.92 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 7.66-7.61 (m, 6H, phenyl-H), 7.50-7.35 (m, 3H, phenyl-H), 7.11-7.04 (m, 2H, J_{trans} = 15.8 Hz, CH-vinyl + -C(O)NH), 5.84 (br s, 1H, -C(O)NH), 5.70 (s, 2H, -NCH₂O-), 4.22 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 3.83 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 2.01 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.8, 161.3, 155.3, 155.1, 142.7, 140.1, 139.4, 134.0, 128.9, 128.1, 127.9, 127.6, 127.0, 110.0, 78.0, 67.6, 62.6, 20.8; HRMS: calcd. for C₂₂H₂₃N₄O₄⁺ 407.1714, found 407.1713.

1g: The desired product was obtained using the general procedure starting from triazole **1** and 2-vinylnaphthalene with a 62% yield (47.2 mg) as a light yellow solid. ¹H NMR (300 MHz, CDCl₃): δ 8.04 (d, 1H, J_{trans} = 16.2 Hz, CH-vinyl), 7.97 (s, 1H, phenyl-H), 7.89-7.83 (m, 3H, phenyl-H), 7.76-7.73 (m, 1H, phenyl-H), 7.54-7.51 (m, 2H, phenyl-H), 7.15 (d, 1H, J_{trans} = 15.9 Hz, CH-vinyl), 7.09 (br s, 1H, -C(O)NH), 5.87 (br s, 1H, -C(O)NH), 5.73 (s, 2H, -NCH₂O-), 4.22 (t, 2H, J = 4.7 Hz,

-CH₂CH₂OAc), 3.84 (t, 2H, J = 4.7 Hz, -CH₂CH₂OAc), 2.00 (s, 3H, -C(O)CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 170.8, 161.3, 155.4, 155.1, 139.9, 134.0, 133.4, 132.4, 129.3, 128.8, 128.5, 127.8, 127.2, 126.8, 123.2, 110.2, 78.0, 67.7, 62.7, 20.8; HRMS: calcd. for C₂₀H₂₁N₄O₄⁺ 381.1557, found 381.1555.

$$\begin{array}{c|c} O_2N & & O \\ & N & N \\ & N-N \end{array}$$
 AcO
$$\begin{array}{c|c} O & N & N \\ & N-N \end{array}$$

1h: The desired product was obtained using the general procedure starting from triazole **1** and 4-nitrostyrene with a 61% yield (45.8 mg) as a light yellow solid. 1 H NMR (400 MHz, DMSO- d_{6}): δ 8.30 (d, 2H, J = 8.4 Hz, -ArH), 8.06 (d, 2H, J = 8.8 Hz, -ArH), 7.89 (br s, 1H, -C(O)NH), 7.84 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 7.74-7.70 (m, 2H, CH-vinyl + -C(O)NH), 5.85 (s, 2H, -NCH₂O-), 4.11-4.09 (m, 2H, -CH₂CH₂OAc), 3.78-3.76 (m, 2H, -CH₂CH₂OAc), 1.94 (s, 3H, -C(O)CH₃); 13 C NMR (100 MHz, DMSO- d_{6}): δ 170.2, 160.3, 156.4, 153.5, 147.4, 141.7, 135.1 128.7, 124.0, 115.9, 76.9, 67.0, 62.7, 20.5; HRMS: calcd. for C₁₆H₁₈N₅O₆⁺ 376.1252, found 376.1253.

$$F_3C \xrightarrow{N \longrightarrow N \to N} NH_2$$

1i: The desired product was obtained using the general procedure starting from triazole **1** and 4-(trifluoromethyl)-styrene with a 57% yield (45.4 mg) as a white solid.

¹H NMR (250 MHz, CDCl₃): δ 7.90 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 7.68 (s, 4H, -ArH), 7.13 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 7.02 (br s, 1H, -C(O)NH), 5.82 (br s, 1H, -C(O)NH), 5.71 (s, 2H, -NCH₂O-), 4.21 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 3.82 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 2.00 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 161.1, 155.5, 154.4, 138.4, 138.0, 131.4 (q, J_{CF} = 32.5 Hz), 127.8, 125.9 (d, J_{CF} = 3.8 Hz), 123.8 (d, J_{CF} = 260.7 Hz), 112.6, 78.1, 67.8, 62.6, 20.7; HRMS: calcd. for C₁₇H₁₈F₃N₄O₄⁺ 399.1275, found 399.1275.

$$\begin{array}{c|c} & O \\ & N \\ & N \\ & N \\ & N \end{array}$$

1j: The desired product was obtained using the general procedure starting from triazole **1** and 4-methylstyrene with a 68% yield (46.8 mg) as a light yellow solid. A total of 41.3 mg (60%) of product was obtained starting from triazole **3** and 4-methylstyrene following the same procedure. ¹H NMR (250 MHz, CDCl₃): δ 7.83 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 7.47 (d, 2H, J = 7.8 Hz, -ArH), 7.21 (d, 2H, J = 8.0 Hz, -ArH), 7.06 (br s, 1H, -C(O)NH), 6.98 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 6.07 (br s, 1H, -C(O)NH), 5.67 (s, 2H, -NCH₂O-), 4.19 (t, 2H, J = 4.5 Hz, -CH₂CH₂OAc), 3.80 (t, 2H, J = 4.4 Hz, -CH₂CH₂OAc), 2.38 (s, 3H, -CH₃), 1.99 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 161.4, 155.4, 155.2, 140.2, 139.8, 132.3, 129.7, 127.6, 109.1, 77.9, 67.6, 62.6, 21.4, 20.7; HRMS: calcd. for C₁₇H₂₁N₄O₄⁺ 345.1557, found 345.1556.

$$\begin{array}{c|c} & O \\ & & \\ & & \\ & N-N \end{array}$$
 AcO
$$\begin{array}{c} O \\ & N-N \end{array}$$

1k: The desired product was obtained using the general procedure starting from triazole **1** and 3-methylstyrene with a 67% yield (46.1 mg) as a white solid. A total of 46.8 mg (68%) of product was obtained starting from triazole **3** and 3-methylstyrene following the same procedure. ¹H NMR (250 MHz, CDCl₃): δ 7.84 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 7.39-7.37 (m, 2H, -ArH), 7.32 (d, 1H, J = 7.3 Hz, -ArH), 7.20 (d, 1H, J = 7.3 Hz, -ArH), 7.05-6.98 (m, 2H, CH-vinyl + -C(O)NH), 5.82 (br s, 1H, -C(O)NH), 5.69 (s, 2H, -NCH₂O-), 4.20 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 3.82 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 2.40 (s, 3H, -CH₃), 2.00 (s, 3H, -C(O)CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 170.9, 161.2, 155.4, 155.1, 140.2, 138.8, 135.0, 130.9, 129.0, 128.2, 125.0, 109.9, 78.0, 67.7, 62.7, 21.4, 20.9; HRMS: calcd. for C₁₇H₂₁N₄O₄⁺ 345.1557, found 345.1556.

11: The desired product was obtained using the general procedure starting from triazole 1 and 2-methylstyrene with a 67% yield (46.1 mg) as a white solid. A total of 41.3 mg (60%) of product was obtained starting from triazole 3 and 2-methylstyrene following the same procedure. ¹H NMR (250 MHz, CDCl₃): δ 8.11 (d, 1H, J_{trans} =

15.8 Hz, CH-vinyl), 7.63-7.60 (m, 1H, -ArH), 7.32-7.21 (m, 3H, -ArH), 7.06 (br s, 1H, -C(O)NH), 6.96 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 5.90 (br s, 1H, -C(O)NH), 5.68 (s, 2H, -NCH₂O-), 4.20 (t, 2H, J = 4.8 Hz, -CH₂CH₂OAc), 3.82 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 2.48 (s, 3H, -CH₃), 2.00 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 161.5, 155.4, 155.1, 137.5, 137.4, 134.1, 130.9, 129.7, 126.4, 125.8, 111.4, 78.0, 67.6, 62.7, 20.7, 19.9; HRMS: calcd. for C₁₇H₂₁N₄O₄⁺ 345.1557, found 345.1556.

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ &$$

1m: The desired product was obtained using the general procedure starting from triazole **1** and 4-fluorostyrene with a 69% yield (48.1 mg) as a white solid. A total of 45.3 mg (65%) of product was obtained starting from triazole **3** and 4-fluorostyrene following the same procedure. ¹H NMR (250 MHz, CDCl₃): δ 7.83 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 7.60-7.54 (m, 2H, -ArH), 7.11 (t, 2H, J = 8.6 Hz, -ArH), 7.03 (br s, 1H, -C(O)NH), 6.95 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 5.98 (br s, 1H, -C(O)NH), 5.68 (s, 2H, -NCH₂O-), 4.20 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 3.81 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 3.81 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 2.00 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 163.6 (d, J_{CF} = 249.3 Hz), 161.4, 155.4, 154.9, 138.4, 131.3 (d, J_{CF} = 3.4 Hz), 129.4 (d, J_{CF} = 8.3 Hz), 116.1 (d, J_{CF} = 21.8 Hz), 110.0 (d, J_{CF} = 2.3 Hz), 77.9, 67.6, 62.6, 20.7; HRMS: calcd. for C₁₆H₁₈FN₄O₄⁺ 349.1307, found 349.1307.

1n: The desired product was obtained using the general procedure starting from triazole **1** and 3-fluorostyrene with a 66% yield (46.0 mg) as a white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.83 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 7.43-7.30 (m, 3H, -ArH), 7.11-7.01 (m, 3H, -ArH + CH-vinyl + -C(O)NH), 5.89 (br s, 1H, -C(O)NH), 5.69 (s, 2H, -NCH₂O-), 4.20 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 3.81 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 3.81 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 2.00 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 163.1 (d, J_{CF} = 245.2 Hz), 161.3, 155.5, 154.6, 138.6 (d, J_{CF} = 2.6 Hz), 137.3 (d, J_{CF} = 7.7 Hz), 130.5 (d, J_{CF} = 8.3 Hz), 123.7 (d, J_{CF} = 2.8 Hz), 116.7 (d, J_{CF} = 21.3 Hz), 113.8 (d, J_{CF} = 21.9 Hz), 111.5, 78.0, 67.7, 62.6, 20.7; HRMS: calcd. for $C_{16}H_{18}FN_4O_4^+$ 349.1307, found 349.1312.

10: The desired product was obtained using the general procedure starting from triazole **1** and 2-fluorostyrene with a 62% yield (43.2 mg) as a white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.96 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 7.62-7.56 (m, 1H, -ArH), 7.41-7.32 (m, 1H, -ArH), 7.23-7.07 (m, 4H, -ArH + CH-vinyl + -C(O)NH), 5.86 (br s, 1H, -C(O)NH), 5.69 (s, 2H, -NCH₂O-), 4.20 (t, 2H, J = 4.5 Hz,

-CH₂CH₂OAc), 3.82 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 2.01 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 161.2, 161.2 (d, $J_{CF} = 251.6$ Hz), 155.5, 154.9, 132.7 (d, $J_{CF} = 1.8$ Hz), 131.2 (d, $J_{CF} = 8.6$ Hz), 129.0 (d, $J_{CF} = 2.9$ Hz), 124.6 (d, $J_{CF} = 3.6$ Hz), 123.1 (d, $J_{CF} = 11.5$ Hz), 116.3 (d, $J_{CF} = 21.8$ Hz), 112.9 (d, $J_{CF} = 8.0$ Hz), 78.0, 67.6, 62.7, 20.7; HRMS: calcd. for C₁₆H₁₈FN₄O₄⁺ 349.1307, found 349.1308.

1p: The desired product was obtained using the general procedure starting from triazole **1** and 4-chlorostyrene with a 65% yield (47.4 mg) as a white solid. A total of 45.2 mg (62%) of product was obtained starting from triazole **3** and 4-chlorostyrene following the same procedure. ¹H NMR (250 MHz, CDCl₃): δ 7.82 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 7.51 (d, 2H, J = 8.5 Hz, -ArH), 7.38 (d, 2H, J = 8.5 Hz, -ArH), 7.04-6.98 (m, 2H, CH-vinyl + -C(O)NH), 6.03 (br s, 1H, -C(O)NH), 5.68 (s, 2H, -NCH₂O-), 4.20 (t, 2H, J = 4.8 Hz, -CH₂CH₂OAc), 3.81 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 1.99 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 161.3, 155.4, 154.7. 138.3, 135.7, 133.5, 129.2, 128.8, 110.7, 78.0, 67.7, 62.6, 20.7; HRMS: calcd. for C₁₆H₁₈ClN₄O₄⁺ 365.1011, found 365.1012.

1q: The desired product was obtained using the general procedure starting from triazole **1** and 3-chlorostyrene with a 63% yield (46.0 mg) as a white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.81 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 7.57 (s, 1H, -ArH), 7.46-7.42 (m, 1H, -ArH), 7.36-7.34 (m, 2H, -ArH), 7.07-7.01 (m, 2H, CH-vinyl + -C(O)NH), 5.91 (br s, 1H, -C(O)NH), 5.69 (s, 2H, -NCH₂O-), 4.20 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 3.82 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 2.01 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 161.3, 155.5, 154.5, 138.1, 136.8, 135.0, 130.2, 129.7, 127.2, 126.0, 111.6, 78.0, 67.7, 62.6, 20.7; HRMS: calcd. for C₁₆H₁₈ClN₄O₄⁺ 365.1011, found 365.1010.

1r: The desired product was obtained using the general procedure starting from triazole **1** and 2-chlorostyrene with a 52% yield (37.9 mg) as a white solid. ¹H NMR (250 MHz, CDCl₃): δ 8.22 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 7.71-7.68 (m, 1H, -ArH), 7.47-7.43 (m, 1H, -ArH), 7.35-7.30 (m, 2H, -ArH), 7.09-7.02 (m, 2H, CH-vinyl + -C(O)NH), 5.88 (br s, 1H, -C(O)NH), 5.70 (s, 2H, -NCH₂O-), 4.20 (t, 2H, J = 4.5 Hz, -CH₂CH₂OAc), 3.82 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 2.00 (s, 3H,

-C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 161.1, 155.5, 154.5, 135.6, 134.6, 133.3, 130.7, 130.3, 127.2, 113.0, 78.1, 67.7, 62.6, 20.7; HRMS: calcd. for $C_{16}H_{18}ClN_4O_4^+$ 365.1011, found 365.1011.

2a: The desired product was obtained using the general procedure starting from triazole **2** and styrene with a 70% yield (48.3 mg) as a white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.96 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 7.60-7.56 (m, 2H, -ArH), 7.44-7.38 (m, 3H, -ArH), 7.05 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 5.71 (s, 2H, -NCH₂O-), 4.20 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 4.04 (s, 3H, -OCH₃), 3.80 (t, 2H, J = 4.5 Hz, -CH₂CH₂OAc), 1.98 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 160.3, 155.5, 153.5, 140.2, 135.0, 130.0, 129.0, 127.6, 109.9, 78.1, 67.6, 62.6, 53.0, 20.7; HRMS: calcd. for C₁₇H₂₀N₃O₅⁺ 346.1397, found 346.1397.

2b: The desired product was obtained using the general procedure starting from triazole **2** and 4-fluorostyrene with a 61% yield (44.3 mg) as a white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.90 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 7.58-7.52 (m, 2H, -ArH), 7.08 (t, 2H, J = 8.6 Hz, -ArH), 6.96 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 5.69 (s,

2H, -NCH₂O-), 4.18 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 4.02 (s, 3H, -OCH₃), 3.78 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 1.97 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.6, 163.6 (d, $J_{CF} = 249.4$ Hz), 160.2, 155.2, 153.4, 138.8, 131.1 (d, $J_{CF} = 3.4$ Hz), 129.4 (d, $J_{CF} = 8.4$ Hz), 116.0 (d, $J_{CF} = 21.9$ Hz), 109.5 (d, $J_{CF} = 2.4$ Hz), 78.0, 67.6, 62.5, 52.9, 20.7; HRMS: calcd. for C₁₇H₁₉FN₃O₅⁺ 364.1303, found 364.1303.

2c: The desired product was obtained using the general procedure starting from triazole **2** and 4-chlorostyrene with a 64% yield (48.6 mg) as a white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.90 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 7.51 (d, 2H, J = 8.5 Hz, -ArH), 7.37 (d, 2H, J = 8.5 Hz, -ArH), 7.02 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 5.70 (s, 2H, -NCH₂O-), 4.19 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 4.03 (s, 3H, -OCH₃), 3.79 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 1.98 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.6, 160.2, 155.2, 153.6. 138.7, 135.8, 133.4, 129.2, 128.8, 110.4, 78.1, 67.7, 62.5, 53.0, 20.7; HRMS: calcd. for C₁₇H₁₉ClN₃O₅⁺ 380.1008, found 380.1007.

2d: The desired product was obtained using the general procedure starting from

triazole **2** and 4-methylstyrene with a 65% yield (46.7 mg) as a white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.93 (d, 1H, J_{trans} = 16.3 Hz, CH-vinyl), 7.47 (d, 2H, J = 8.0 Hz, -ArH), 7.21 (d, 2H, J = 7.8 Hz, -ArH), 6.99 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 5.69 (s, 2H, -NCH₂O-), 4.19 (t, 2H, J = 4.5 Hz, -CH₂CH₂OAc), 4.03 (s, 3H, -OCH₃), 3.79 (t, 2H, J = 4.5 Hz, -CH₂CH₂OAc), 2.38 (s, 3H, -CH₃), 1.98 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 160.3, 155.7, 153.5, 140.3, 140.2, 132.2, 129.7, 127.6, 108.8, 78.0, 67.6, 62.6, 52.9, 21.4, 20.7; HRMS: calcd. for C₁₈H₂₂N₃O₅⁺ 360.1554, found 360.1554.

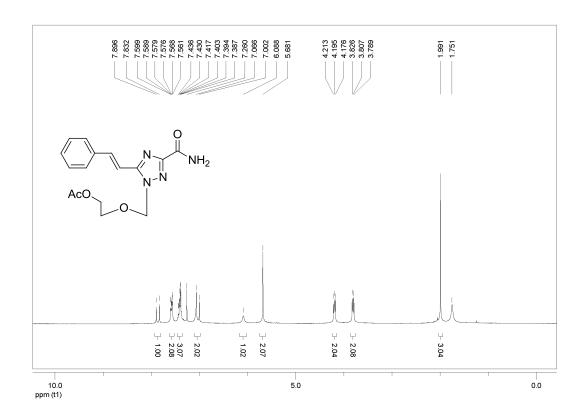
2e: The desired product was obtained starting from triazole **2** and 3-methylstyrene with a 66% yield (47.4 mg) as a white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.93 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 7.39-7.36 (m, 2H, -ArH), 7.31 (d, 1H, J = 7.5 Hz, -ArH), 7.19 (d, 1H, J = 7.5 Hz, -ArH), 7.03 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 5.71 (s, 2H, -NCH₂O-), 4.20 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 4.03 (s, 3H, -OCH₃), 3.80 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 2.39 (s, 3H, -CH₃), 1.99 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.7, 160.3, 155.5, 153.5, 140.4, 138.6, 134.9, 130.8, 128.9, 128.1, 124.9, 109.6, 78.1, 67.6, 62.6, 52.9, 21.4, 20.7; HRMS: calcd. for C₁₈H₂₂N₃O₅⁺ 360.1554, found 360.1554.

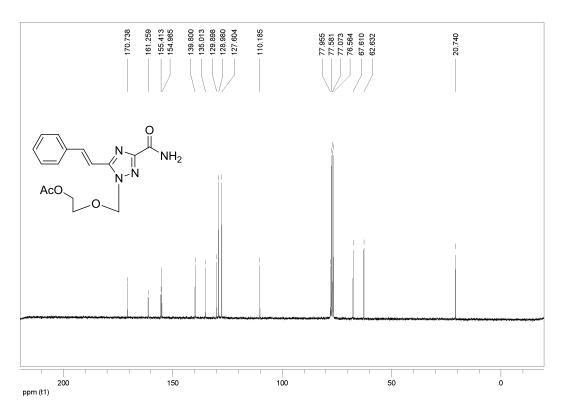
2f: The desired product was obtained using the general procedure starting from triazole **2** and 2-methylstyrene with a 54% yield (38.8 mg) as a white solid. ¹H NMR (250 MHz, CDCl₃): δ 8.17 (d, 1H, J_{trans} = 15.8 Hz, CH-vinyl), 7.63-7.59 (m, 1H, -ArH), 7.29-7.24 (m, 3H, -ArH), 6.97 (d, 1H, J_{trans} = 15.8 Hz, CH-vinyl), 5.70 (s, 2H, -NCH₂O-), 4.20 (t, 2H, J = 4.5 Hz, -CH₂CH₂OAc), 4.04 (s, 3H, -OCH₃), 3.81 (t, 2H, J = 4.6 Hz, -CH₂CH₂OAc), 2.47 (s, 3H, -CH₃), 1.99 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.5, 160.1, 155.4, 153.3, 137.7, 137.3, 133.9, 130.7, 129.5, 126.2, 125.7, 111.2, 78.0, 67.4, 62.4, 52.8, 20.5, 19.8; HRMS: calcd. for C₁₈H₂₂N₃O₅⁺ 360.1554, found 360.1554.

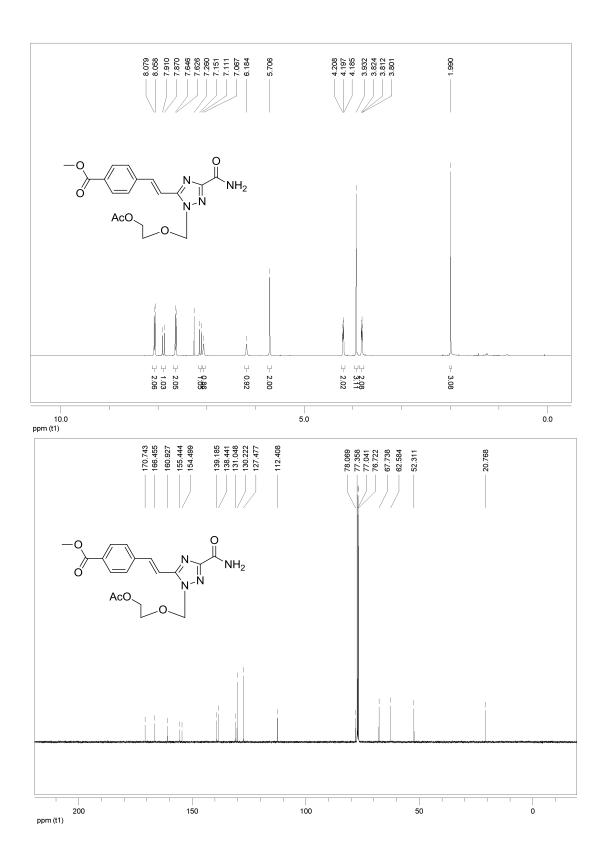
4a: The desired product was obtained using the general procedure starting from triazole **4** and styrene with a 56% yield (52.9 mg) as a white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.92 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 7.58-7.54 (m, 2H, -ArH), 7.41-7.36 (m, 3H, -ArH), 7.02 (br s, 1H, -C(O)NH), 6.95 (d, 1H, J_{trans} = 15.8 Hz, CH-vinyl), 6.25 (br s, 1H, -C(O)NH), 6.11 (d, 1H, J = 3.3 Hz, H-1'), 6.00-5.96 (m, 1H, H-2'), 5.71 (t, 1H, J = 5.5 Hz, H-3'), 4.49-4.39 (m, 2H, H-4' + H-5'), 4.21-4.14

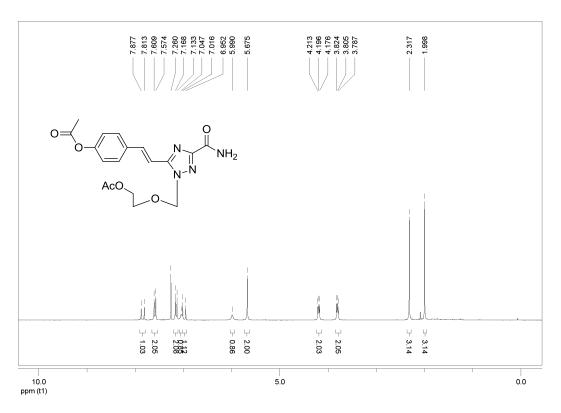
(m, 1H, H-5'), 2.12 (s, 6H, -C(O)CH₃), 2.02 (s, 3H, -C(O)CH₃); 13 C NMR (62.5 MHz, CDCl₃): δ 170.6, 169.5, 169.3, 160.7, 155.9, 140.7, 135.0, 130.0, 129.0, 127.7, 109.5, 87.9, 81.0, 74.2, 71.0, 62.8, 20.6, 20.5; HRMS: calcd. for $C_{22}H_{25}N_4O_8^+$ 473.1667, found 473.1669.

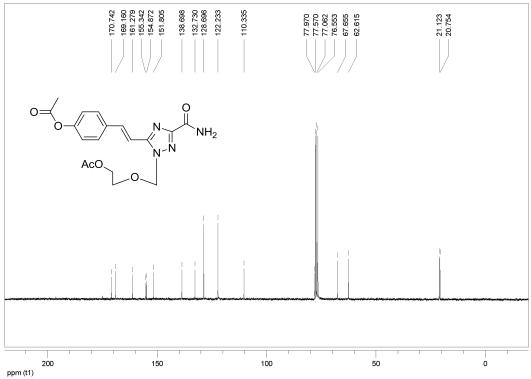
4b: The desired product was obtained using the general procedure starting from triazole **4** and 4-fluorostyrene with a 57% yield (55.9 mg) as a white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.88 (d, 1H, J_{trans} = 15.8 Hz, CH-vinyl), 7.57-7.52 (m, 2H, -ArH), 7.11-7.02 (m, 3H, -ArH + -C(O)NH), 6.87 (d, 1H, J_{trans} = 15.8 Hz, CH-vinyl), 6.21 (br s, 1H, -C(O)NH), 6.10 (s, 1H, H-1'), 5.98-5.97 (m, 1H, H-2'), 5.71 (t, 1H, J = 5.1 Hz, H-3'), 4.40-4.39 (m, 2H, H-4' + H-5'), 4.20-4.14 (m, 1H, H-5'), 2.12 (s, 6H, -C(O)CH₃), 2,01 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.5, 169.5, 169.4, 163.7 (d, J_{CF} = 249.4 Hz), 160.7, 155.9, 155.5, 139.4, 131.3 (d, J_{CF} = 3.3 Hz), 129.5 (d, J_{CF} = 8.3 Hz), 116.1 (d, J_{CF} = 21.8 Hz), 109.3 (d, J_{CF} = 2.2 Hz), 87.9, 80.9, 74.2, 70.9, 62.8, 20.6, 20.5; HRMS: calcd. for $C_{22}H_{24}FN_4O_8^+$ 491.1573, found 491.1570.


4c: The desired product was obtained using the general procedure starting from triazole **4** and 4-chlorostyrene with a 56% yield (56.8 mg) as a white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.89 (d, 1H, J_{trans} = 15.8 Hz, CH-vinyl), 7.51 (d, 2H, J = 8.5 Hz, -ArH), 7.38 (d, 2H, J = 8.5 Hz, -ArH), 6.96-6.90 (m, 2H, CH-vinyl + -C(O)NH), 6.10 (d, 1H, J = 3.0 Hz, H-1'), 6.00-5.97 (m, 1H, H-2'), 5.72 (t, 2H, J = 5.5 Hz, H-3' + -C(O)NH), 4.50-4.40 (m, 2H, H-4' + H-5'), 4.23-4.16 (m, 1H, H-5'), 2.14 (m, 6H, -C(O)CH₃), 2.03 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.5, 169.5, 169.4, 160.6, 155.9, 155.4, 139.2, 135.8, 133.5, 129.2, 128.8, 110.1, 87.9, 81.0, 74.2, 70.9, 62.8, 20.6, 20.5; HRMS: calcd. for C₂₂H₂₄ClN₄O₈⁺ 507.1277, found 507.1273.


4d: The desired product was obtained using the general procedure starting from triazole **4** and 4-methylstyrene with a 55% yield (53.5 mg) as a white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.90 (d, 1H, J_{trans} = 15.8 Hz, CH-vinyl), 7.47 (d, 2H, J = 8.0 Hz, -ArH), 7.21 (d, 2H, J = 8.0 Hz, -ArH), 6.99 (br s, 1H, -C(O)NH), 6.90 (d, 1H, J_{trans} = 16.0 Hz, CH-vinyl), 6.11 (d, 1H, J = 3.0 Hz, H-1'), 6.01-5.97 (m, 1H, H-2'), 5.87 (br s, 1H, -C(O)NH), 5.73 (t, 1H, J = 5.5 Hz, H-3'), 4.49-4.40 (m, 2H, H-4' + H-5'),


4.22-4.15 (m, 1H, H-5'), 2.38 (s, 3H, -CH₃), 2.13 (s, 6H, -C(O)CH₃), 2.04 (s, 3H, -C(O)CH₃); 13 C NMR (62.5 MHz, CDCl₃): δ 170.6, 169.5, 169.3, 160.9, 155.9, 140.7, 140.3, 132.2, 129.7, 127.6, 108.4, 87.8, 80.9, 74.2, 71.0, 62.8, 21.4, 20.6, 20.5; HRMS: calcd. for $C_{23}H_{27}N_4O_8^+$ 487.1823, found 487.1824.


4e: The desired product was obtained using the general procedure starting from triazole **4** and 3-methylstyrene with a 60% yield (58.4 mg) as a white solid. ¹H NMR (250 MHz, CDCl₃): δ 7.90 (d, 1H, J_{trans} = 15.8 Hz, CH-vinyl), 7.38-7.27 (m, 3H, -ArH), 7.19 (d, 1H, J = 7.3 Hz, -ArH), 7.04 (br s, 1H, -C(O)NH), 6.95 (d, 1H, J_{trans} = 15.8 Hz, CH-vinyl), 6.23 (br s, 1H, -C(O)NH), 6.13 (d, 1H, J = 3.0 Hz, H-1'), 6.02-5.99 (m, 1H, H-2'), 5.73 (t, 1H, J = 5.4 Hz, H-3'), 4.50-4.40 (m, 2H, H-4' + H-5'), 4.22-4.15 (m, 1H, H-5'), 2.39 (s, 3H, -CH₃), 2.14 (s, 6H, -C(O)CH₃), 2.03 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.6, 169.5, 169.3, 160.8, 155.9, 155.7, 140.9, 138.6, 134.9, 130.8, 128.8, 128.3, 124.9, 109.3, 87.9, 81.0, 74.2, 71.0, 62.8, 21.4, 20.6, 20.5; HRMS: calcd. for C₂₃H₂₇N₄O₈⁺ 487.1823, found 487.1825.


4f: The desired product was obtained using the general procedure starting from triazole **4** and 2-methylstyrene with a 53% yield (51.6 mg) as a white solid. ¹H NMR (250 MHz, CDCl₃): δ 8.14 (d, 1H, $J_{trans} = 15.8$ Hz, CH-vinyl), 7.62-7.59 (m, 1H, -ArH), 7.28-7.19 (m, 3H, -ArH), 7.04 (br s, 1H, -C(O)NH), 6.87 (d, 1H, $J_{trans} = 15.8$ Hz, CH-vinyl), 6.11 (d, 2H, J = 3.3 Hz, -C(O)NH + H-1'), 6.00-5.97 (m, 1H, H-2'), 5.72 (t, 1H, J = 5.4 Hz, H-3'), 4.48-4.40 (m, 2H, H-4' + H-5'), 4.22-4.15 (m, 1H, H-5'), 2.46 (s, 3H, -CH₃), 2.13 (s, 6H, -C(O)CH₃), 2.03 (s, 3H, -C(O)CH₃); ¹³C NMR (62.5 MHz, CDCl₃): δ 170.6, 169.5, 169.3, 160.7, 155.9, 155.7, 138.5, 137.6, 134.2, 130.9, 129.8, 126.3, 125.9, 110.9, 87.9, 81.0, 74.2, 71.0, 62.8, 20.6, 20.5, 19.9; HRMS: calcd. for C₂₃H₂₇N₄O₈⁺ 487.1823, found 487.1825.

