Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

## Electronic Supplementary Information (ESI)

## QSAR Study on the Inhibition Mechanism of Matrix Metalloproteinase-12 by Arylsulfone Analogs Based on Molecular Orbital Calculations

Seiji Hitaoka,<sup>a</sup> Hiroshi Chuman,<sup>b,\*</sup> and Kazunari Yoshizawa<sup>a,\*</sup>

<sup>a</sup>Institute for Materials Chemistry and Engineering and International Research Center for Molecular System, Kyushu University, Fukuoka 819-0395, Japan

<sup>b</sup>Institute of Health Biosciences, The University of Tokushima Graduate School, 1-78 Shomachi, Tokushima 770-8505, Japan

\*E-mail: hchuman@tokushima-u.ac.jp \*E-mail: kazunari@ms.ifoc.kyushu-u.ac.jp

| List of Contents:                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Page         Table S1 Structural data for the docked and experimental geometries around the catalytic zinc ion block.         S2                                                                                                   |
| <b>Table S2</b> Representative energy terms (kcal/mol) obtained from the time-average complexes of<br>compounds (a) <b>2</b> and (b) <b>6</b> for the MD simulations.S3                                                            |
| <b>Table S3</b> RMSD values (Å) between the first ranked pose (highest docking score) and the othertop 10 ranked poses.S4                                                                                                          |
| <b>Table S4</b> Overall free-energy change $\Delta G$ and representative energy terms for compounds in the<br>external test set.S5                                                                                                 |
| <b>Table S5</b> IFIED (arylsulfone inhibitor, $Zn_{cat}^{2+}$ block) and $\Sigma$ IFIED values.S6                                                                                                                                  |
| Fig. S1 FMO fragmentation of ion blocks.S7–S9                                                                                                                                                                                      |
| <b>Fig. S2</b> Comparison between the docked (top 10 ranked) and crystallographically observed binding modes of the zinc binding groups. S10                                                                                       |
| <b>Fig. S3</b> Plots of $\Delta G_{obs}$ with $\Delta G_{calc}$ for the training (internal) and test (external) sets obtained from the LERE-QSAR equations (a) (6), (b) (7), and (c) (8). Solid and open symbols represent types I |

and II compounds, respectively. S11

Fig. S4 Variance profile of the dispersion interaction energy.S12

Table S1 Structural data for the docked and experimental geometries around the catalytic zinc ion block

| Glu219                                 | OHd <sub>3</sub> |                    |                                     | R₂<br> <br>mpoun   | Glu219—                      |                    | O = O = O = O = O = O = O = O = O = O = |                    | O <sub>2</sub> S <sup>R<sub>2</sub></sup><br>Type II compound |  |
|----------------------------------------|------------------|--------------------|-------------------------------------|--------------------|------------------------------|--------------------|-----------------------------------------|--------------------|---------------------------------------------------------------|--|
| compound                               |                  |                    | $\mathbf{d}_1^a$                    |                    | $d_2^a$                      |                    | $d_3^a$                                 |                    | $	au^a$                                                       |  |
| no.                                    | type             | first <sup>b</sup> | top 10 <sup><i>c</i>,<i>d</i></sup> | first <sup>b</sup> | top 10 <sup><i>c,d</i></sup> | first <sup>b</sup> | top 10 <sup><i>c</i>,<i>d</i></sup>     | first <sup>b</sup> | top 10 <sup><i>c,d</i></sup>                                  |  |
| 1                                      | Ι                | 2.21               | 2.22 (0.01)                         | 2.25               | 2.26 (0.01)                  | 3.16               | 3.30 (0.32)                             | 81.13              | 111.13 (38.68)                                                |  |
| 2                                      | Ι                | 2.23               | 2.23 (0.01)                         | 2.23               | 2.25 (0.01)                  | 3.21               | 3.21 (0.34)                             | 83.69              | 135.29 (38.33)                                                |  |
| 3                                      | Ι                | 2.20               | 2.21 (0.01)                         | 2.24               | 2.26 (0.01)                  | 3.29               | 3.09 (0.13)                             | 88.22              | 137.46 (51.61)                                                |  |
| 4                                      | Ι                | 2.19               | 2.21 (0.01)                         | 2.24               | 2.25 (0.01)                  | 3.31               | 3.10 (0.17)                             | 89.36              | 125.91 (47.60)                                                |  |
| 5                                      | II               | 2.17               | 2.19 (0.06)                         | 2.51               | 2.40 (0.09)                  | 2.59               | 2.60 (0.02)                             | 13.67              | 23.30 (13.72)                                                 |  |
| 6                                      | II               | 2.16               | 2.22 (0.07)                         | 2.55               | 2.93 (1.08)                  | 2.60               | 3.09 (0.81)                             | 22.39              | 73.82 (75.57)                                                 |  |
| 7                                      | Π                | 2.16               | 2.19 (0.05)                         | 2.64               | 2.92 (1.12)                  | 2.59               | 3.24 (0.87)                             | 24.32              | 125.23 (109.47)                                               |  |
| 8                                      | II               | 2.16               | 2.18 (0.04)                         | 2.53               | 2.91 (1.12)                  | 2.59               | 3.34 (0.88)                             | 24.07              | 129.76 (122.17)                                               |  |
| calculated                             | Ι                | 2.2                | 2.22 (0.01)                         |                    | 2.25 (0.01)                  |                    | 3.18 (0.27)                             |                    | 127.45 (45.62)                                                |  |
| structure <sup>c,e</sup>               | II               | 2.20 (0.06)        |                                     | 2.79 (0.98)        |                              | 3.07 (0.79)        |                                         | 88.03 (100.46)     |                                                               |  |
| crystallographic                       | Ι                | 1.9                | 99 (0.16)                           | 2.7                | 71 (0.17)                    | 2.0                | 62 (0.06)                               | 4                  | 8.55 (17.67)                                                  |  |
| structure <sup><i>c</i>,<i>f</i></sup> | П                | 2.1                | 2 (0.16)                            | 2.2                | 20 (0.11)                    | 2.7                | 71 (0.19)                               | 6                  | 1.32 (10.62)                                                  |  |

<sup>*a*</sup>  $d_{1-3}$  (Å) and  $\tau$  (deg) are distances and angles defined in the insert figure, respectively.

<sup>b</sup> Value of the first ranked structure.

<sup>c</sup> Average value and standard deviation (in parentheses).

<sup>d</sup> Average values of the top 10 ranked complex structures.

<sup>e</sup> Average values of the complex structures for types I and II compounds.

<sup>f</sup> Average values were obtained from the crystallographic structures of MMP-12-ligand complexes (PDB codes: 1ROS, 3EHX, 3EHY, 3TS4, 4EFS, 4H84, 4I03, and 4H30 (type I); 1RMZ, 1YCM, 1Z3J, 2W0D, 2W08, 2W09, 2W0A, 3F1A, 3F15, 3F16, 3F17, 3F18, 3F19, 3LK8, 3N2U, 3N2V, 3NX7, 3RTS, 3RTT, 4GUY, 1JIZ, 1JK3, 4H49, and 4H76 (type II)).

| (a)                         | compound 2                            |                                |                                                                          |                     |  |  |  |  |  |
|-----------------------------|---------------------------------------|--------------------------------|--------------------------------------------------------------------------|---------------------|--|--|--|--|--|
| last t (ps)                 | $\Delta E_{ m bind}^{ m ONIOM/HF/ME}$ | $\Delta G_{ m sol}^{ m polar}$ | $\Delta E_{ m bind}^{ m ONIOM/HF/ME} + \Delta G_{ m sol}^{ m polar}$     | $E_{disp}{}^a$      |  |  |  |  |  |
| 200                         | $-304.96(2.07)^{b}$                   | $272.70(2.34)^{b}$             | $-32.26(0.20)^{b}$                                                       | $-94.8(0.18)^{b}$   |  |  |  |  |  |
| 300                         | $-306.83(2.06)^{b}$                   | $273.19(2.34)^{b}$             | $-33.64(0.19)^{b}$                                                       | $-93.7(0.18)^{b}$   |  |  |  |  |  |
| 400                         | $-305.06(2.07)^{b}$                   | $273.21(2.34)^{b}$             | $-31.85(0.20)^{b}$                                                       | $-96.1 (0.18)^{b}$  |  |  |  |  |  |
| single minimized structure  | -299.30                               | 266.65                         | -32.65                                                                   | -94.7               |  |  |  |  |  |
|                             |                                       |                                |                                                                          |                     |  |  |  |  |  |
| (b)                         |                                       | (                              | compound <b>6</b>                                                        |                     |  |  |  |  |  |
| last t (ps)                 | $\Delta E_{ m bind}^{ m ONIOM/HF/ME}$ | $\Delta G_{ m sol}^{ m polar}$ | $\Delta E_{\rm bind}^{\rm ONIOM/HF/ME} + \Delta G_{\rm sol}^{\rm polar}$ | $E_{disp}{}^a$      |  |  |  |  |  |
| 200                         | $-331.57(2.41)^{b}$                   | $285.43(2.32)^{b}$             | $-46.14(2.95)^{b}$                                                       | $-100.3 (0.62)^{b}$ |  |  |  |  |  |
| 300                         | $-328.45(2.43)^{b}$                   | $283.12(2.34)^{b}$             | $-45.33(3.01)^{b}$                                                       | $-101.5 (0.61)^{b}$ |  |  |  |  |  |
| 400                         | $-333.88(2.40)^{b}$                   | $287.34(2.31)^b$               | $-46.54(2.93)^{b}$                                                       | $-99.9(0.62)^{b}$   |  |  |  |  |  |
| ain als minimized atmesture |                                       | 001.00                         | 1= 0=                                                                    | 101 0               |  |  |  |  |  |

Table S2 Representative energy terms (kcal/mol) obtained from the time-average complexes of compounds (a) 2 and (b) 6 for the MD simulations

<sup>*a*</sup> Lennard–Jones R<sup>-6</sup> energy term in Amber force field. <sup>*b*</sup> A value in parentheses is the relative absolute error (%), which is defined as the absolute difference between energies of the single (only MM) and average (MD + MM) minimized complexes divided by the absolute individual energy term.

| nosa             |      | compound no. |      |      |      |      |      |      |  |  |  |
|------------------|------|--------------|------|------|------|------|------|------|--|--|--|
| pose             | 1    | 2            | 3    | 4    | 5    | 6    | 7    | 8    |  |  |  |
| 1 (first ranked) | —    | _            | _    | _    | _    | _    | _    | _    |  |  |  |
| 2                | 0.65 | 0.37         | 0.38 | 0.35 | 0.34 | 0.86 | 2.75 | 0.87 |  |  |  |
| 3                | 0.40 | 0.99         | 0.35 | 0.89 | 0.59 | 0.32 | 2.47 | 2.85 |  |  |  |
| 4                | 0.44 | 0.96         | 1.03 | 0.94 | 0.91 | 1.77 | 2.39 | 3.24 |  |  |  |
| 5                | 0.64 | 0.35         | 1.08 | 0.61 | 0.70 | 1.93 | 3.21 | 3.08 |  |  |  |
| 6                | 0.72 | 0.47         | 0.82 | 2.83 | 1.33 | 1.88 | 2.98 | 3.15 |  |  |  |
| 7                | 0.60 | 0.56         | 0.61 | 0.98 | 0.91 | 2.09 | 2.94 | 2.09 |  |  |  |
| 8                | 0.44 | 0.45         | 0.66 | 0.36 | 1.66 | 0.67 | 3.12 | 2.96 |  |  |  |
| 9                | 0.62 | 0.97         | 2.97 | 0.48 | 1.87 | 1.02 | 2.73 | 2.90 |  |  |  |
| 10               | 1.01 | 1.01         | 0.81 | 0.61 | 1.98 | 1.49 | 2.97 | 3.41 |  |  |  |

Table S3 RMSD values (Å) between the first ranked pose (highest docking score) and the other top 10 ranked poses

|                |                                   |                         | 0, 0<br>0, 0<br>0, 0      | 025                            |                                |                                       |                                             |                             |                                        |                |
|----------------|-----------------------------------|-------------------------|---------------------------|--------------------------------|--------------------------------|---------------------------------------|---------------------------------------------|-----------------------------|----------------------------------------|----------------|
| Compour        | nd <b>9</b> (IC <sub>50</sub> = 1 | 900 nM)                 | Co                        | ompound <b>10</b> (            | IC <sub>50</sub> = 310 nM)     | Compound                              | <b>11</b> (IC <sub>50</sub> = 6.0 nM)       | Compound                    | d <b>12</b> (IC <sub>50</sub> = 2.7 nN | 1)             |
| compo          | und                               |                         |                           |                                |                                |                                       |                                             |                             |                                        |                |
| no.            | type                              | $\Delta G_{ m obs}{}^b$ | $\Delta G_{\rm pred}{}^c$ | $\Delta G_{\mathrm{pred}}{}^d$ | $\Delta G_{\mathrm{pred}}^{e}$ | $\Delta E_{ m bind}^{ m ONIOM/HF/ME}$ | $\Delta E_{	ext{bind}}^{	ext{ONIOM/HF/EE}}$ | $\Delta E_{ m bind}$ FMO/HF | $\Delta G_{ m sol}^{ m polar}$         | $E_{\rm disp}$ |
| 9              | Ι                                 | -8.12                   | -8.37                     | -8.33                          | -8.41                          | -299.96                               | -291.51                                     | -294.24                     | 266.50                                 | -78.45         |
| 10             | Ι                                 | -9.23                   | -9.07                     | -8.91                          | -9.31                          | -301.60                               | -292.55                                     | -297.59                     | 270.35                                 | -83.76         |
| 11             | Π                                 | -11.66                  | -12.83                    | -12.59                         | -11.78                         | -343.17                               | -333.08                                     | -335.71                     | 290.13                                 | -78.61         |
| 12             | Π                                 | -12.15                  | -13.37                    | -13.15                         | -12.72                         | -342.05                               | -331.94                                     | -337.17                     | 291.94                                 | -83.97         |
| $r_{\rm pred}$ |                                   |                         | 0.861                     | 0.908                          | 0.981                          |                                       |                                             |                             |                                        |                |

**Table S4** Overall free-energy change  $\Delta G$  and representative energy terms<sup>*a*</sup> for compounds in the external test set

<sup>*a*</sup> In kcal/mol.

<sup>b</sup>  $\Delta G_{obs} = RT \ln IC_{50} (T = 310 \text{ K})$ . IC<sub>50</sub> values were obtained as racemates (ref 42).

<sup>*c*</sup> Predicted from eqn (6).

<sup>*d*</sup> Predicted from eqn (7).

<sup>*e*</sup> Predicted from eqn (8).

<sup>*f*</sup> Predictive correlation coefficient.

| compound |      |                                                                   |                             |                       |
|----------|------|-------------------------------------------------------------------|-----------------------------|-----------------------|
| no.      | type | IFIED (arylsulfone inhibitor, $Zn_{cat}^{2+}$ block) <sup>b</sup> | $\Sigma$ IFIED <sup>c</sup> | contribution $(\%)^d$ |
| 1        | Ι    | -235.02                                                           | -366.31                     | 64.16                 |
| 2        | Ι    | -236.99                                                           | -389.60                     | 60.83                 |
| 3        | Ι    | -237.41                                                           | -373.46                     | 63.57                 |
| 4        | Ι    | -237.73                                                           | -384.65                     | 61.80                 |
| 5        | II   | -268.53                                                           | -413.40                     | 64.96                 |
| 6        | II   | -271.98                                                           | -437.48                     | 62.17                 |
| 7        | II   | -275.47                                                           | -423.36                     | 65.07                 |
| 8        | II   | -272.71                                                           | -427.91                     | 63.73                 |

**Table S5** IFIED (arylsulfone inhibitor,  $Zn_{cat}^{2+}$  block) and  $\Sigma$ IFIED values<sup>*a*</sup>

<sup>*a*</sup> In kcal/mol.

<sup>b</sup> IFIED (arylsulfone inhibitor,  $Zn_{cat}^{2+}$  block) =  $E(arylsulfone inhibitor - Zn_{cat}^{2+} block) - [E(arylsulfone inhibitor) + E(Zn_{cat}^{2+} block)].$ 

 $^{c}$   $\Sigma$ IFIED represents the sum of the IFIED values for all the fragments.

<sup>*d*</sup> Percentage of IFIED (arylsulfone inhibitor,  $Zn_{cat}^{2+}$  block) in  $\Sigma$ IFIED.



(a)





**Fig. S1** FMO fragmentation of ion blocks : (a)  $Zn_{cat}^{2+}$ , (b)  $Zn_{str}^{2+}$ , (c)  $Ca_{I}^{2+}$ , (d)  $Ca_{II}^{2+}$ , and (e)  $Ca_{III}^{2+}$  blocks. Atoms shown in blue are combined together and treated as a single FMO fragment in FMO calculations. The catalytic zinc ion block ( $Zn_{cat}^{2+}$  block:  $Zn_{cat}^{2+}$ , His218, His222, and His228) and an arylsulfone inhibitor were combined and treated as a single FMO fragment (arylsulfone inhibitor– $Zn_{cat}^{2+}$  block) to avoid the convergence problem in the FMO calculations. The similar treatment was applied to the structural zinc ion block ( $Zn_{str}^{2+}$  block:  $Zn_{str}^{2+}$ , His168, His183, His196, and Asp170) and three calcium ion blocks. FMO-fragments (including the binding water molecule) other than two  $Zn^{2+}$  and three  $Ca^{2+}$  blocks were taken as one residue.



**Fig. S2** Comparison between the docked (top 10 ranked) and crystallographically observed binding modes of the zinc binding groups. Superimpositions of the X-ray structure of the carboxylic acid zinc binding group based ligand (PDB code: 3EHY) and the type I compounds (a) 1, (b) 2, (c) 3, and (d) 4. Superimpositions of the X-ray structure of the hydroxamic acid zinc binding group based ligand (3F17) and the type II compounds (e) 5, (f) 6, (g) 7, and (h) 8. The X-ray and first ranked types I and II structures are represented in a stick model with magenta, yellow, and cyan, respectively. The other docked structures are represented in a line model.



Fig. S3 Plots of  $\Delta G_{obs}$  with  $\Delta G_{calc}$  for the training (internal) and test (external) sets obtained from the LERE-QSAR equations (a) (6), (b) (7), and (c) (8). Solid and open symbols represent types I and II compounds, respectively.



Amino acid residues Fig. S4 Variance profile of the dispersion interaction energy.