Unprecedented, One-Pot, Sequential Thiolate Substitutions of 8-methylthio-BODIPY under Mild Conditions leading to a Red Emissive BODIPY Dye 3,5,8-tris(PhS)-BODIPY.

 Electronic Supplementary Information

 Electronic Supplementary Information}
Robinson Roacho ${ }^{1}$, Alejandro Metta-Magaña ${ }^{1}$, Eduardo Peña-Cabrera ${ }^{2}$, Keith Pannell ${ }^{1 *}$
${ }^{1}$ Department of Chemistry, University of Texas at El Paso. El Paso, Texas, 79968-0513, USA.
${ }^{2}$ Departamento de Química, Universidad de Guanajuato. Col. Noria Alta S/N. Guanajuato, Gto. 36050, Mexico.
Corresponding Author: Keith Pannell. kpannell@utep.edu

Table of Contents

Experimental Details
Table 1. Summary of the optical properties of BODIPYs 2, 3, 4 4
Figure 1. Absorbance (left) and emission spectra (right) of 2 5
3,8-bis(phenylthio)BODIPY3
Figure $2{ }^{1} \mathrm{H}$ NMR 6
Figure $3{ }^{1} \mathrm{H}$ NMR expanded 7
Figure $4 \quad{ }^{19}$ F NMR 8
Figure $5 \quad{ }^{13} \mathrm{C}$ NMR 9
$\begin{array}{ll}\text { 3,5,8-tris(phenylthio)BODIPY 4 } \\ \text { Figure } 6 & { }^{1} \mathrm{H} \text { NMR }\end{array}$
Figure $7 \quad{ }^{1} \mathrm{H}$ NMR expanded 11
Figure $8 \quad{ }^{19}$ F NMR $\quad 12$
$\begin{array}{lll}\text { Figure } 9 & { }^{13} \mathrm{C} \text { NMR } & 13\end{array}$
8-ethylthio-BODIPY 4

Figure $10 \quad{ }^{1} \mathrm{H}$ NMR 14
Figure $11 \quad{ }^{1} \mathrm{H}$ NMR expanded $\quad 15$
Figure $12{ }^{19} \mathrm{~F}$ NMR 16
$\begin{array}{ll}\text { Figure } 13 & { }^{13} \mathrm{C} \text { NMR } \\ 17\end{array}$

Crystal Packing Aspects of 2, 3, and $4 \quad 18$

Experimental

Compound 2 was synthesized by reacting $1(50 \mathrm{mg}, 0.21 \mathrm{mmol}$ purchased from Cuantico de Mexico, (Guanajuato, Mexico) with 1.5 eq. of PhSH in dry dichloromethane under nitrogen atmosphere. After 6 hours of stirring at room temperature silica gel thin-layer chromatography indicated that the reaction was finished. The product was purified by silica gel column chromatography using a $30 / 70 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ solvent system. The final product was recrystallized from a dichloromethane/hexane mixture.

Compounds 3 and 4 were synthesized by reacting $1(50 \mathrm{mg}, 0.21 \mathrm{mmol})$ with 3 eq. of phenylthiol in dry tetrahydrofuran under nitrogen atmosphere. After 6 hours of stirring at room temperature silica gel thin-layer chromatography indicated that compound $\mathbf{3}$ was formed. Further stirring for 48 hours produced compound 4 . The products were purified by silica gel column chromatography using $30 / 70 \% \mathrm{EtOAc} / \mathrm{Hexanes}$. The final products were recrystallized from a dichloromethane/hexane mixture. The same results were obtained by reacting 2 with PhSH under identical conditions.

Compound 5 was synthesized by reacting $1(50 \mathrm{mg}, 0.21 \mathrm{mmol}$ purchased from Cuantico de Mexico, Guanajuato, Mexico) with 1.5 eq. of EtSH in tetrahydrofuran under nitrogen atmosphere. After 6 hours of stirring at room temperature silica gel thin-layer chromatography indicated that the reaction was finished. The product was purified by silica gel column chromatography using 30/70\% EtOAc/Hexane solvent system. The final products were recrystallized from a dichloromethane/hexane mixture.

2: Orange crystals, yield $94 \%, 59.2 \mathrm{mg}$; m.pt. $134-135^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 6.37-6.38 (d, $2 \mathrm{H}, \mathrm{J}$ $=5.28 \mathrm{~Hz}), 6.95(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.08 \mathrm{~Hz}), 7.40-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.60(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.56 \mathrm{~Hz}), 7.75(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 118.0(\mathrm{CH}), 126.8(\mathrm{CH}), 130.0(\mathrm{CH}), 130.3(\mathrm{CH}), 131.9(\mathrm{C}), 133.1(\mathrm{CH})$, 134.2 (C), $142.1(\mathrm{CH}), 150.0(\mathrm{C}) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right)-145.5(\mathrm{~m})$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{~S}$: C,60.03; H, 3.69. Found: C, 60.14; H, 3.95.

3: Red crystals, yield 59%, 51.4 mg ; m.p. $163-164^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.78(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.8$ $\mathrm{Hz}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.42 \mathrm{~Hz}), 7.07(\mathrm{~d}, 1 \mathrm{H}, 4.8 \mathrm{~Hz}), 7.30-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.47$ $(\mathrm{m}, 5 \mathrm{H}), 7.62-7.65(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 116.7(\mathrm{CH}), 119.7(\mathrm{CH}), 126.2(\mathrm{CH}), 128.5$ $(\mathrm{CH}), 128.9(\mathrm{C}), 129.8(\mathrm{CH}), 129.9(\mathrm{CH}), 130.3(\mathrm{CH}), 130.4(\mathrm{CH}), 131.2(\mathrm{CH}), 134.3(\mathrm{C}), 134.4$
(C), $135.3(\mathrm{CH}), 138.7(\mathrm{C}), 139.1(\mathrm{CH}), 139.9(\mathrm{C}), 152.4(\mathrm{C}) .{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}\right)$-147.6 (m). Anal. Cald. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2}$: C,61.78; H, 3.70. Found: C, 61.86; H, 3.85.

4: Red crystals, yield $19 \%, 20.5 \mathrm{mg}$; m.pt. $92-93{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.79(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.8 \mathrm{~Hz})$, $6.98(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.14 \mathrm{~Hz}), 7.22(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.56 \mathrm{~Hz}), 7.25-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.37(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $8.22 \mathrm{~Hz}), 7.40-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.65(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.64 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 118.5(\mathrm{CH}), 127.8$ $(\mathrm{CH}), 128.1(\mathrm{CH}), 129.6(\mathrm{CH}), 129.7(\mathrm{CH}), 129.8(\mathrm{CH}), 129.9(\mathrm{CH}), 130.0(\mathrm{CH}), 133.3(\mathrm{C})$, $135.0(\mathrm{CH}), 135.5(\mathrm{C}), 138.1$ (C), 157.5 (C). ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-147.5(\mathrm{~m})$. Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{~S}_{3}$: C,62.79; H, 3.71. Found: C, $61.41 ; \mathrm{H}, 3.66$. Note: The isolated yield of the reaction was poor due to the presence of trace compounds with similar R_{f} values in the chromatography purification process.

5: Orange crystals, yield $82 \%, 43.3 \mathrm{mg}(0.17 \mathrm{mmol})$; m.p. $92-93^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.40-$ $1.42(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.74 \mathrm{~Hz}), 3.34-3.38(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.56), 6.51(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.14 \mathrm{~Hz}), 7.41(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $4.14 \mathrm{~Hz}), 7.79(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.9\left(\mathrm{CH}_{3}\right), 32.5\left(\mathrm{CH}_{2}\right), 118.0(\mathrm{CH}), 128.5(\mathrm{CH})$, 135.1 (C), $142.2(\mathrm{CH}), 151.4(\mathrm{C}) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right)-145.8(\mathrm{~m})$. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{~S}$: C, 52.41; H, 4.40. Found: C, 52.74; H, 4.25.

The new compounds were characterized by NMR spectroscopy using a Bruker 600 MHz NMR; UV-vis spectroscopy recorded in a Cary 50 spectrometer; fluorescence spectroscopy recorded on an Olis DM 45 fluorometer. Rhodamine B ($\Phi=0.70$ in ethanol) and cresyl violet perchlorate (Φ $=0.54$ in ethanol) were used as standards for the calculation of the quantum yields.

	2				3				4			
Solvent	$\begin{gathered} \hline \lambda_{\max } \\ \mathrm{Abs} \\ (\mathrm{~nm}) \\ \hline \end{gathered}$	$\varepsilon\left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$	$\begin{gathered} \hline \lambda_{\max } \mathrm{E} \\ \mathrm{~m} \\ (\mathrm{~nm}) \\ \hline \end{gathered}$	ϕ	$\begin{gathered} \hline \lambda_{\max } \\ \mathrm{Abs} \\ (\mathrm{~nm}) \\ \hline \end{gathered}$	$\varepsilon\left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$	$\begin{gathered} \hline \lambda_{\max } \\ \mathrm{Em} \\ (\mathrm{~nm}) \\ \hline \end{gathered}$	ϕ	$\begin{gathered} \lambda_{\max } \mathrm{A} \\ \mathrm{bs} \\ (\mathrm{~nm}) \\ \hline \end{gathered}$	$\varepsilon\left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$	$\begin{gathered} \hline \lambda_{\max } \\ \mathrm{Em} \\ (\mathrm{~nm}) \\ \hline \end{gathered}$	ϕ
Hexane	497	24,000	542	0.61	554	83,000	593	0.39	609	63,000	630	0.24
DCM	495	24,000	N.D.		551	83,000	598	0.05	609	57,500	634	0.23
THF	493	21,000	N.D.		553	74,000	598	0.05	609	51,000	632	0.22
Acetone	493	23,000	N.D.		548	69,000	595	0.02	603	50,000	628	0.18
MeOH	497	24,000	N.D.		545	75,000	593	0.02	603	49,000	628	0.19

Table 1. Summary of the optical properties of BODIPYs 2-4.

Figure 1. Absorbance (left) and emission spectra of 2

Figure 2. 3,8-bis(phenylthio)BODIPY 3; ${ }^{1} \mathrm{H}$ NMR

Figure 3. 3,8-bis(phenylthio)BODIPY 3; ${ }^{1} \mathrm{H}$ NMR expanded

Figure 4. 3,8-bis(phenylthio)BODIPY 3; ${ }^{19}$ F NMR

Figure 5. 3,8-bis(phenylthio)BODIPY 3; ${ }^{13} \mathrm{C}$ NMR

Figure 6. 3,8-bis(phenylthio)BODIPY 4; ${ }^{1} \mathrm{H}$ NMR

Figure 7. 3,5,8-tris(phenylthio)BODIPY 4; ${ }^{1} \mathrm{H}$ NMR expanded.

Figure 8. 3,5,8-tris(phenylthio)BODIPY 4; ${ }^{19}$ F NMR

Figure 9. 3,5,8-tris(phenylthio)BODIPY 4; ${ }^{13} \mathrm{C}$ NMR

Figure 10. 8-ethylthio-BODIPY 5, ${ }^{1} \mathrm{H}$ NMR

Figure 11. 8-ethylthio-BODIPY 5, ${ }^{1} \mathrm{H}$ NMR zoom

Figure 12. 8-ethylthio-BODIPY 5, ${ }^{19} \mathrm{~F}$ NMR

Figure 13. 8-ethylthio-BODIPY 5, ${ }^{13} \mathrm{C}$ NMR

Crystal Packing aspects of 2, 3 and 4

In the case of the monothio BODIPY 2, in the crystal structure can be observed the formation of ribbons or chains by the HB between the F atoms and two hydrogens in the aromatic ring ($\mathrm{F} 1 \cdots \mathrm{H} 13$ [2.635 \AA] and $\mathrm{F} 2 \cdots \mathrm{H} 11[2.395 \AA]$, Figure9). These chains are then interlinked by more HB through the F atoms (F1 $\cdots \mathrm{H} 12$ [2.514 \AA] and F2 $\cdots \mathrm{H} 1$ [2.440 \AA]) generating a 2-D structure (Figure9).

Figure 14
On the other hand, the presence of the second phenyl ring on the bis-adduct 3 blocks the interactions with the hydrogen on the bodipy core generating a chain motif along axis \boldsymbol{b} through F2 $\cdots \mathrm{H} 11[2.605 \AA]$ and F2 $\cdots \mathrm{H} 20$ [2.558 \AA], Figure10a. Another structural change in the crystal is the formation of dimers (Figure10b), not observed in the mono-adduct, with a distance of $3.493 \AA$ between the mean planes of each bodipy with a close interaction of the F and S atoms of $3.054 \AA$, probably the driving force, because that distance is shorter than the Van der Waal's distance by $0.216 \AA$. This F \cdots S interactions interlock chain motifs generating a 2-D structure.

a

b

Figure 15

In the case of the tris adduct, $\mathbf{4}$, the formation of dimers is also observed (Figure11), the distance between them (mean planes) is $3.531 \AA$, as expected a little longer than the bis adduct due to the increased molecular volume. Due to the same reason the $\mathrm{F} \cdots \mathrm{S}$ interactions are slightly longer $(3.158 \AA)$, but still below the sum of VdW radii by $0.112 \AA$. But in this molecule, the $\mathrm{F} \cdots \mathrm{S}$ interaction is not necessary as in the bis-adduct to expand the order of the architecture to 2-D, but they are collaborating with the F $\cdots \mathrm{H}$ network, $\mathrm{F} 1 \cdots \mathrm{H} 25$ [2.551 \AA], F2 $\cdots \mathrm{H} 26$ [2.464 \AA], Figures 12 and 13.

Figure 16. Dimer for 4

Figure 17. Partial HB network generated from a central molecule of 4

Figure 18. HB network molecules of 4 in different color to increase clarity

