Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Copper-Catalysed α-Selective Allylic Alkylation of Heteroaryllithium reagents

Carlos Vila, Valentín Hornillos, Martín Fañanás-Mastral and Ben L. Feringa*

correspondence to: b.l.feringa@rug.nl

Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.

Table of Contents

Table of Contents	S2
General Methods	S 3
General Procedures for the allylic alkylation	S 3
Preparation of Organolithium Reagents	S4
Spectral Data of Compounds 3a-3o	S4
¹ H and ¹³ C NMR of isolated compounds	S9

General methods:

All reactions were carried out under a nitrogen atmosphere using oven dried glassware and using standard Schlenk techniques. THF, TBME and toluene were dried and distilled over sodium. All copper salts (CuBr·SMe₂, CuI and CuCl) were purchased from Aldrich and used without further purification. ⁿBuLi (1.6 M solution in hexane) was purchased from Acros. Furan, benzofuran, benzofhiophene, cinnamyl bromide, cinnamyl chloride, 3-bromocyclohexene and trans-1,4-dibromo-2-butene were purchased from Aldrich. Allyl bromides **2b**, ¹ **2c**, ¹ **2d**, ¹ **2e**, ¹ **2f**, ² **2h**, ³ **2j**⁴ and **2o**¹ were prepareded following a literature procedure. The branched:linear ratio was determined by 1H NMR analysis and GC and mass spectra analysis of each compound.

Chromatography: Merck silica gel type 9385 230-400 mesh, TLC: Merck silica gel 60, 0.25 mm. Components were visualized by UV and cerium/molybdenum or potassium permanganate staining. Progress and conversion of the reaction were determined by GC-MS (GC, HP6890: MS HP5973) with an HP1 or HP5 column (Agilent Technologies, Palo Alto, CA). Mass spectra were recorded on an AEI-MS-902 mass spectrometer (EI+) or a LTQ Orbitrap XL (ESI+). ¹H- and ¹³C-NMR were recorded on a Varian AMX400 (400 and 100.59 MHz, respectively) using CDCl₃ as solvent. Chemical shift values are reported in ppm with the solvent resonance as the internal standard (CHCl₃: δ 7.26 for ¹H, δ 77.0 for ¹³C). Data are reported as follows: chemical shifts, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constants (Hz), and integration. Carbon assignments are based on APT ¹³C-NMR experiments. Melting points were measured using a Büchi Melting Point B-545.

General Procedures for the allylic alkylation

Method A: General procedure for allylic alkylation with 2-thienyllithium.

In a dry Schlenk flask CuBr·SMe₂ (2 mol%, 0.01 mmol, 2.04 mg) and the allyl bromide (0.2 mmol) were dissolved in 2 mL of dry THF at -5 °C. 2-Thienyllithium (1.5 equiv or 1.1 equiv, 0.3 mmol,) was diluted with THF to reach the concentration of 0.3 M; this solution was slowly added over 1 h by the use of a syringe pump. After the addition was completed the reaction mixture was stirred for 2 additional hours. After that a saturated aqueous solution of NH₄Cl was added and the mixture was extracted three times with ether. The organic phases were collected, dried over Na₂SO₄ and filtered. The solvent evaporated under reduced pressure afforded the crude product that was then purified by column chromatography.

Method B: General procedure for allylic alkylation with 2-heteroaryllithium reagents.

In a dry Schlenk flask CuBr·SMe₂ (2 mol%, 0.01 mmol, 2.04 mg) and the allyl bromide (0.2 mmol) were dissolved in 2 mL of dry THF at -5 °C. 2-heteroaryllithium reagent (1.5 equiv, 0.3 mmol, 0.3 M in THF) was slowly added over 1 h by the use of a syringe pump. After the addition was completed the reaction mixture was stirred for 2 additional hours. After that a saturated aqueous solution of NH₄Cl was added and the mixture was extracted three times with ether. The organic phases were collected, dried over Na₂SO₄ and filtered. The solvent evaporated under reduced pressure afforded the crude product that was then purified by column chromatography.

¹ Vyas, D.J., Oestreich, M., Chem. Commun., 2010, 568-570.

² Armstrong, A. Gethin, D.M., Wheelhouse, C.J. Synlett, 2004, 350-352.

³ Ellwood, A.R., Mortimer, A.J.P., Tocher, D.A., Porter, M.J. Synlett, 2008, 2199-2203.

⁴ Teichert, J.T., Zhang, S., van Zijl, A.W., Slaa, J.W., Minnaard, A.J., Feringa, B.L., Org. Lett. 2010, 12, 4658-4660.

Preparation of organolithium reagents:

A. benzo[b]thiophen-2-yllithium, 2-furanyllithium and 2-benzofuranyllithium reagents In a dry Schlenk flask, heteroarene (3.0 mmol) was dissolved in dry THF (8 mL) and the solution was cooled to 0 °C. *n*-BuLi (1 equiv.) was added slowly and the solution was stirred for 10 min. Then the solution was allowed to reach room temperature and stirred for 1h.

Spectral data of compounds 3a-3o:

2-Cinnamylthiophene (3a): Synthesized according to **Method A**. [86% yield, 98:2 regioselectivity, starting from (*E*)-(3-bromoprop-1-en-1-yl)benzene] [93% yield, 98:2 regioselectivity, starting from (*E*)-(3-chloroprop-1-en-1-yl)benzene] Colorless oil obtained after column chromatography (SiO₂, *n*-pentane/EtOAc 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 7.2 Hz, 2H), 7.34 (t, J = 7.5 Hz, 2H), 7.25 (t, J = 7.2 Hz, 1H), 7.19 (dd, J = 5.1, 1.1 Hz, 1H), 6.99 (dd, J = 5.1, 3.5 Hz, 1H), 6.92-6.88 (m, 1H), 6.54 (d, J = 15.8 Hz, 1H), 6.40 (dt, J = 15.7, 6.8 Hz, 1H), 3.77 (d, J = 6.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 143.1, 137.2, 131.4, 128.6, 128.2, 127.3, 127.0, 126.3, 124.7, 123.8, 33.4 ppm. The physical data were identical in all respects to those previously reported.⁵

(*E*)-Methyl 4-(3-(thiophen-2-yl)prop-1-en-1-yl)benzoate (3b): Synthesized according to Method A. [60% yield, 95:5 regioselectivity] Colorless oil obtained after column chromatography (SiO₂, *n*-pentane/EtOAc 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 2H), 7.18 (dd, *J* = 5.1, 0.9 Hz, 1H), 6.97 (dd, *J* = 5.1, 3.5 Hz, 1H), 6.87 (d, *J* = 2.6 Hz, 1H), 6.62-6.39 (m, 2H), 3.91 (s, 3H), 3.77 (d, *J* = 5.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 142.3, 141.7, 131.1, 130.5, 129.9, 128.8, 127.0, 126.1, 124.9, 123.9, 52.0, 33.4 ppm. HRMS (APCI+, *m/z*): calcd for C₁₂H₁₅OS [M+H]⁺: 259.0787; found: 259.0787.

(*E*)-2-(3-(4-Bromophenyl)allyl)thiophene (3c): Synthesized according to Method A. [81% yield, 95:5 regioselectivity] Colorless oil obtained after column chromatography (SiO₂, *n*-pentane/EtOAc 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.4 Hz, 2H), 7.23 (t, *J* = 8.5

⁵ G. W. Kabalka, G. Dong, B. Venkataiah, Org. Lett. 2003, 5, 893.

Hz, 2H), 7.18 (dd, J = 5.1, 1.1 Hz, 1H), 6.97 (dd, J = 5.1, 3.5 Hz, 1H), 6.86 (dd, J = 3.3, 0.9 Hz, 1H), 6.45 (d, J = 15.9 Hz, 1H), 6.36 (dt, J = 15.7, 6.4 Hz, 1H), 3.73 (d, J = 6.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.6, 136.1, 131.6, 130.2, 129.1, 127.8, 127.0, 124.8, 123.9, 121.0, 33.3 ppm. HRMS (APCI+, m/z): calcd for C₁₃H₁₂BrS [M+H]⁺: 278.9838; found: 278.9839.

(*E*)-2-(3-(4-(Trifluoromethyl)phenyl)allyl)thiophene (3d): Synthesized according to Method A. [91% yield, 95:5 regioselectivity] Colorless oil obtained after column chromatography (SiO₂, *n*-pentane/EtOAc 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.2 Hz, 2H), 7.46 (d, *J* = 8.2 Hz, 2H), 7.20 (dd, *J* = 5.2, 0.7 Hz, 1H), 6.98 (dd, *J* = 5.1, 3.5 Hz, 1H), 6.89 (d, *J* = 3.1 Hz, 1H), 6.55 (d, *J* = 15.9 Hz, 1H), 6.48 (dt, *J* = 15.7, 6.0 Hz, 1H), 3.78 (d, *J* = 6.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 140.6 (q, *J*_{C-F} = 1.2 Hz), 131.0, 130.1, 129.1 (q, *J*_{C-F} = 32.5 Hz), 127.0, 126.4, 125.5 (q, *J*_{C-F} = 5.5 Hz), 125.0, 124.2 (q, *J*_{C-F} = 271.6 Hz), 124.0, 33.3 ppm. HRMS (APCI+, *m*/z): calcd for C₁₄H₁₂F₃S [M+H]⁺: 269.0606; found: 269.0608.

(*E*)-2-(3-(4-Nitrophenyl)allyl)thiophene (3e): Synthesized according to Method A. [83% yield, 95:5 regioselectivity] Colorless oil obtained after column chromatography (SiO₂, *n*-pentane/EtOAc 100:1). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.8 Hz, 2H), 7.48 (d, *J* = 8.8 Hz, 2H), 7.20 (dd, *J* = 5.1, 0.8 Hz, 1H), 6.98 (dd, *J* = 5.1, 3.5 Hz, 1H), 6.88 (d, *J* = 2.9 Hz, 1H), 6.61-6.49 (m, 2H), 3.80 (d, *J* = 4.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 141.6, 133.4, 129.4, 127.1, 126.7, 125.2, 124.2, 124.0, 123.8, 33.4 ppm. HRMS (APCI+, *m/z*): calcd for C₁₃H₁₂NO₂S [M+H]⁺: 246.0583; found: 246.0583.

(*E*)-2-(4-(Benzyloxy)but-2-en-1-yl)thiophene (3f): Synthesized according to Method A. [78% yield, 96:4 regioselectivity]. Colorless oil obtained after column chromatography (SiO₂, *n*-pentane/EtOAc 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.28 (m, 5H), 7.16 (dd, *J* = 5.1, 1.1 Hz, 1H), 6.95 (dd, *J* = 5.1, 3.4 Hz, 1H), 6.85-6.81 (m, 1H), 5.97-5.88 (m, 1H), 5.80-5.71 (m, 1H), 4.54 (s, 2H), 4.04 (dd, *J* = 6.0, 1.1 Hz, 2H), 3.61 (d, *J* = 6.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.9, 138.3, 132.0, 128.4, 128.2, 127.8, 127.6, 126.9, 124.7, 123.8, 72.0, 70.4, 32.8 ppm. HRMS (APCI+, *m*/z): calcd for C₁₅H₁₇OS [M+H]⁺: 245.0995; found: 245.0989.

(*S,E*)-2,2-Dimethyl-4-(3-(thiophen-2-yl)prop-1-en-1-yl)-1,3-dioxolane (3g): Synthesized according to Method A. [90% yield, 92:8 regioselectivity] Colorless oil obtained after column chromatography (SiO₂, *n*-pentane/EtOAc 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.14 (dd, J = 5.1, 1.1 Hz, 1H), 6.93 (dd, J = 5.1, 3.5 Hz, 1H), 6.82-6.79 (m, 1H), 5.96 (dt, J = 14.1, 6.7 Hz, 1H), 5.58 (ddt, J = 15.2, 7.6, 1.3 Hz, 1H), 4.52 (dd, J = 14.8, 7.4 Hz, 1H), 4.09 (dd, J = 8.1, 6.2 Hz, 1H), 3.61-3.57 (m, 3H), 1.43 (s, 3H), 1.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 132.8, 129.2, 126.9, 124.8, 123.7, 109.2, 76.8, 69.4, 32.6, 26.7, 25.9 ppm. MS-EI: *m/z* (%) 224 (M+, 25), 209 (45), 166 (30), 149 (80), 135 (60), 115 (50), 97 (77), 72 (100).

(*E*)-*N*-allyl-4-methyl-N-(4-(thiophen-2-yl)but-2-en-1-yl)benzenesulfonamide (3h): Synthesized according to Method A. [68% yield, 96:4 regioselectivity] Colorless oil obtained after column chromatography (SiO₂, *n*-pentane/EtOAc 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.2 Hz, 2H), 7.27 (d, *J* = 8.3 Hz, 2H), 7.13 (dd, *J* = 5.1, 1.1 Hz, 1H), 6.92 (dd, *J* = 5.1, 3.5 Hz, 1H), 6.75-6.72 (m, 1H), 5.72 (dt, *J* = 14.8, 6.7 Hz, 1H), 5.61 (ddt, *J* = 16.1, 9.8, 6.3 Hz, 1H), 5.38 (dt, *J* = 15.0, 6.6 Hz, 1H), 5.18-5.08 (m, 2H), 3.80-3.79 (m, 4H), 3.50 (d, *J* = 6.7 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 142.5, 137.5, 133.3, 132.7, 129.6, 127.2, 126.9, 126.0, 124.6, 123.7, 119.9, 49.2, 48.3, 32.6, 21.5 ppm. HRMS (APCI+, *m/z*): calcd for C₁₈H₂₁NOSNa [M+Na]⁺: 370.0906; found: 370.0905.

2-(cyclohex-2-en-1-yl)thiophene (3i): Synthesized according to **Method A**. [96% yield] Colorless oil obtained after column chromatography (SiO₂, *n*-pentane/Ether 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.15 (dd, J = 5.1, 0.7 Hz, 1H), 6.95 (dd, J = 5.0, 3.5 Hz, 1H), 6.84 (d, J = 3.4 Hz, 1H), 5.88-5.80 (m, 2H), 3.71 (br s, 1H), 2.11-2.06 (m, 3H), 1.82-1.71 (m, 2H), 1.67-1.60 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 150.5, 129.7, 128.3, 126.5, 123.3, 122.9, 36.7, 32.5, 24.9, 20.7 ppm. HRMS (APCI+, *m/z*): calcd for C₁₀H₁₃S [M+H]⁺: 165.0732; found: 165.0732.

(E)-1,4-di(thiophen-2-yl)but-2-ene (3j): Synthesized according to Method A. [70% yield, 95:5 regioselectivity] Colorless oil obtained after column chromatography (SiO₂, *n*-pentane/EtOAc 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, *J* = 4.9 Hz, 2H), 6.95 (s, 2H),

6.83 (s, 2H), 6.07 (br s, 2H), 3.88 (s, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 130.3, 127.1, 124.7, 123.9, 33.1 ppm. HRMS (APCI+, *m/z*): calcd for C₁₂H₁₃S₂ [M+H]⁺: 221.0453; found: 221.0454.

(*E*)-*N*-allyl-N-(4-(benzo[b]thiophen-2-yl)but-2-en-1-yl)-4-methylbenzenesulfonamide (3k): Synthesized according to Method B. [78% yield, 95:5 regioselectivity] Colorless oil obtained after column chromatography (SiO₂, *n*-pentane/Ether 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.8 Hz, 1H), 7.70 (d, *J* = 8.3 Hz, 2H), 7.67 (d, *J* = 7.6 Hz, 1H), 7.32 (t, *J* = 7.5 Hz, 1H), 7.29-7.22 (m, 3H), 6.97 (s, 1H), 5.83-5.72 (m, 1H), 5.63 (ddt, *J* = 16.6, 10.2, 6.3 Hz, 1H), 5.46 (dt, *J* = 14.9, 6.6Hz, 1H), 5.16 (dd, *J* = 8.5, 1.1 Hz, 1H), 5.13 (s, 1H), 3.85-3.82 (m, 4H), 3.57 (d, *J* = 6.7 Hz, 2H), 2.38 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 143.6, 143.2, 140.1, 139.5, 137.4, 132.8, 132.4, 129.6, 127.2, 126.8, 124.2, 123.7, 122.9, 122.1, 121.2, 120.0, 49.3, 48.3, 33.5, 21.5 ppm.

2-(cyclohex-2-en-1-yl)benzo[b]thiophene (3l): Synthesized according to **Method B**. [82% yield] Colorless oil obtained after column chromatography (SiO₂, *n*-pentane/Ether 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 7.6 Hz, 1H), 7.89 (d, *J* = 7.3 Hz, 1H), 7.60-7.40 (m, 3H), 6.26-6.01 (m, 2H), 3.96 (br s, 1H), 2.32 (br s, 3H), 2.10-1.96 (m, 2H), 1.93-1.82 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 151.2, 140.0, 139.2, 129.0, 128.9, 124.0, 123.4, 122.8, 122.2, 120.0 37.3, 31.9, 24.9, 20.6 ppm.

2-cinnamylfuran (3m): Synthesized according to **Method B**. [94% yield, 95:5 regioselectivity] Colorless oil obtained after column chromatography (SiO₂, *n*-pentane/Ether 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.37 (m, 3H), 7.19 (t, J = 7.5 Hz, 2H), 7.23 (t, J = 7.2 Hz, 1H), 6.52 (d, J = 15.8 Hz, 1H), 6.40-6.27 (m, 2H), 6.09 (d, J = 2.4 Hz, 1H), 3.58 (d, J = 6.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 141.3, 137.2, 132.0, 128.5, 127.3, 126.2, 125.6, 110.3, 105.6, 31.8 ppm. The physical data were identical in all respects to those previously reported.⁶

⁶ R. Riveiros, R. Tato, J. Perez-Sestelo, L. A. Sarandeses, Eur. J. Org. Chem. 2012, 3018-3023.

2-(cyclohex-2-en-1-yl)furan (30): Synthesized according to **Method B**. [65% yield] Colorless oil obtained after column chromatography (SiO₂, *n*-pentane). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 0.9 Hz, 1H), 6.29 (dd, *J* = 3.0, 1.9 Hz, 1H), 5.99 (d, *J* = 3.1 Hz, 1H), 5.90-5.82 (m, 1H), 5.77 (dd, *J* = 10.1, 2.5 Hz, 1H), 3.48 (br s, 1H), 2.06-1.95 (m, 3H), 1.80-1.70 (m, 2H), 1.66-1.58 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 158.9, 140.9, 128.7, 127.1, 109.9, 104.4, 35.0, 28.2, 24.9, 20.4 ppm. HRMS (APCI+, *m*/*z*): calcd for C₁₀H₁₃O [M+H]⁺: 149.0961; found: 149.0960.

(E)-2-(3-(4-chlorophenyl)allyl)benzofuran (3n): Synthesized according to Method B. [72% yield, 95:5 regioselectivity] Colorless oil obtained after column chromatography (SiO₂, *n*-pentane/Ether 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (dd, *J* = 6.8, 1.6 Hz, 1H), 7.44 (d, *J* = 7.9 Hz, 1H), 7.31 (d, *J* = 8.8 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 7.24-7.18 (m, 2H), 6.53 (d, *J* = 15.8 Hz, 1H), 6.48 (d, *J* = 0.8 Hz, 1H), 6.36 (dt, *J* = 15.8, 6.7 Hz, 1H), 3.70 (d, *J* = 6.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 156.7, 154.9, 135.5, 133.0, 131.5, 128.8, 128.7, 127.4, 125.4, 123.5, 122.6, 120.4, 110.9, 102.9, 32.1 ppm.

¹H and ¹³C NMR of isolated compounds

S11

S15

S18

S20

S21

