Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Electronic Supporting Information for

Oxidative Activation of Stable Dihydropyridine Amides to Reactive Acyl Donors

Erik Daa Funder, Julie B. Trads, and Kurt V. Gothelf*

Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark.

*kvg@chem.au.dk

Table of Contents

Stability of DHP amide 1 towards amide bond formation (CDCl ₃)	S2
Stability of DHP amide 1 towards amide bond formation (DCM)	S18
Stability of DHP amide 1 towards amide bond formation in various solvents	S26
Investigation of reaction intermediates by LC-MS	S28
Optimization of DDP 1 oxidation	S34
Optimization of amide bond formation with oxidized 1	S35
1 H NMR and 13 C NMR spectra for all compounds, HSQC for 9 and 11 and COSY for 11	S36

Stability of DHP amide 1 towards amide bond formation (CDCl₃)

To a solution of propionyl DHP (10 mg, 1 eq.) in $CDCl_3$ (0.6 mL) was phenylethyl amine (71 μ L, 1 eq.), from a 0.5 M solution in $CDCl_3$, added. The solution was stirred in a 4 mL vial at the specified temperature and the product formation was monitored by crude ¹H-NMR spectroscopy directly from the crude reaction mixture.

Zoom 0-6 ppm

Overlay spectra. The crude mixture (shown in blue) with overlay of the reference product (shown in red)

Zoomed overlay spectra with increased intensity of peaks in the crude mixture

After 48 h at rt. < 1% product formation. (Propionyl DHP (1 eq.) and phenylethyl amine (1 eq.) in CDCl₃).

After 48 h at rt. < 1% product formation. (Propionyl DHP (1 eq.) and phenylethyl amine (1 eq.) in CDCl₃). Zoom 6-0 ppm

After 24 h at 40 °C < 1% product formation. (Propionyl DHP (1 eq.) and phenylethyl amine (1 eq.) in CDCl₃)

After 48 h at 40 $^{\circ}$ C < 1% product formation. (Propionyl DHP (1 eq.) and phenylethyl amine (1 eq.) in CDCl₃).

After 48 h at 40 $^{\circ}$ C < 1% product formation. (Propionyl DHP (1 eq.) and phenylethyl amine (1 eq.) in CDCl₃). Zoom 6-0 ppm

After 24 h at 60 $^{\circ}$ C < 1% product formation. (Propionyl DHP (1 eq.) and phenylethyl amine (1 eq.) in CDCl₃).

After 24 h at 60 $^{\circ}$ C < 1% product formation. (Propionyl DHP (1 eq.) and phenylethyl amine (1 eq.) in CDCl₃). Zoom 6-0 ppm

After 48 h at 60 $^{\circ}$ C < 1% product formation. (Propionyl DHP (1 eq.) and phenylethyl amine (1 eq.) in CDCl₃).

After 48 h at 60 $^{\circ}C < 1\%$ product formation. (Propionyl DHP (1 eq.) and phenylethyl amine (1 eq.) in CDCl₃). Zoom 6-0 ppm

Stability of DHP amide 1 towards amide bond formation (CDCl₃)

To a solution of propionyl DHP (10 mg, 1 eq.) in CDCl₃ (0.6 mL) was phenylethyl amine (71 μ L, 1 eq.), from a 0.5 M solution in CDCl₃, and DMAP (3 eq.) added. The solution was stirred in a 4 mL vial at the specified temperature and the product formation was monitored by crude ¹H-NMR spectroscopy directly from the crude reaction mixture.

After 24 h at rt. < 1% product formation. (Propionyl DHP (1 eq.), phenylethyl amine (1 eq.), and DMAP (3 eq.) in CDCl₃).

Overlay spectra. The crude mixture (shown in blue) with overlay of the reference product (shown in red)

Zoomed overlay spectra with increased intensity of peaks in the crude mixture

After 48 h at rt. < 2% product formation. (Propionyl DHP (1 eq.), phenylethyl amine (1 eq.), and DMAP (3 eq.) in CDCl₃).

After 48 h at rt. < 2% product formation. (Propionyl DHP (1 eq.), phenylethyl amine (1 eq.), and DMAP (3 eq.) in CDCl₃). Zoom 6-0 ppm

After 24 h at 40 °C < 2% product formation. (Propionyl DHP (1 eq.), phenylethyl amine (1 eq.), and DMAP (3 eq.) in CDCl₃).

After 24 h at 40 °C < 2% product formation. (Propionyl DHP (1 eq.), phenylethyl amine (1 eq.), and DMAP (3 eq.) in CDCl₃). Zoom 6-0 ppm.

After 48 h at 40 °C < 6% product formation. (Propionyl DHP (1 eq.), phenylethyl amine (1 eq.), and DMAP (3 eq.) in CDCl₃).

fter 48 h at 40 °C < 6% product formation. (Propionyl DHP (1 eq.), phenylethyl amine (1 eq.), and DMAP (3 eq.) in CDCl₃). Zoom 6-0 ppm.

After 24 h at 60 °C < 6% product formation. (Propionyl DHP (1 eq.), phenylethyl amine (1 eq.), and DMAP (3 eq.) in CDCl₃).

After 24 h at 60 °C < 6% product formation. (Propionyl DHP (1 eq.), phenylethyl amine (1 eq.), and DMAP (3 eq.) in CDCl₃). Zoom 6-0 ppm.

After 48 h at 60 °C < 7% product formation. (Propionyl DHP (1 eq.), phenylethyl amine (1 eq.), and DMAP (3 eq.) in CDCl₃).

After 48 h at 60 °C < 7% product formation. (Propionyl DHP (1 eq.), phenylethyl amine (1 eq.), and DMAP (3 eq.) in CDCl₃). Zoom 6-0 ppm.

Stability of DHP amide 1 towards amide bond formation (DCM)

To a solution of propionyl DHP (10 mg, 1 eq.) in DCM (0.6 mL) was phenylethyl amine (71 μ L, 1 eq.), from a 0.5 M solution in DCM, added. The solution was stirred in a 4 mL vial at rt. and the product formation was monitored by crude ¹H-NMR spectroscopy directly from the crude reaction mixture.

After 24 h < 1% product formation. (Propionyl DHP (1 eq.) and phenylethyl amine (1 eq.) in DCM)

Overlay spectra. The crude mixture (shown in blue) with overlay of the reference product (shown in red)

Zoomed overlay spectra with increased intensity of peaks in the crude mixture

After 48 h < 1% product formation. (Propionyl DHP (1 eq.) and phenylethyl amine (1 eq.) in DCM)

After 48 h < 1% product formation. (Propionyl DHP (1 eq.) and phenylethyl amine (1 eq.) in DCM). Zoom 0-6 ppm

Stability of DHP amide 1 towards amide bond formation (DCM)

To a solution of propionyl DHP (10 mg, 1 eq.) in DCM (0.6 mL) was phenylethyl amine (71 μ L, 1 eq.), from a 0.5 M solution in DCM, and DMAP (3 eq.) added. The solution was stirred in a 4 mL vial at rt. and the product formation was monitored by crude ¹H-NMR spectroscopy directly from the crude reaction mixture.

Overlay spectra. The crude mixture (shown in blue) with overlay of the reference product (shown in red)

Zoomed overlay spectra with increased intensity of peaks in the crude mixture

After 48 h < 18% product formation. (Propionyl DHP (1 eq.), phenylethyl amine (1 eq.), and DMAP (3 eq.) in DCM)

After 48 h < 18% product formation. (Propionyl DHP (1 eq.), phenylethyl amine (1 eq.), and DMAP (3 eq.) in DCM. Zoom 0-6 ppm

Stability of DHP amide 1 towards amide bond formation in various solvents

To a solution of propionyl DHP (10 mg) in the solvent specified (0.6 mL) was phenylethyl amine (71 μ L, 1 eq.) from 0.5 M solution in the solvent specified, added. The solution was stirred in a 4 mL vial at rt. and the product formation was monitored by crude ¹H-NMR spectroscopy of the crude reaction mixture.

Investigation of reaction intermediates by LC-MS

Reaction conditions:

To a solution of DHP amide 1 (14 mg, 0.048 mmol, 1.1 eq.) in DCM (0.8 mL) was DDQ (10 mg, 0.044 mmol, 1 eq.) added. After 30 minutes the reaction was monitored by LC-MS. The peaks in the resulting LC chromatogram were then identified by doing separate LC chromatograms for the individual compounds. A small drift in retention time is in some cases observed.

The LC chromatogram obtained after 30 minutes of oxidation w. DDQ is the following:

Individual LC chromatograms for the individual compounds proposed as reaction intermediates: Reduced DDQ

Mono ester of reduced DDQ

DHP amide 1

Di ester of reduced DDQ

Optimization of DDP (1) oxidation

1						
			solvent			
O OEt				0 ⁵⁰ OEt		
Entry ^a	Oxidant	Solvent	Temp (°C)	Time (h)	Conversion (%)	
1	$Cu(NO_3)_2$	$CDCl_3$	rt	5	-	
2	CuCl ₂	$CDCl_3$	rt	5	-	
3	$Cu(OAc)_2$	$CDCl_3$	rt	5	-	
4	CuI	CDCl ₃	rt	2	-	
5	TBAI	CDCl ₃	rt	2	-	
6	NIS	$CDCl_3$	rt	2	51	
7	ICl	CDCl ₃	rt	1.5	51	
8	ZnI_2	$CDCl_3$	rt	11	64	
9	ZnI_2	MeCN	rt	2	11	
10	ZnI ₂ ^b	$CDCl_3$	rt	2	78	
11	ZnI ₂ NaIO4 ^c	$CDCl_3$	rt	2	88	
12	ZnBr ₂	$CDCl_3$	rt	2	-	
13	$ZnCl_2$	$CDCl_3$	rt	2	-	
14	$ZnSO_4$	$CDCl_3$	rt	2	-	
15	Silica ^d	$CDCl_3$	rt	11	5	
16	DDQ	$CDCl_3$	rt	0.33	99	
17	TPAP, NMO	$CDCl_3$	rt	5	-	
18	MnO_2	$CDCl_3$	rt	5	-	
19	CAN	$CDCl_3$	rt	5	7	
20	CAN	MeCN	rt	2	42	
21	TetrafluoroQ	$CDCl_3$	rt	2	2	
22	Chloranil	CDCl ₃	rt	11	-	
23	O ₂ (balloon)	CDCl ₃	rt	24	<5	
24	NAD^+	CDCl ₃	rt	48	10	

Optimization of reaction conditions for the oxidation of DDP amide **1**.^{*a*}

^{*a*}Reaction conditions: **1** (0.040 mmol), oxidant (0.040 mmol) were stirred in 0.6 mL of solvent in a sealed vial. ^{*b*} Reaction was performed with 3 eq. oxidant. ^{*c*} Reaction was performed with 1 and 2 eq. oxidant. ^{*d*} Reaction was performed with 20 mg silica ^{*e*} Conversions were determined by ¹H NMR spectroscopy based on **1**.

Optimization of reaction conditions for the oxidation of 1 and subsequent reaction with phenylethylamine^a

Entry	Base	Amine	Solvent	Time	Conversion
		(eq.)		(h)	(%)
1	-	3	CDCl ₃	17	72
2	DIPEA	3	CDCl ₃	2	47
3	2,6-Lutidine	3	CDCl ₃	2	65
4	Pyridine	3	CDCl ₃	2	75
5	K_2CO_3	3	CDCl ₃	2	77
6	Cs ₂ CO ₃	3	CDCl ₃	2	100 (50)
7	DMAP	3	CDCl ₃	1	100 (86)
8	DMAP	3	DCM	1	100 (87)
9	DMAP	3	EtOAc	26	(44)
10	DMAP	3	Dioxane	26	(65)
11	DMAP (0.2 eq.)	3	DCM	4	(84)
12	DMAP (1 eq.)	3	DCM	1.5	(94)
13	DMAP (1 eq.)	1	DCM	6	(83)
14	DMAP (3 eq.)	1.1	DCM	1	(90)

^{*a*} Reaction conditions for entry 1-10: **1** (0.036 mmol) and DDQ (0.036 mmol) were stirred in 0.6 mL of solvent in a sealed vial (all reactions with isolated yields were performed on 0.18 mmol scale using 3.0 mL of solvent). After 30 minutes phenylethylamine (0.11 mmol) and base (0.11 mmol) were added. Reaction conditions for entry 11-14: **1** (0.18 mmol) and DDQ (0.18 mmol) were stirred in 3 mL DCM in a sealed vial (entry 14 was perfomed with DDQ (1 eq.) and **1** (1.1 eq.). After 30 minutes phenylethylamine and base were added according to the table. ^{*b*} Conversions were determined by ¹H NMR spectroscopy based on **1**. Isolated yields are reported in paranthesis.

-200 -180 -160 -140 -120 ZO. 01 1------60 -70 -80 -90 -100 f1 (ppm) -50 ш -40 Me -30 -20 -10 0 10

		1	Г ^о
19'8 \			- <mark>1</mark> 0
67 72			20
05 62 22 22 26 22 25 66 33			30
36 16			40
46.72 46.23	-		20
59' 85~ 26' 65~			- 09
97. 79 91. 79 92. 60			20
			- 80
			- 6
			pm)
			f1 (p
66' 871- 25' 871- 26' 871-			120
28' 82T- 96' 82T- 50' 62T-			130
59' 581-			140
			150
			160
18 221			170
			180
BnO.			190
2			200
		sterearling	210

-3500	-3000	-2500	-2000	-1500	-1000	-500	ο-	
							grékenden.	[°
T 4 '3								- 9
0' EZ								- 2
							in spectrum	- 8
							-	- 6
							industriation of	- 22
5'95								- 00
о тэ							-	0
							n ni ni ni ni	- 8
							1. Particular	- 6
							in your () (climari	- 00 (md
5'90T 9'TTT								f1 (F
							and the second	120
9'921								- 6
5.521-								- 6
9'T#T						_		0
#'83T								12
٤'99٦~							Naciona Chilling Pro-	16(
E'29T-⁄	OMe				-		li sina (site eti si	170
°=	₩°						Q. s. inputtion	- 180
							antopiation.	- 1
ш							in the second	50
							(ratel)	10

-15000	-14000	-13000	-12000	-11000	-10000	-0006	-8000	-7000	-6000	-5000	-4000	-3000	-2000	-1000	Ģ	1000	
															ubertim		
t' tT																	- 1
z: ɛz —															ed for the sector of		50
															multine		- 8
															an fan in the state		- 6
															Annalise and		- 22
Z' T9																	- 09
															a di tanggan di tanggan		- 02
			-														- 08
															a fa filmenta a filment		- 6
															distriction of the		- 8°E
															Section of the sectio		1 (ppr
2.511														-			
£'#ZT																	
0'967								-						_	٦		13
1380																	- 14
8.641																	150
۲.2551 ک																	160
0 ^{.99} 1->		02															170
er er		Š													Angelet		- 180
	;z-{														Automotion		190
Ē															al ang faile and a		500
															Allowed and		210

00006-	00008-	-70000	-60000	-50000	-40000	0000E-	-20000	-10000	, °	
₩ ₩ ₩										- 9
8' ZZ 1' 9Z	-									- 8
τ' οε										- 8
à 1Þ										- 4
										- 8
6' 09										- 9
										- R
										- 8
										- %
										- 90
										110 f1 (ppm
£ 111										20
									4	
1.151									$\langle \rangle$	
										- 41
									Ţ	150
9' 99 I										160
6° ZZ T										170
تر پ										180
****	0									190
										500
									and the second se	L 012

-25000	-20000	-15000	-10000	-5000	0
					10
					20
					- 30
2' SE E' T#					- 4
					- 20
E' 95 0' T9					- 99
					70
			-		8
					- 06
CHOT) 10 10
2 101-					
/'9ZT-					120
8'821			-		
Ζ'0ΕΤ_					
8.041~ 0.951~					
Z'EST					150
					160
ε·29T—					170
×.					180
° ²¹					190
Meo					200

-16000	-15000	-14000	-13000	-12000	-11000	-10000	0006-	-80.00	-7000	-60 00	-5000	-4000	000E-	-2000	-1000		_
9.5 2.1																na inn an a	70 60 50 40 30 20 10
+ '61 8'92 8'82 S'82 S'82 S'82 8'88																under ander der Sternen der Sternen der Sternen der Sternen under Sternen der Andere ander der Sternen der Ster	0 140 130 120 110 100 90 80 f1 (ppm)
۲.78		Ŧ														TAIN OF REPORTED AND AND AND AND AND AND AND AND AND AN	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-3500	000€-	-2500	-2000	-1500	-1000	-500	Ŷ	_
							Newwork	Ē
							nya wa elektro	- 9
0.07							in the second	- 8
5'02							(alternation)	- 8
6'SS ∠'0⊁								- 4
0'9+					-			- 3
							rinnak evens	- 8
							a la casta a la	
								- 8
							an a	- 8
							nu si	- %
							un multiple	- 100 (md
							10 berthonin	- 011 141
							Paris Andrea	120
2'32'2 2'38'2								- 130
2'621							a foregoe () to be	-
							d normality	
							ntinu n	- 1
							ntitul e totale	- 160
							a formation and the second	170
ε·921							l produced to	- 180
\sum_{z_1}	:						in the second	190
م	נ						MALA BAN, MALAN	- 500
							qhattiyele	- - -

-13000	-12000	-11000	-10000	-0006	-8000	-7000	-6000	-5000	-4000	-3000	-2000	-1000	0-	1000	
													(hubuluar)		
													out have been been		1
													ution of the second second		5
													all a state of the second		- 8 -
9'07															- 6
													NA AND AND AND A		20
													on the second second		- 09
															2
	_														- 8
													nhihmetrik		- 8
													uniterieta (- 8(g
													almu (speciel consider		110 f1 (pi
0' b 7 I —													and the second second		120
9'087													-		130
5'07T													, And a start of the		140
S'277													_		150
													(religion)		160
													Printed and a second		170
s's/t															180
													uportanion de la		190
ŧ													and a second		500
	N ² C														210

(mqq) th

(wdd) 1J

(mqq) th

