Supporting Informations

Copper (I) Promoted Cycloalkylation-Peroxidation of Unactivated Alkenes *via* sp³ C–H Functionalisation

Arghya Banerjee, Sourav K. Santra, Aniket Mishra, Nilufa Khatun and Bhisma K. Patel*

Department of Chemistry, Indian Institute of Technology Guwahati

Email: patel@iitg.ernet.in

Contents:

1.	Instrumentation and chemicals	S1-S2
2.	Optimisation of reaction conditions	S2-S4
3.	Figures and Schemes	S4-S7
4.	Experimental Procedure	S 8
5.	Determination of regioisomeric mixture	S8–S9
6.	Crystallographic description	S10-S11
7.	Mechanistic investigations	S11-S12
8.	Spectral data	S13–S22
9.	Spectra (¹ H and ¹³ C NMR) of compounds	S23-S78

Instrumentation and Chemicals:

All the reagents were commercial grade and purified according to the established procedures. Organic extracts were dried over anhydrous sodium sulphate. Solvents were removed in a rotary evaporator under reduced pressure. Silica gel (60-120 mesh size) was used for the column chromatography. Reactions were monitored by TLC on silica gel 60 F_{254} (0.25 mm). NMR spectra were recorded in CDCl₃ with tetramethylsilane as the internal standard for ¹H NMR (400 and 600 MHz), CDCl₃ solvent as the internal standard for ¹³C NMR (100 and 150

MHz). MS spectra were recorded using ESI mode. IR spectra were recorded in KBr or neat. Starting materials (3-substituted coumarins) (1-22) are prepared by reacting salicylaldehydes with active methylene compounds (diethyl malonate / ethylcyanoacetate / ethyl acetoacetate etc.) in presence of catalytic amount of piperidine using Knoevenagel condensation.¹

1. M. Ghandi, A.-T. Ghomi, and M. Kubicki, J. Org. Chem., 2013, 78, 2611.

Optimisation of reaction conditions:

Table S1. Screening of Reaction Conditions

$H + H + H + 40 \text{ mol}\% \text{ Cu}_2\text{O}$ $H + H + H + 40 \text{ mol}\% \text{ Cu}_2\text{O}$ $H + COMe + H + H + 40 \text{ mol}\% \text{ Cu}_2\text{O}$ $H + COMe + H + COMe + H + COMe$							
(1) (a)		(1a) (<u>+</u>)				
Entry	Cu cat. (mol %)	Solvent	Oxidant (equiv.)	Yield (%) ^{a,b}			
1	CuBr (20.0)	$C_{6}H_{12}$	TBHP (4.0)	21			
2	Cu ₂ O (20.0)	$C_{6}H_{12}$	TBHP (4.0)	47			
3	CuCl (20.0)	$C_{6}H_{12}$	TBHP (4.0)	23			
4	CuI (20.0)	$C_{6}H_{12}$	TBHP (4.0)	20			
5	CuBr ₂ (20.0)	$C_{6}H_{12}$	TBHP (4.0)	18			
6	$CuCl_2$ (20.0)	$C_{6}H_{12}$	TBHP (4.0)	02			
7	$Cu(OAc)_2$ (20.0)	$C_{6}H_{12}$	TBHP (4.0)	15			
8	Cu ₂ O (30.0)	$C_{6}H_{12}$	TBHP (4.0)	54			
9	Cu_2O (40.0)	C ₆ H ₁₂	TBHP (4.0)	60			
10	Cu ₂ O (40.0)	$C_{6}H_{12}$	DTBP (4.0)	07			
11°	$Cu_2O(40.0)$	$C_{6}H_{12}$	TBHP (4.0)	45			
12		$C_{6}H_{12}$	TBHP (4.0)	00			

^aReaction conditions: **1** (0.5 mmol), cyclohexane (C_6H_{12}) (**a**) (2.5 mL) at 110 °C for 2 h. ^bIsolated yield. ^cTBHP in 70% water was used in lieu of TBHP in decane.

Detailed Optimisation of the reaction conditions

Detailed studies of the reaction parameters such as amount of cyclohexane and *tert*-butyl hydroperoxide and reaction temperature are given here.

H	COCH ₃ + $\frac{H}{1000}$ + $1000000000000000000000000000000000000$	
(1)	X mL (a)	(1a) (<u>+</u>)
Entry	Cyclohexane (mL)	Yield ^{a,b}
1	0.5 mL	18
2	1.0 mL	31
3	1.5 mL	42
4	2.0 mL	53
5	2.5 mL	60
6	3.0 mL	61
7	a:chlorobenzene	00 ^c
8	a :DCE	06 ^c
9	a :benzene	00°

Table S2. Screening of Amount of Cyclohexane

^aReaction conditions: **1** (0.5 mmol), cyclohexane (**a**) (**X mL**) and TBHP (4 equiv.) at 110 °C for 2 h. ^bIsolated yield. ^ccyclohexane (2 mmol) was used in 2.5 mL of respective solvents.

Table S3. Screening of TBHP Amount

Reaction conditions: **1** (0.5 mmol), cyclohexane (**a**) (2.5 mL) and TBHP (**X** equiv.) at 110 °C for 2 h. ^bIsolated yield.

Table S4. Screening of Reaction Temperature

Reaction conditions: **1** (0.5 mmol), cyclohexane (**a**) (2.5 mL) and TBHP (4 equiv.) at **X** °C for 2 h. ^bIsolated yield.

Figures and Schemes:

Fig. S1. Some potent anti-malarial drugs

Fig. S2. ORTEP molecular diagram of 2a.

Fig. S3. ORTEP molecular diagram of 20a.

Fig. S4. ORTEP molecular diagram of 1a'.

Scheme S1. Reactions of unsubstituted coumarin, styrene and 3-acetamidocoumarin

Experimental Procedure:

Synthesis of 3-acetyl-3-(tert-butylperoxy)-4-cyclohexylchroman-2-one (1a) from 3-acetyl-2Hchromen-2-one (1), cyclohexane (a) and tert-butyl hydroperoxide

To an oven-dried 25 mL round bottom flask fitted with a reflux condenser was added 3acetylcoumarin (1) (0.094g, 0.5 mmol), decane solution of TBHP (5–6 M) (400 μ L, 2.0 mmol), Cu₂O (0.030g, 0.2 mmol), and cyclohexane (2.5 mL). The reaction mixture was refluxed in an oil bath preheated to 110 °C. After completion of the reaction (2 h) solvent was evaporated under reduced pressure. The reaction mixture was cooled to room temperature, admixed with water (5 mL) and the product was extracted with ethyl acetate (2 x10 mL). The organic layer was dried over anhydrous sodium sulphate (Na₂SO₄), and solvent was evaporated under reduced pressure. The crude product so obtained was purified over a column of silica gel (hexane / ethyl acetate, 10:0.1) to give pure 3-acetyl-3-(*tert*-butylperoxy)-4-cyclohexylchroman-2-one (**1a**) (0.108g, yield 60%). The identity and purity of the product was confirmed by spectroscopic analysis.

Determination of Regioisomeric Mixture: (A) Cu-catalyzed cycloalkylationperoxidation of methyl cyclohexane (d) with 3-acetylcoumarin (1).

¹H NMR (400 MHz, CDCl₃) of regioisomeric peroxides derived from methyl cyclohexane (**d**):

¹³C NMR (150 MHz, CDCl₃) of regioisomeric peroxides derived from methylcyclohexane (**d**):

Crystallographic Description

Crystal data were collected with Bruker Smart Apex-II CCD diffractometer using graphite monochromated MoK α radiation ($\lambda = 0.71073$ Å) at 298 K. Cell parameters were retrieved using SMART ^[a] software and refined with SAINT^[a] on all observed reflections. Data reduction was performed with the SAINT software and corrected for Lorentz and polarisation effects. Absorption corrections were applied with the program SADABS^[b]. The structure was solved by direct methods implemented in SHELX-97^[c] program and refined by full-matrix least-squares methods on F2. All non-hydrogen atomic positions were located in difference Fourier maps and refined anisotropically. The hydrogen atoms were placed in their geometrically generated positions. colourless crystals were isolated in rectangular shape from acetonitrile at room temperature.

- a. SMART V 4.043 Software for the CCD Detector System; Siemens Analytical Instruments Division: Madison, WI, 1995.
- SAINT V 4.035 Software for the CCD Detector System; Siemens Analytical Instruments Division: Madison, WI, 1995.
- c. Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures; University of Göttingen: Göttingen (Germany), 1997.

CCDC number for compound 2a: CCDC 1011616. This data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/datarequest/cif</u>.

Crystallographic description of 2a: Crystal dimension (mm): 0.34 x 0.22 x 0.20. $C_{21}H_{27}ClO_{5,}$ Mr = 394.88. monoclinic, space group p 21/n; a = 17.6306(4)Å, b = 6.5284(2)Å, c = 18.1875(4) Å; $\alpha = 90^{\circ}$, $\beta = 96.701(1)^{\circ}$, $\gamma = 90^{\circ}$, V = 2079.07(9) Å³; Z = 4; ρ_{cal} = 1.262g/cm³; μ (mm⁻¹) = 0.211; *F* (000) = 840.0; Reflection collected / unique = 3665 / 3560; Refinement method = Fullmatrix least-squares on *F*²; Final R indices [I>2 σ_l] R1 = 0.0395, wR2 = 0.0988, R indices (all data) R1 = 0.0484, wR2 = 0.1038; goodness of fit = 1.078. **CCDC number for compound 20a:** CCDC 1011614. This data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/datarequest/cif</u>.

Crystallographic description of 20a: Crystal dimension (mm): 0.34 x 0.22 x 0.20. C₂₀H₂₅NO₄, Mr = 343.41. monoclinic, space group p 21/n; a = 9.6382(7) Å, b = 12.5190(9) Å, c = 16.1542(12) Å; $\alpha = 90^{\circ}$, $\beta = 101.439(2)^{\circ}$, $\gamma = 90^{\circ}$, V = 1910.5(2) Å³; Z = 4; ρ_{cal} = 1.194g/cm³; μ (mm⁻¹) = 0.083; *F* (000) = 736.0; Reflection collected / unique = 1879 / 1469; Refinement method = Full-matrix least-squares on *F*²; Final R indices [I>2 σ_l] R1 = 0.0374, wR2 = 0.0980, R indices (all data) R1 = 0.0483, wR2 = 0.1100; goodness of fit = 1.150.

CCDC number for compound 1a': CCDC 1011615. This data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/datarequest/cif</u>.

Crystallographic description of 1a': Crystal dimension (mm): 0.32 x 0.20 x 0.18. $C_{15}H_{16}O_{3}$, Mr = 244.28. monoclinic, space group p 21/n; a = 5.518(2)) Å, b = 26.082(10) Å, c = 8.581(5) Å; α = 90°, β = 94.23(4) °, γ = 90°, V = 1231.6(10) Å³; Z = 4; ρ_{cal} = 1.379 g/cm³; μ (mm⁻¹) = 0.091; *F* (000) = 520.0; Reflection collected / unique = 2175 / 2174; Refinement method = Full-matrix least-squares on *F*²; Final R indices [I>2 σ_l] R1 = 0.0522, wR2 = 0.1400, R indices (all data) R1 = 0.0677, wR2 = 0.1497; goodness of fit = 1.144.

Mechanistic investigation:

Trapping of radical intermediates with radical scavenger TEMPO: An oven-dried 25 mL round bottom flask was charged with 3-acetylcoumarin (1) (0.094 g, 0.5 mmol), Cu₂O (0.030 g, 40 mol %), decane solution of TBHP (5–6 M) (400 μ L, 4 mmol), TEMPO (**A**) (0.078 g, 0.5 mmol) in cyclohexane (**a**) (2.5 mL). The flask was fitted to a reflux condenser and the reaction mixture was stirred in a preheated oil bath at 110 °C for 2 h. After completion of the reaction the cyclohexyl-TEMPO adduct 1-(cyclohexyloxy)-2,2,6,6-tetramethylpiperidine (**1A**) was isolated in 68% yield but no traces of the desired product (**1a**) was obtained. This experiment supports the formation of cyclohexyl radical in the medium from cyclohexane (**a**) induced radically by Cu₂O/TBHP and also the radical nature of the mechanism.

Spectral Data:

3-Acetyl-3-(tert-butylperoxy)-4-cyclohexylchroman-2-one (1a):

Solid; m.p. 179-181 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.31–7.27 (m, 1H), 7.14–7.07 (m, 2H), 7.03 (d, 1H, J = 8.0 Hz), 2.97 (d, 1H, J = 3.2 Hz), 2.47 (s, 3H), 1.76–1.51 (m, 6H), 1.30–1.12 (m, 3H), 1.01 (s, 9H), 0.91–0.81 (m, 1H), 0.64–0.53 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 203.5, 161.2, 151.2, 130.2, 128.6, 123.9, 121.1, 116.3, 86.1, 82.3, 48.9, 38.4, 32.4, 27.1, 26.9, 26.7, 26.2, 25.9, 25.8; IR (KBr, cm⁻¹): 2985, 2976, 2935, 2956, 1779, 1717, 1615, 1587, 1491, 1462, 1451, 1422, 1389, 1380, 1365, 1355, 1303, 1261, 1241, 1197, 1179, 1118, 1068, 1015, 918, 876, 779, 774; HRMS (ESI) calcd for C₂₁H₂₈O₅ (M + Na⁺) 383.1829, found 383.1830.

3-Acetyl-3-(*tert*-butylperoxy)-6-chloro-4-cyclohexylchroman-2-one (2a):

Solid; m.p. 167-170 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.28–7.25 (m, 1H), 7.08 (d, 1H, J = 2.4 Hz), 6.98 (d, 1H, J = 9.2 Hz), 2.95 (d, 1H, J = 2.4 Hz), 2.47 (s, 3H), 1.74–1.71 (m, 2H), 1.61–1.54 (m, 4H), 1.29–1.12 (m, 3H), 1.03 (s, 9H), 0.94–0.84 (m, 1H), 0.62–0.52 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 203.0, 160.6, 149.7, 129.8, 128.9, 128.7, 122.8, 117.5, 85.5, 82.5, 48.7, 38.2, 32.2, 27.0, 26.9, 26.5, 26.2, 25.8, 25.7; IR (KBr, cm⁻¹): 2983, 2945, 2924, 2857, 1794, 1723, 1482, 1452, 1415, 1364, 1357, 1273, 1258, 1227, 1215, 1196, 1179, 1147, 1118, 1094, 1083, 1066, 1042, 1029, 930, 911, 898, 891, 882, 873, 848, 835, 812, 790, 759, 745, 745, 713; HRMS (ESI) calcd for C₂₁H₂₇ClO₅ (M + Na⁺) 417.1439, found 417.1438.

3-Acetyl-6-bromo-3-(*tert*-butylperoxy)-4-cyclohexylchroman-2-one (3a):

Solid; m.p. 152-154 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.38 (d, 1H, J = 8.4 Hz), 7.19 (d, 1H, J = 2.4 Hz), 6.89 (d, 1H, J = 9.2 Hz), 2.91 (d, 1H, J = 2.8 Hz), 2.44 (s, 3H), 1.71–1.68 (m, 2H), 1.59–1.51 (m, 4H), 1.23–1.09 (m, 3H), 1.00 (s, 9H), 0.92–0.86 (m, 1H), 0.56–0.52 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 202.9, 160.6, 150.4, 132.7, 131.7, 131.2, 118.9, 118.0, 85.6, 82.6, 48.8, 38.4, 32.3, 27.1, 26.9, 26.6, 26.3, 25.9, 25.8; IR (KBr, cm⁻¹): 2940,

2926, 2852, 1791, 1702, 1697, 1684, 1653, 1633, 1559, 1478, 1450, 1412, 1389, 1364, 1260, 1245, 1225, 1175, 1153, 1093, 1022, 912, 891, 873, 858, 812, 773; HRMS (ESI) calcd for $C_{21}H_{27}BrO_5$ (M + Na⁺) 461.0934, found 461.0928.

3-Acetyl-3-(tert-butylperoxy)-4-cyclohexyl-6-nitrochroman-2-one (4a):

Gummy; ¹H NMR (CDCl₃, 400 MHz): δ 8.21 (d, 1H, J = 9.0 Hz), 8.02 (d, 1H, J = 2.8 Hz), 7.17 (d, 1H, J = 8.8 Hz), 3.09 (d, 1H, J = 2.8 Hz), 2.49 (s, 3H), 1.74–1.53 (m, 6H), 1.29–1.08 (m, 3H), 1.01 (s, 9H), 0.90–0.79 (m, 1H), 0.56–0.47 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 202.4, 159.6, 155.6, 143.8, 125.7, 124.7, 122.6, 117.2, 85.2, 82.8, 48.8, 38.2, 32.1, 27.1, 26.9, 26.4, 26.2, 25.8, 25.6; IR (KBr, cm⁻¹): 3090, 2984, 2925, 2853, 1792, 1726, 1627, 1589, 1559, 1527, 1483, 1450, 1433, 1392, 1367, 1341, 1322, 1308, 1260, 1232, 1219, 1184, 1154, 1119, 1087, 1066, 1043, 1029, 1010, 967, 932, 915, 902, 868, 841, 812, 777, 757, 752, 742; HRMS (ESI) calcd for C₂₁H₂₇NO₇ (M + Na⁺) 428.1680, found 428.1678.

3-Acetyl-3-(tert-butylperoxy)-6,8-dichloro-4-cyclohexylchroman-2-one (5a):

Gummy; ¹H NMR (CDCl₃, 400 MHz): δ 7.31 (d, 1H, J = 2.4 Hz), 6.94 (d, 1H, J = 2.0 Hz), 2.92 (d, 1H, J = 3.2 Hz), 2.41 (s, 3H), 1.67–1.64 (m, 2H), 1.55–1.48 (m, 4H), 1.22–1.04 (m, 3H), 0.98 (s, 9H), 0.88–0.78 (m, 1H), 0.56–0.46 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 202.6, 159.4, 145.8, 129.1, 128.8, 128.2, 124.3, 122.1, 85.2, 82.6, 49.0, 38.0, 32.2, 27.0, 26.9, 26.4, 26.0, 25.8, 25.6; IR (KBr, cm⁻¹): 3084, 2979, 2928, 2853, 1795, 1721, 1458, 1420, 1363, 1262, 1249, 1212, 1182, 1154, 1123, 1100, 1070, 1044, 1014, 973, 937, 917, 900, 881, 869, 855, 825, 786, 754, 747; HRMS (ESI) calcd for C₂₁H₂₆Cl₂O₅ (M + Na⁺) 451.1049, found 451.1054.

3-Acetyl-6,8-dibromo-3-(tert-butylperoxy)-4-cyclohexylchroman-2-one (6a):

Gummy; ¹H NMR (CDCl₃, 400 MHz): δ 7.65 (d, 1H, J = 2.4 Hz), 7.13 (d, 1H, J = 2.0 Hz), 2.91 (d, 1H, J = 3.2 Hz), 2.44 (s, 3H), 1.70–1.49 (m, 6H), 1.23–1.09 (m, 3H), 1.01 (s, 9H), 0.92–0.85 (m, 1H), 0.56–0.51 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 202.6, 159.5, 147.4, 134.8, 131.8, 124.8, 116.4, 111.1, 85.3, 82.8, 49.2, 38.2, 32.3, 27.1, 27.0, 26.9, 26.5, 26.2, 25.8, 25.7; IR (KBr, cm⁻¹): 2959, 2928, 2854, 1801, 1723, 1683, 1646, 1566, 1558, 1449, 1413, 1365, 1261, 1244, 1189, 1148, 1095, 1023, 931, 865, 802; HRMS (ESI) calcd for $C_{21}H_{26}Br_2O_5$ (M + Na⁺) 539.0039, found 539.0038.

3-Acetyl-3-(tert-butylperoxy)-4-cyclohexyl-8-methoxychroman-2-one (7a):

Gummy; ¹H NMR (CDCl₃, 600 MHz): δ 7.02 (d, 1H, J = 7.8 Hz), 6.87 (d, 1H, J = 7.8 Hz), 6.64 (d, 1H, J = 7.2 Hz), 3.86 (s, 3H), 2.94 (d, 1H, J = 3.0 Hz), 2.46 (s, 3H), 1.73–1.48 (m, 6H), 1.26–1.10 (m, 3H), 0.99 (s, 9H), 0.87–0.83 (m, 1H), 0.64–0.59 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 203.5, 160.6, 147.1, 140.4, 123.7, 122.2, 121.8, 111.4, 85.8, 82.2, 56.2, 48.9, 38.2, 32.5, 27.2, 27.0, 26.7, 26.1, 25.9, 25.8; IR (KBr, cm⁻¹): 2980, 2931, 2855, 1781, 1721, 1618, 1588, 1558, 1506, 1485, 1458, 1366, 1322, 1305, 1276, 1248. 1185, 1161, 1108, 1062, 1016, 971, 913, 869, 800, 785, 761, 734; HRMS (ESI) calcd for C₂₂H₃₀O₆ (M + Na⁺) 413.1934, found 413.1940.

3-Acetyl-3-(tert-butylperoxy)-4-cyclohexyl-7-methoxychroman-2-one (8a):

Gummy; ¹H NMR (CDCl₃, 600 MHz): δ 6.96 (d, 1H, J = 8.4 Hz), 6.66 (dd, 1H, $J_1 = 9.0$ Hz, $J_2 = 3.0$ Hz), 6.58 (d, 1H, J = 2.4 Hz), 3.80 (s, 3H), 2.91 (d, 1H, J = 3.0 Hz), 2.45 (s, 3H), 1.73–1.66 (m, 2H), 1.58–1.49 (m, 4H), 1.27–1.12 (m, 3H), 1.03 (s, 9H), 0.88–0.85 (m, 1H), 0.59–0.57 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 203.5, 161.2, 159.9, 151.9, 130.7, 112.9, 109.9, 101.9, 86.2, 82.3, 55.7, 48.3, 38.6, 32.3, 27.0, 26.8, 26.7, 26.3, 25.9, 25.8; IR (KBr, cm⁻¹): 2990, 2969, 2927, 2850, 1775, 1722, 1624, 1585, 1559, 1507, 1453, 1432, 1364, 1321, 1285, 1277, 1238, 1210, 1189, 1156, 1124, 1090, 1045, 1030, 922, 902, 886, 870, 859, 838, 806, 792, 763, 747, 712; HRMS (ESI) calcd for C₂₂H₃₀O₆ (M + Na⁺) 413.1934, found 413.1944.

2-Acetyl-2-(tert-butylperoxy)-1-cyclohexyl-1H-benzo[f]chromen-3(2H)-one (9a):

Solid; m.p. 153-155 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.88 (d, 1H, *J* = 8.8 Hz), 7.84 (d, 1H, *J* = 8.0 Hz), 7.77 (d, 1H, *J* = 8.8 Hz), 7.55 (d, 1H, *J* = 7.2 Hz), 7.45 (t, 1H, *J* = 7.0 Hz), 7.20 (t, 1H, *J* = 9.2 Hz), 3.75 (d, 1H, *J* = 3.6 Hz), 2.54 (s, 3H), 1.84–1.42 (m, 6H), 1.18–1.05 (m, 3H), 0.88 (s, 9H), 0.85–0.79 (m, 1H), 0.75–0.66 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 203.7, 161.3, 148.8, 132.3, 131.2, 129.4, 129.1, 127.1, 125.1, 123.9, 116.7, 116.2, 85.5, 82.3, 44.3, 39.1, 33.3, 28.6, 27.5, 26.8, 26.4, 26.2, 25.6; IR (KBr, cm⁻¹):

2942, 2927, 2851, 1786, 1747, 1721, 1628, 1603, 1559, 1516, 1507, 1463, 1438, 1395, 1367, 1264, 1220, 1186, 1161, 1117, 1080, 1063, 1045, 1028, 975, 91, 864, 817, 789, 752; HRMS (ESI) calcd for $C_{25}H_{30}O_5$ (M + Na⁺) 433.1985, found 433.1990.

3-Acetyl-3-(*tert***-butylperoxy)-4-cyclopentylchroman-2-one (1b):**

Solid; m.p. 160-162 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.29–7.25 (m, 1H), 7.12–7.06 (m, 2H), 7.01 (d, 1H, J = 8.0 Hz), 3.25 (d, 1H, J = 4.0 Hz), 2.46 (s, 3H), 1.93–1.84 (m, 1H), 1.69–1.65 (m, 2H), 1.43–1.35 (m, 4H), 1.29–1.21 (m, 1H), 0.99 (s, 9H), 0.79–0.68 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 203.3, 161.2, 151.3, 130.4, 128.7, 123.9, 121.7, 116.3, 86.5, 82.3, 45.6, 39.7, 31.1, 27.2, 26.5, 26.2, 24.4, 23.5; IR (KBr, cm⁻¹): 2987, 2957, 2872, 1781, 1717, 1615, 1588, 1489, 1460, 1423, 1377, 1366, 1356, 1226, 1197, 1169, 1132, 1117, 1093, 1056, 1017, 988, 918, 904, 774, 754, 720; HRMS (ESI) calcd for C₂₀H₂₆O₅ (M + Na⁺) 369.1672, found 369.1674.

4-Cyclooctyl-3-hydroxy-2H-chromen-2-one (1c'):

Solid; m.p. 149-152 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.69 (d, 1H, J = 8.4 Hz), 7.46–7.43 (m, 1H), 7.41–7.23 (m, 2H), 6.42 (s, 1H), 2.22–2.14 (m, 1H), 1.88–1.54 (m, 14H); ¹³C NMR (CDCl₃, 150 MHz): δ 161.7, 152.9, 149.4, 136.5, 130.5, 128.3, 127.4, 124.3, 117.4, 38.2, 31.9, 27.1, 26.9, 26.6; IR (KBr, cm⁻¹): 3427, 3353, 3282, 2921, 2850, 1705, 1630, 1600, 1558, 1489, 1455, 1372, 1339, 1299, 1275, 1250, 1176, 1156, 1120, 1002, 943, 775, 753, 740; HRMS (ESI) calcd for C₁₇H₂₀O₃ (M - H⁺) 271.1332, found 271.1323.

3-(tert-Butylperoxy)-4-cyclohexyl-3-propionylchroman-2-one (10a):

Solid; m.p. 159-161 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.28 (t, 1H, J = 8.0 Hz), 7.13–7.07 (m, 2H), 7.03 (d, 1H, J = 8.4 Hz), 3.05–2.97 (m, 1H), 2.95 (d, 1H, J = 2.4 Hz), 2.84–2.74 (m, 1H), 1.79–1.67 (m, 2H), 1.59–1.48 (m, 4H), 1.34–1.21 (m, 2H), 1.17 (t, 3H, J = 7.0 Hz), 1.00 (s, 9H), 0.96–0.81 (m, 2H), 0.63–0.53 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 205.9, 161.3, 151.2, 130.1, 128.5, 123.9, 121.2, 116.2, 86.2, 82.2, 49.2, 38.4, 32.3, 31.9, 26.9, 26.6, 26.2, 25.9, 25.8, 7.6; IR (KBr, cm⁻¹): 2973, 2931, 2857, 1784, 1718, 1615, 1588, 1490, 1458, 1401, 1389, 1376, 1368, 1363, 1351, 1323, 1260, 1225, 1179, 1155, 1119, 1082, 1066, 1020, 965,

940, 907, 898, 875, 842, 788, 757, 749, 703; HRMS (ESI) calcd for $C_{22}H_{30}O_5$ (M + Na⁺) 397.1985, found 397.1981.

3-(tert-Butylperoxy)-4-cyclohexyl-3-pentanoylchroman-2-one (11a):

Solid; m.p. 130-134 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.28 (t, 1H, *J* = 7.4 Hz), 7.13–7.06 (m, 2H), 7.02 (d, 1H, *J* = 8.4 Hz), 2.96 (s, 1H), 2.92–2.88 (m, 1H), 2.78–2.70 (m, 1H), 1.78–1.67 (m, 4H), 1.58–1.53 (m, 4H), 1.24–1.12 (m, 4H), 1.00 (s, 9H), 0.99–0.93 (m, 3H), 0.89–0.80 (m, 2H), 0.62–0.56 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 205.3, 161.3, 151.2, 130.1, 128.5, 123.8, 121.2, 116.2, 86.0, 82.2, 49.1, 40.4, 38.3, 32.3, 26.8, 26.7, 26.2, 25.9, 25.8, 16.7, 13.9; IR (KBr, cm⁻¹): 2976, 2926, 2854, 1783, 1723, 1614, 1585, 1488, 1457, 1365, 1259, 1222, 1185, 1157, 1147, 1114, 1084, 1021, 966, 948, 911, 898, 877, 791, 764, 705; HRMS (ESI) calcd for C₂₄H₃₄O₅ (M + Na⁺) 425.2298, found 425.2302.

3-Benzoyl-3-(tert-butylperoxy)-4-cyclohexylchroman-2-one (12a):

Solid; m.p. 158-160 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.21 (d, 2H, *J* = 7.2 Hz), 7.57 (t, 1H, *J* = 7.0 Hz), 7.45 (t, 2H, *J* = 7.4 Hz), 7.31–7.28 (m, 1H), 7.14–7.13 (m, 2H), 7.06 (d, 1H, *J* = 8.4 Hz), 3.35 (s, 1H), 1.90–1.87 (m, 1H), 1.71–1.58 (m, 4H), 1.53–1.49 (m, 2H), 1.32–1.18 (m, 3H), 0.89 (s, 9H), 0.73–0.58 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 194.3, 160.5, 151.2, 136.4, 132.9, 130.2, 129.6, 128.7, 128.3, 123.9, 120.9, 116.2, 87.8, 82.3, 50.6, 38.6, 32.4, 26.7, 26.6, 26.2, 25.9, 25.8; IR (KBr, cm⁻¹): 2977, 2927, 2853, 1778, 1737, 1689, 1615, 1600, 1489, 1457, 1446, 1365, 1276, 1247, 1223, 1198, 1171, 1131, 1116, 1066, 1019, 952, 924, 880, 812, 770, 754; HRMS (ESI) calcd for C₂₆H₃₀O₅ (M + Na⁺) 445.1985, found 445.1992.

Ethyl 3-(tert-butylperoxy)-4-cyclohexyl-2-oxochroman-3-carboxylate (13a):

Gummy; ¹H NMR (CDCl₃, 600 MHz): δ 7.29–7.28 (m, 1H), 7.09 (t, 1H, J = 7.2 Hz), 7.06–7.02 (m, 2H), 4.49–4.46 (m, 1H), 4.37–4.34 (m, 1H), 3.08 (d, 1H, J = 3.0 Hz), 1.79–1.69 (m, 1H), 1.68–1.63 (m, 2H), 1.62–1.58 (m, 2H), 1.55–1.53 (m, 1H), 1.39 (t, 3H, J = 7.2 Hz), 1.25–1.21 (m, 2H), 1.20–1.14 (m, 1H), 1.01 (s, 9H), 0.89–0.87 (m, 1H), 0.65–0.62 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 166.7, 160.7, 151.1, 130.1, 128.6, 123.9, 120.9, 116.2, 83.4, 81.9, 62.1, 50.0, 39.3, 32.1, 27.0, 26.8, 26.3, 26.1,

25.8, 14.4; IR (KBr, cm⁻¹): 2982, 2932, 2857, 1797, 1743, 1587, 1490, 1457, 1389, 1365, 1346, 1319, 1305, 1280, 1248, 1224, 1194, 1178, 1161, 1115, 1066, 1046, 1038, 991, 878, 863, 840, 808, 768, 758, 742, 706; HRMS (ESI) calcd for $C_{22}H_{30}O_6$ (M + Na⁺) 413.1934, found 413.1936.

Ethyl 3-(tert-butylperoxy)-6-chloro-4-cyclohexyl-2-oxochroman-3-carboxylate (14a):

Gummy; ¹H NMR (CDCl₃, 400 MHz): δ 7.25 (d, 1H, J = 8.8 Hz), 7.05 (d, 1H, J = 2.4 Hz), 6.99 (d, 1H, J = 8.8 Hz), 4.52–4.44 (m, 1H), 4.40–4.32 (m, 1H), 3.06 (d, 1H, J = 3.2 Hz), 1.77–1.55 (m, 6H), 1.39 (t, 3H, J = 7.0 Hz), 1.32–1.27 (m, 1H), 1.24–1.11 (m, 2H), 1.03 (m, 9H), 0.97–0.87 (m, 1H), 0.68–0.58 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 166.3, 160.1, 149.7, 129.7, 128.9, 128.6, 122.8, 117.5, 82.9, 82.0, 62.2, 49.9, 39.1, 31.9, 27.0, 26.7, 26.2, 25.9, 25.7, 14.4; IR (KBr, cm⁻¹): 2983, 2928, 2855, 1795, 1741, 1653, 1628, 1559, 1539, 1507, 1483, 1451, 1416, 1366, 1339, 1281, 1250, 1228, 1195, 1160, 1126, 1092, 1032, 975, 923, 861, 812, 754, 733; HRMS (ESI) calcd for C₂₂H₂₉ClO₆ (M + Na⁺) 447.1545, found 447.1558.

Ethyl 6-bromo-3-(tert-butylperoxy)-4-cyclohexyl-2-oxochroman-3-carboxylate (15a):

Gummy; ¹H NMR (CDCl₃, 600 MHz): δ 7.40 (d, 1H, J = 8.4 Hz), 7.19 (d, 1H, J = 1.8 Hz), 6.93 (d, 1H, J = 8.4 Hz), 4.48–4.45 (m, 1H), 4.38–4.35 (m, 1H), 3.05 (d, 1H, J = 3.0 Hz), 1.76–1.55 (m, 6H), 1.39 (t, 3H, J = 7.5 Hz), 1.30–1.13 (m, 3H), 1.02 (s, 9H), 0.94–0.91 (m, 1H), 0.64–0.62 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 166.3, 159.9, 150.2, 132.6, 131.6, 123.2, 117.9, 116.4, 82.9, 82.0, 62.2, 49.8, 39.2, 31.9, 27.1, 26.6, 26.2, 25.9, 25.7, 14.3; IR (KBr, cm⁻¹): 2981, 2930, 2855, 1796, 1747, 1479, 1451, 1414, 1388, 1365, 1336, 1274, 1248, 1193, 1176, 1158, 1126, 1093, 1067, 1044, 1032, 876, 848, 818, 757; HRMS (ESI) calcd for C₂₂H₂₉BrO₆ (M + Na⁺) 491.1040, found 491.1039.

Ethyl 3-(tert-butylperoxy)-6,8-dichloro-4-cyclohexyl-2-oxochroman-3-carboxylate (16a):

Gummy; ¹H NMR (CDCl₃, 400 MHz): δ 7.34 (d, 1H, J = 2.4 Hz), 6.93 (d, 1H, J = 2.4 Hz), 4.49–4.41 (m, 1H), 4.38–4.29 (m, 1H), 3.04 (d, 1H, J = 3.2 Hz), 1.73–1.53 (m, 6H), 1.36 (t, 3H, J = 7.2 Hz), 1.26–1.09 (m, 3H), 0.99 (s, 9H), 0.95–0.83 (m, 1H), 0.65–0.55 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 165.9, 158.9, 145.8, 129.2, 128.8, 128.2, 124.3, 122.2, 82.6, 82.3, 62.4, 50.3, 38.9, 32.1, 27.2, 26.6, 26.1, 25.9, 25.7, 14.3; IR (KBr, cm⁻¹): 2982, 2931, 2855, 1805, 1748, 1578, 1457, 1366, 1260, 1245, 1245, 1214, 1192, 1181, 1154, 1127, 1099, 1069, 1045, 1031, 996, 901, 860, 828, 755; HRMS (ESI) calcd for $C_{22}H_{28}Cl_2O_6$ (M + Na⁺) 481.1155, found 481.1160.

Ethyl 6,8-dibromo-3-(tert-butylperoxy)-4-cyclohexyl-2-oxochroman-3-carboxylate (17a):

Gummy; ¹H NMR (CDCl₃, 400 MHz): δ 7.64 (d, 1H, J = 2.4 Hz), 7.11 (d, 1H, J = 2.4 Hz), 4.49–4.41 (m, 1H), 4.36–4.28 (m, 1H), 3.03 (d, 1H, J = 3.2 Hz), 1.73–1.53 (m, 6H), 1.36 (t, 3H, J = 7.0 Hz), 1.26–1.10 (m, 3H), 0.99 (s, 9H), 0.95–0.80 (m, 1H), 0.64–0.54 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 165.9, 158.9, 147.4, 134.7, 131.7, 124.7, 116.4, 110.9, 82.7, 82.3, 62.4, 50.3, 39.1, 32.1, 27.2, 26.7, 26.2, 25.9, 25.7, 14.3; IR (KBr, cm⁻¹): 2981, 2929, 2854, 1803, 1747, 1606, 1568, 1559, 1506, 1448, 1388, 1365, 1337, 1283, 1259, 1241, 1189, 1174, 1151, 1127, 1095, 1068, 1044, 1031, 995, 930, 900, 860, 798, 770, 752; HRMS (ESI) calcd for C₂₂H₂₈Br₂O₆ (M + Na⁺) 569.0145, found 569.0146.

Ethyl 3-(tert-butylperoxy)-4-cyclohexyl-8-methoxy-2-oxochroman-3-carboxylate (18a):

Gummy; ¹H NMR (CDCl₃, 400 MHz): δ 7.04 (t, 1H, J = 8.0 Hz), 6.89 (d, 1H, J = 8.0 Hz), 6.64 (d, 1H, J = 7.2 Hz), 4.52–4.44 (m, 1H), 4.39–4.31 (m, 1H), 3.89 (s, 3H), 3.08 (d, 1H, J = 2.8 Hz), 1.81–1.53 (m, 6H), 1.39 (t, 3H, J = 7.2 Hz), 1.27–1.15 (m, 3H), 1.01 (s, 9H), 0.94–0.86 (m, 1H), 0.74–0.64 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 166.8, 160.1, 147.1, 140.4, 123.7, 122.0, 121.8, 111.4, 83.2, 81.8, 62.1, 56.3, 50.1, 39.1, 32.2, 27.1, 26.8, 26.1, 26.0, 25.8, 14.4; IR (KBr, cm⁻¹): 2981, 2928, 2856, 1789, 1733, 1589, 1485, 1462, 1445, 1379, 1367, 1347, 1322, 1304, 1272, 1235, 1210, 1185, 1163, 1129, 1107, 1042, 1028, 985, 943, 900, 878, 856, 824, 805, 784, 753, 738, 713; HRMS (ESI) calcd for C₂₃H₃₂O₇ (M + Na⁺) 443.2040, found 443.2050.

Methyl 3-(tert-butylperoxy)-4-cyclohexyl-2-oxochroman-3-carboxylate (19a):

Gummy; ¹H NMR (CDCl₃, 400 MHz): δ 7.28 (t, 1H, J = 7.2 Hz), 7.12–7.03 (m, 3H), 3.94 (s, 3H), 3.09 (s, 1H), 1.84–1.53 (m, 6H), 1.32–1.13 (m, 3H), 1.01 (s, 9H), 0.94–0.85 (m, 1H), 0.68–0.59 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 167.4, 160.7, 151.1, 130.1, 128.6, 123.9, 120.9, 116.2, 83.6, 82.0, 52.9, 50.1, 39.5, 32.1, 27.1,

26.7, 26.3, 26.2, 25.8; IR (KBr, cm⁻¹): 2986, 2933, 2857, 1784, 1730, 1587, 1490, 1459, 1434, 1389, 1365, 1350, 1304, 1292, 1256, 1222, 1198, 1179, 1169, 1127, 1118, 1068, 1044, 1032, 1022, 924, 876, 834, 805, 777, 760, 742; HRMS (ESI)) calcd for $C_{21}H_{28}O_6$ (M + Na⁺) 399.1778, found 399.1783.

Methyl 3-(tert-butylperoxy)-4-cyclooctyl-2-oxochroman-3-carboxylate (19c):

Gummy; ¹H NMR (CDCl₃, 400 MHz): δ 7.36–7.30 (m, 2H), 7.10 (t, 1H, *J* = 7.4 Hz), 7.04 (d, 1H, *J* = 8.0 Hz), 3.49 (s, 3H), 2.65 (m, 1H), 2.02–1.92 (m, 2H), 1.76–1.59 (m, 13H), 0.96 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 168.1, 166.4, 151.9, 130.9, 130.5, 124.0, 121.3, 116.4, 80.9, 79.3, 61.9, 52.7, 38.8, 30.2, 29.1, 27.8, 27.3, 26.8, 26.2, 25.8, 24.4; IR (KBr, cm⁻¹): 2987, 2923, 2855, 1781, 1736, 1558, 1539, 1506, 1489, 1458, 1434, 1363, 1339, 1260, 1228, 1193, 1151, 1126, 1005, 879, 759; HRMS (ESI) calcd for C₂₃H₃₂O₆ (M + Na⁺) 427.2091, found 427.2090.

3-(tert-Butylperoxy)-4-cyclohexyl-2-oxochroman-3-carbonitrile (20a):

Solid; m.p. 152-154 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.34 (t, 1H, J = 8.0 Hz), 7.18 (t, 1H, J = 7.4 Hz), 7.13–7.07 (m, 2H), 3.24 (d, 1H, J = 3.2 Hz), 2.17–2.11 (m, 1H), 1.83–1.75 (m, 2H), 1.68–1.55 (m, 3H), 1.40–1.19 (m, 3H), 1.09 (s, 9H), 0.96–0.86 (m, 1H), 0.73–0.62 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 159.5, 150.5, 130.2, 129.3, 124.8, 119.1, 116.6, 114.5, 83.3, 80.8, 50.1, 39.6, 32.1, 27.2, 26.4, 26.1, 25.8, 25.6; IR (KBr, cm⁻¹): 2982, 2928, 2858, 2210, 1765, 1619, 1558, 1489, 1457, 1367, 1364, 1260, 1239, 1223, 1148, 1136, 1064, 1048, 1030, 1008, 910, 899, 856, 796, 767, 751, 705; HRMS (ESI) calcd for C₂₀H₂₅NO₄ (M + Na⁺) 366.1676, found 366.1677.

3-(tert-Butylperoxy)-4-cyclooctyl-2-oxochroman-3-carbonitrile (20c):

Gummy; ¹H NMR (CDCl₃, 400 MHz): δ 7.35–7.31 (m, 1H), 7.19–7.14 (m, 2H), 7.07 (d, 1H, J = 8.0 Hz), 3.30 (d, 1H, J = 2.8 Hz), 2.44–2.39 (m, 1H), 1.84–1.71 (m, 2H), 1.65–1.60 (m, 2H), 1.57–1.36 (m, 10H), 1.09 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 159.4, 150.5, 129.9, 129.3, 124.9, 119.7, 116.7, 114.6, 83.3, 81.1, 51.4, 39.2, 33.3, 28.2, 26.7, 26.3, 26.2, 26.1, 25.2; IR (KBr, cm⁻¹): 2981, 2927, 2854, 2215, 1776, 1586, 1558, 1506, 1488, 1458, 1390, 1221, 1180, 1149, 1117, 1055, 1034, 1016, 903, 867, 764, 752; HRMS (ESI) calcd for $C_{22}H_{29}NO_4$ (M + Na⁺) 394.1989, found 394.1998.

4-Cyclohexyl-3-hydroxy-2H-chromen-2-one (1a'):

Solid; m.p. 196-200 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.76 (t, 1H, J = 8.0 Hz), 7.42–7.30 (m, 3H), 6.40 (s, 1H), 3.03 (bs, 1H), 2.20–2.05 (m, 2H), 1.91–1.72 (m, 4H), 1.46–1.34 (m, 3H), 0.87–0.84 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 161.0, 149.1, 139.8, 137.3, 130.7, 128.4, 125.0, 121.1, 117.4, 37.8, 29.1, 27.1, 26.2; IR (KBr, cm⁻¹): 3424, 3349, 3274, 2916, 2852, 1707, 1631, 1602, 1558, 1489, 1455, 1400, 1364, 1305, 1282, 1253, 1233, 1185, 1159, 1123, 754; HRMS (ESI) calcd for C₁₅H₁₆O₃ (M - H⁺) 243.1019, found 243.1014.

3-(tert-Butylperoxy)-4-cyclohexylchroman-2-one (21a):

Gummy; ¹H NMR (CDCl₃, 400 MHz): δ 7.38–7.34 (m, 2H), 7.14 (t, 1H, J = 7.6 Hz), 7.03 (d, 1H, J = 8.0 Hz), 4.95 (d, 1H, J = 1.2 Hz), 3.07 (d, 1H, J = 8.8 Hz), 1.84–1.54 (m, 7H), 1.37–1.26 (m, 1H), 1.19–1.09 (m, 2H), 1.06 (s, 9H), 0.89–0.80 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 168.3, 152.3, 131.0, 130.9, 124.3, 119.2, 116.7, 80.8, 78.8, 50.3, 36.8, 31.3, 31.1, 26.3, 26.0, 25.9, 25.8; IR (KBr, cm⁻¹): 2977, 2990, 2854, 1771, 1717, 1613, 1590, 1486, 1459, 1386, 1363, 1352, 1291, 1243, 1221, 1186, 1155, 1127, 1109, 1085, 1052, 1025, 983, 966, 951, 903, 890, 877, 782, 760; HRMS (ESI) calcd for C₁₉H₂₆O₄ (M + Na⁺) 341.1723, found 341.1730.

2-Cyclohexyl-1-phenylethanone (1'a):

Gummy; ¹H NMR (CDCl₃, 400 MHz): δ 7.95 (d, 2H, J = 8.0 Hz), 7.55 (t, 1H, J = 7.8 Hz), 7.45 (t, 2H, J = 8.0 Hz), 2.82 (d, 2H, J = 6.4 Hz), 2.0–1.95 (m, 1H), 1.77–1.71 (m, 3H), 1.67–1.59 (m, 2H), 1.33–1.24 (m, 2H), 1.20–1.14 (m, 1H), 1.05–0.97 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 200.5, 137.7, 133.0, 128.7, 128.3, 46.4, 34.8, 33.6, 26.5, 26.4; IR (KBr, cm⁻¹): 2922, 2851, 1716, 1684, 1597, 1581, 1493, 1448, 1355, 1314, 1270, 1222, 1193, 1177, 1111, 1070, 1026, 1001, 956, 750, 712; HRMS (ESI) calcd for C₁₄H₁₈O (M + H⁺) 203.1438, found 203.1440.

1-(Cyclohexyloxy)-2,2,6,6-tetramethylpiperidine (1A):

Gummy; ¹H NMR (CDCl₃, 400 MHz): δ 3.58 (bs, 1H), 2.04 (bs, 2H), 1.74 (bs, 2H), 1.54–1.46 (m, 6H), 1.31–1.19 (m, 6H), 1.14 (s, 6H), 1.11 (s, 6H); ¹³C NMR (CDCl₃, 150 MHz): δ 81.9, 59.8, 40.5, 34.7, 33.1, 26.2, 25.3, 17.6; IR (KBr, cm⁻¹): 2967, 2932, 2855, 1467, 1452, 1374, 1348, 1257, 1242, 1208, 1181, 1151, 1132, 1092, 1058, 1044, 1021, 993, 966, 913, 710; HRMS (ESI) calcd for C₁₅H₂₉NO (M + H⁺) 240.2329, found 240.2332.

3-Acetyl-3-(*tert*-butylperoxy)-4-cyclohexylchroman-2-one (1a): ¹H NMR (CDCl₃, 400 MHz)

3-Acetyl-3-(tert-butylperoxy)-4-cyclohexylchroman-2-one (1a): ¹³C NMR (CDCl₃, 150 MHz)

3-Acetyl-3-(*tert*-butylperoxy)-6-chloro-4-cyclohexylchroman-2-one (2a): ¹H NMR (CDCl₃, 400 MHz)

3-Acetyl-3-(tert-butylperoxy)-6-chloro-4-cyclohexylchroman-2-one (2a): ¹³C NMR (CDCl₃, 100 MHz)

3-Acetyl-6-bromo-3-(tert-butylperoxy)-4-cyclohexylchroman-2-one (3a): ¹H NMR (CDCl₃, 400 MHz)

3-Acetyl-6-bromo-3-(tert-butylperoxy)-4-cyclohexylchroman-2-one (3a): ¹³C NMR (CDCl₃, 150 MHz)

3-Acetyl-3-(tert-butylperoxy)-4-cyclohexyl-6-nitrochroman-2-one (4a): ¹H NMR (CDCl₃, 400 MHz)

3-Acetyl-3-(tert-butylperoxy)-4-cyclohexyl-6-nitrochroman-2-one (4a): ¹³C NMR (CDCl₃, 100 MHz)

3-Acetyl-3-(tert-butylperoxy)-6,8-dichloro-4-cyclohexylchroman-2-one (5a): ¹H NMR (CDCl₃, 400 MHz)

3-Acetyl-3-(tert-butylperoxy)-6,8-dichloro-4-cyclohexylchroman-2-one (5a): ¹³C NMR (CDCl₃, 100 MHz)

3-Acetyl-6,8-dibromo-3-(tert-butylperoxy)-4-cyclohexylchroman-2-one (6a): ¹H NMR (CDCl₃, 400 MHz)

3-Acetyl-6,8-dibromo-3-(tert-butylperoxy)-4-cyclohexylchroman-2-one (6a): ¹³C NMR (CDCl₃, 100 MHz)

3-Acetyl-3-(tert-butylperoxy)-4-cyclohexyl-8-methoxychroman-2-one (7a): ¹H NMR (CDCl₃, 600 MHz)

3-Acetyl-3-(tert-butylperoxy)-4-cyclohexyl-8-methoxychoman-2-one (7a): ¹³C NMR (CDCl₃, 150 MHz)
3-Acetyl-3-(tert-butylperoxy)-4-cyclohexyl-7-methoxychroman-2-one (8a): ¹H NMR (CDCl₃, 600 MHz)

AB-40Me-COMe-1H

3-Acetyl-3-(tert-butylperoxy)-4-cyclohexyl-7-methoxychroman-2-one (8a): ¹³C NMR (CDCl₃, 150 MHz)

2-Acetyl-2-(*tert*-butylperoxy)-1-cyclohexyl-1H-benzo[*f*]chromen-3(2H)-one (9a): ¹H NMR (CDCl₃, 400 MHz)

3-Acetyl-3-(tert-butylperoxy)-4-cyclopentylchroman-2-one (1b): ¹³C NMR (CDCl₃, 100 MHz)

4-Cyclooctyl-3-hydroxy-2H-chromen-2-one (1c'): ¹³C NMR (CDCl₃, 150 MHz)

S44

3-(tert-Butylperoxy)-4-cyclohexyl-3-propionylchroman-2-one (10a): ¹H NMR (CDCl₃, 400 MHz)

3-(tert-Butylperoxy)-4-cyclohexyl-3-propionylchroman-2-one (10a): ¹³C NMR (CDCl₃, 100 MHz)

3-(tert-Butylperoxy)-4-cyclohexyl-3-pentanoylchroman-2-one (11a): ¹³C NMR (CDCl₃, 100 MHz)

3-Benzoyl-3-(*tert*-butylperoxy)-4-cyclohexylchroman-2-one (12a): ¹H NMR (CDCl₃, 400 MHz)

3-Benzoyl-3-(tert-butylperoxy)-4-cyclohexylchroman-2-one (12a): ¹³C NMR (CDCl₃, 100 MHz)

Ethyl 3-(tert-butylperoxy)-4-cyclohexyl-2-oxochroman-3-carboxylate (13a): ¹H NMR (CDCl₃, 600 MHz)

AB-CO2ET-CYCLO_1H

Ethyl 3-(tert-butylperoxy)-4-cyclohexyl-2-oxochroman-3-carboxylate (13a): ¹³C NMR (CDCl₃, 150 MHz)

Ethyl 3-(tert-butylperoxy)-6-chloro-4-cyclohexyl-2-oxochroman-3-carboxylate (14a): ¹H NMR (CDCl₃, 400 MHz)

Ethyl 3-(tert-butylperoxy)-6-chloro-4-cyclohexyl-2-oxochroman-3-carboxylate (14a): ¹³C NMR (CDCl₃, 100 MHz)

Ethyl 6-bromo-3-(*tert*-butylperoxy)-4-cyclohexyl-2-oxochroman-3-carboxylate (15a): ¹H NMR (CDCl₃, 600 MHz)

Ethyl 6-bromo-3-(*tert*-butylperoxy)-4-cyclohexyl-2-oxochroman-3-carboxylate (15a): ¹³C NMR (CDCl₃, 150 MHz)

Ethyl 3-(tert-butylperoxy)-6,8-dichloro-4-cyclohexyl-2-oxochroman-3-carboxylate (16a): ¹H NMR (CDCl₃, 400 MHz)

Ethyl 3-(tert-butylperoxy)-6,8-dichloro-4-cyclohexyl-2-oxochroman-3-carboxylate (16a): ¹³C NMR (CDCl₃, 100 MHz)

Ethyl 6,8-dibromo-3-(*tert*-butylperoxy)-4-cyclohexyl-2-oxochroman-3-carboxylate (17a): ¹³C NMR (CDCl₃, 150 MHz)

Ethyl 3-(tert-butylperoxy)-4-cyclohexyl-8-methoxy-2-oxochroman-3-carboxylate (18a): ¹H NMR (CDCl₃, 400 MHz)

	Acq. time 2.561 sec		11 m - 1	 Ison for the program 		and the second sec	
	Width 6398.0 Hz			1 1			Temp. 25.0 C / 298.1 K
	22	1					Operator: chem
8	32 repetitions	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	经公司公司 化基苯基 网络小学校 医外翻视网		He was during a straight the	15. E.	Mercury-400 PTTTC-NODE
				1			
				1			
		I			1		

Methyl 3-(tert-butylperoxy)-4-cyclohexyl-2-oxochroman-3-carboxylate (19a): ¹³C NMR (CDCl₃, 150 MHz)

Methyl 3-(tert-butylperoxy)-4-cyclooctyl-2-oxochroman-3-carboxylate (19c): ¹H NMR (CDCl₃, 400 MHz)

Methyl 3-(tert-butylperoxy)-4-cyclooctyl-2-oxochroman-3-carboxylate (19c): ¹³C NMR (CDCl₃, 100 MHz)

Operator: chem Mercury-400 "IITG-NMR"

3-(tert-Butylperoxy)-4-cyclohexyl-2-oxochroman-3-carbonitrile (20a): ¹H NMR (CDCl₃, 400 MHz)

3-(tert-Butylperoxy)-4-cyclohexyl-2-oxochroman-3-carbonitrile (20a): ¹³C NMR (CDCl₃, 100 MHz)

3-(tert-Butylperoxy)-4-cyclooctyl-2-oxochroman-3-carbonitrile (20c): ¹H NMR (CDCl₃, 400 MHz)

3-(tert-Butylperoxy)-4-cyclooctyl-2-oxochroman-3-carbonitrile (20c): ¹³C NMR (CDCl₃, 100 MHz)

4-Cyclohexyl-3-hydroxy-2H-chromen-2-one (1a'): ¹³C NMR (CDCl₃, 150 MHz)

3-(tert-Butylperoxy)-4-cyclohexylchroman-2-one (21a): ¹H NMR (CDCl₃, 400 MHz)

3-(tert-Butylperoxy)-4-cyclohexylchroman-2-one (21a): ¹³C NMR (CDCl₃, 100 MHz)

2-Cyclohexyl-1-phenylethanone (1'a): ¹H NMR (CDCl₃, 400 MHz)

6 ^{- 2}									
<u> </u>	i.						s.,		
		т I							
		t	1	£				the to	
		M			r			- Marthank	J
1 1 1 1 1	<u> </u>						<u> </u>	<u>1 </u>	
11 1	0 9	8	7	6	5	4	3	2 1	ppm
		7.96		2 B			1.12	1.59 1.59 1.59 1.59 1.59	
		E E							
PUISS SEQUENCE	DATA PROCESS OBSI	BRVE - 11, 399.850	9625 Chrs and DAT	APROCESSING MANY	BETSDATION TO		LAG CROEPUR ALCOY	SAB SCY Py-18	AND RESTRUCTION
Relax. delay 1. Pulse 45.0 degr	000 BRC 2. 1.	e e e e e e e e e e e e e e e e e e e	FT Tot	size. 32768			1949 - Maria Mariana 1949 - Mariana Maria Maria	s se se successo de P	in shari sa≹eri a
Acq. time 2.561 Width 6398.0 Hz	Sec			ar finder minutes		aan tora ta d ta	an - A AN M aran Karan (1) San S	Solvent: cdcl3 37 Temp. 25.0 C / 298.1 Operator: chem	K Street
FUNSE SEQUENCE Relax. delay 1. Pulse 45.0 disgr Acq. time 2.561 Width 6398.0 Hz 32 repetitions	DAYANDAGCESS OBD 000 sec efstel:time 1 sec	SRVE 11, 399.850	9625 CALL OF DAT FT Tot	STR. 32768 al.time 1 minutes		in and a second se	Lan C harlenne (1993) Statut (1993) Statut (1993)	Solvent: cdcl3	12863 1925 7758 (299

2

s 1.32, repetitions to the garantee in the same and the second for the second of the second second second second A sub-second second s

Mercury-400 "IITG-NMR"

.

2-Cyclohexyl-1-phenylethanone (1'a): ¹³C NMR (CDCl₃, 100 MHz)

1-(Cyclohexyloxy)-2,2,6,6-tetramethylpiperidine (1A): ¹³C NMR (CDCl₃, 150 MHz)