Supporting information

for

The Development of a Complementary Pathway for the

 Synthesis of Aliskiren

 Synthesis of Aliskiren}

Le-Le Li, ${ }^{\text {a,b }}$ Jin-Ying Ding, ${ }^{\text {a }}$ Lian-Xun Gao, ${ }^{\text {a }}$ and Fu-She Han*, ${ }^{\text {a, }}$
a Changchun Institute of Applied Chemistry Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
b The University of Chinese Academy of Sciences, Beijing, 100864, China
c F.-S. Han, Key Lab of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, CAS, China

Table of Contents

1. General method... S 2
2. Synthetic procedure and characterization of all compounds.......................S2
3. Copies of NMR spectra and HPLC charts..S15

General methods: Unless otherwise noted, all solvents were purified according to the standard procedures. Allyl bromide, $(\mathrm{COCl})_{2}$, and $(\mathrm{EtO})_{2} \mathrm{POH}$ were distilled prior to use. Other reagents were reagent grade and were used without purification. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded at 600 , 400 , or 300 MHz (Bruker AV) in CDCl_{3} or DMSO- d_{6}. The ${ }^{13} \mathrm{C}$-NMR spectra were recorded at 150 or 100 MHz in CDCl_{3} or DMSO- d_{6}. The ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra were recorded at 162 MHz in CDCl_{3}. Chemical shifts were given in ppm relative to TMS or the appropriate solvent peak. Coupling constants (J values) were reported in Hertz (Hz). High resolution mass spectra (HRMS) were measured using an IonSpec Ultima 7.0 TFT-ICR-MS instrument (IonSpec, USA) with a Waters Z-spray source. HPLC analysis was performed on Shimadzu (LC 20AD, UV detection monitored at 254 nm) or Shimadzu (LC 6AD, UV detection monitored at 254 nm). C18 column for E / Z selectivity measurements (Hypersil ODS $5 \mu \mathrm{~m}, 4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$) was purchased from Dalian Elite Analytical Instruments Co., Ltd. Chiralpak AD-H column for enantiomeric excess measurements was purchased from Daicel Chemical Industries, LTD. Optical rotation value was measured by a Perkin Elmer 341LC polarimeter operating on the sodium D-line (589 nm), using a 100 mm path-length cell and are reported as: $[\alpha]_{\mathrm{D}}{ }^{\mathrm{T}}$ (concentration in $\mathrm{g} / 100 \mathrm{~mL}$, solvent). Column chromatography was performed on silica gel 100-200 mesh or 200-300 mesh.

Synthesis of 10a: ${ }^{3 \mathrm{~g}}$ To a round-bottom flask was added 9 ($2.61 \mathrm{~g}, 10 \mathrm{mmol}, 1.0$ equiv) and dried THF (30 mL) under N_{2} atmosphere. After being cooled to $-78{ }^{\circ} \mathrm{C}$, LiHMDS solution (1 M in THF, 12 mL , 1.2 equiv) was added dropwise. The cooling bath was then replaced with an ice-water bath and the reaction mixture was allowed to stir at 0 ${ }^{\circ} \mathrm{C}$ for 3 h . The solution was re-cooled to $-78{ }^{\circ} \mathrm{C}$ and allyl bromide ($1.3 \mathrm{~mL}, 15 \mathrm{mmol}$, 1.5 equiv) was added dropwise. The reaction mixture was stirred overnight at room temperature. The reaction mixture was then quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(30$ mL). The resulting solution was evaporated under reduced pressure to remove the volatile materials. The concentrated solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 40 \mathrm{~mL})$ and the combined organic layer was washed with brine (30 mL), dried over MgSO_{4}, filtered and evaporated under reduced pressure. Purification of the residue by column chromatography ($1: 10$ ethyl acetate-hexane) gave 10a ($2.89 \mathrm{~g}, 9.6 \mathrm{mmol}, 96 \%$) as a light yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.86-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=17.1, \mathrm{~Hz}, 1 \mathrm{H})$, $5.02(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.71-4.67(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.85(\mathrm{~m}, 1 \mathrm{H})$, $3.31(\mathrm{dd}, J=13.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=13.4,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.45(\mathrm{~m}, 1 \mathrm{H})$, $2.41-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.97(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=6.84 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.73,153.28,135.66,135.60,129.47,128.94,127.29,116.92$, 65.77, 55.65, 48.19, 38.06, 33.68, 30.29, 20.91, 19.24.

Synthesis of 10b: To a round-bottom flask was added 9 ($13.09 \mathrm{~g}, 50 \mathrm{mmol}, 1.0$ equiv) and dried THF (150 mL) under N_{2} atmosphere. After being cooled to $-78{ }^{\circ} \mathrm{C}$, LiHMDS solution (1 M in THF, 63 mL) was added dropwise. The solution was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$ and 3 h at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was then re-cooled to $-78{ }^{\circ} \mathrm{C}$ and (E)-1,4-dibromobut-2-ene ($32.10 \mathrm{~g}, 150 \mathrm{mmol}, 3$ equiv) was added. The reaction
mixture was allowed to warm to room temperature and stirred overnight. The reaction mixture was then quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$. The solution was evaporated under reduced pressure to remove the volatile materials. The concentrated solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layer was washed with brine (50 mL), dried over MgSO_{4}, filtered and evaporated under reduced pressure. Purification of the residue by column chromatography ($1: 10$ ethyl acetate-hexane) gave 10b' ($17.82 \mathrm{~g}, 45.2 \mathrm{mmol}, 90 \%$) as a slightly yellow oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33$ (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.28-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.70-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~d}$, $J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.87-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=13.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.68$ (dd, $J=13.3$, $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.96(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.35,153.29,135.59,133.07,129.44$, $128.98,128.64,127.33,65.92,55.68,48.21,38.23,32.83,31.68,30.31,20.88$, 19.15. HRMS (ESI-MS) Found $416.0827[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{BrNNaO}_{3}$ requires 416.0837; found $432.0562[\mathrm{M}+\mathrm{K}]^{+}, \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{BrNKO}_{3}$ requires 432.0562 .

To a solution of 10b' ($12.82 \mathrm{~g}, 32.5 \mathrm{mmol}, 1$ equiv) in THF (170 mL) was added $\mathrm{NaBH}_{3} \mathrm{CN}\left(5.96 \mathrm{~g}, 95 \mathrm{mmol}, 3\right.$ equiv). The reaction mixture was heated at $60{ }^{\circ} \mathrm{C}$ for 24 h . The mixture was evaporated under reduced pressure and purified by column chromatography (ethyl acetate:dichloromethane:hexane $=1: 1: 5)$ to give $\mathbf{1 0 b}(9.67 \mathrm{~g}$, $30.7 \mathrm{mmol}, 94 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 2H), 7.28 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.23 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 5.53-5.47 (m, 1H), 5.46-5.41 $(\mathrm{m}, 1 \mathrm{H}), 4.72-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{dd}, \mathrm{J}=13.4$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63$ (dd, $J=13.3,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.29(\mathrm{~m}, 1 \mathrm{H})$, $2.01-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{dd}, J=6.6,3.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.07,153.31,135.67,129.49,129.01,128.11,127.53,127.36$, 65.72, 55.55, 48.79, 38.07, 32.81, 30.36, 20.98, 19.37, 18.04. HRMS (ESI-MS) Found $316.1904[\mathrm{M}+\mathrm{H}]^{+}, \quad \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{3}$ requires 316.1913; found $338.1729[\mathrm{M}+\mathrm{Na}]^{+}$, $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NNaO}_{3}$ requires 338.1732 .

Compound 10c was synthesized according to the same procedure for the synthesis of 10a in 96% yield from 9 and 3,3-dimethylallyl bromide. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.36-7.21(\mathrm{~m}, 5 \mathrm{H}), 5.19-5.13(\mathrm{~m}, 1 \mathrm{H}), 4.73-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.09(\mathrm{~m}, 2 \mathrm{H})$, $3.85-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=13.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=13.3,9.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.53-2.42 (m, 1H), 2.33-2.20 (m, 1H), 2.04-1.93 (m, 1H), $1.65(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 6 \mathrm{H})$, 0.97 (dd, $J=6.7,3.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.43,153.32,135.65$, $133.60,129.51,129.02,127.36,121.43,65.68,55.45,48.88,37.90,30.60,28.42$, $25.95,20.99,19.45,17.88$. HRMS (ESI-MS) Found $352.1877[\mathrm{M}+\mathrm{Na}]^{+}$, $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NNaO}_{3}$ requires 352.1889 ; found $368.1621[\mathrm{M}+\mathrm{K}]^{+}, \mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NKO}_{3}$ requires 368.1628.

Synthesis of 11a: ${ }^{3 \mathrm{~g}}$ To a THF/ $\mathrm{H}_{2} \mathrm{O}(275 \mathrm{~mL} / 70 \mathrm{~mL})$ solution of 10a ($20.72 \mathrm{~g}, 68.75$ mmol, 1 equiv) was added dropwise $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ ($30 \mathrm{~mL}, 275 \mathrm{mmol}, 4$ equiv) and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(5.77 \mathrm{~g}, 137.5 \mathrm{mmol}, 2$ equiv) at room temperature. After being stirred for $5 \mathrm{~h}, \mathrm{Na}_{2} \mathrm{SO}_{3}$ ($43.22 \mathrm{~g}, 343 \mathrm{mmol}, 5$ equiv) was added slowly and the reaction mixture was stirred for a few hours. The resulting solution was evaporated under reduced
pressure to remove the volatile materials. The concentrated solution was adjusted to $c a$. pH 14 with 1.5 M aq. NaOH and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \times 100 \mathrm{~mL})$. The aqueous layer was acidified to pH 1 with $6 \mathrm{M} \mathrm{aq} . \mathrm{HCl}$ and extracted with EtOAc ($6 \times$ 100 mL). The combined organic layer was washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to give 11a (8.94 g, 62.9 $\mathrm{mmol}, 91 \%$) as a slightly yellow oil, which was used in the next transformation without further purification. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.19(\mathrm{~s}, 1 \mathrm{H}), 5.81-5.75$ $(\mathrm{m}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.27(\mathrm{~m}, 2 \mathrm{H})$, $2.26-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{dd}, J=6.7,4.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.88,135.72,116.78,52.43,33.69,30.16,20.34,20.17$.

Synthesis of 11b was carried out according to the same procedure as the synthesis of 11a. 10b ($12.55 \mathrm{~g}, 40 \mathrm{mmol}, 1$ equiv) afford $\mathbf{1 1 b}(5.48 \mathrm{~g}, 35.0 \mathrm{mmol}, 88 \%)$ as a slightly yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 5.53-5.47(\mathrm{~m}, 1 \mathrm{H})$, $5.41-5.36(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.16(\mathrm{~m}, 3 \mathrm{H}), 1.92-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$, 0.97 (dd, $J=6.7,4.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 181.98,128.09,127.39$, 52.96, 32.61, 30.10, 20.35, 20.24, 18.03. HRMS (ESI-MS) Found 155.1073 [M-H]', $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{2}$ requires 155.1072.

Synthesis of 11c was carried out according to the same procedure as the synthesis of 11a. The two-step yield was 85% from starting material 9. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.09(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.12(\mathrm{~m}, 3 \mathrm{H}), 1.97-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H})$, $1.61(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{dd}, J=6.7,3.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 182.24$, 133.69, 121.39, 53.00, 30.20, 28.20, 25.89, 20.40, 20.30, 17.81. HRMS (ESI-MS) Found $169.1230[\mathrm{M}-\mathrm{H}]^{-}, \mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{2}$ requires 169.1229.

Synthesis of 12a: To a dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (80 mL) of 11a ($2.27 \mathrm{~g}, 16 \mathrm{mmol}, 1$ equiv) was added $(\mathrm{COCl})_{2}(4.1 \mathrm{~mL}, 48 \mathrm{mmol}, 3$ equiv) dropwise and a few drops of DMF at room temperature. After being stirred at the same temperature for 12 h , the resulting solution was evaporated to remove the volatile materials. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ and then dimethylamine hydrochloride ($2.65 \mathrm{~g}, 32 \mathrm{mmol}$, 2 equiv) and DMAP ($97.6 \mathrm{mg}, 0.8 \mathrm{mmol}, 0.05$ equiv) were added and stirred for 5 min . Then $\mathrm{Et}_{3} \mathrm{~N}(8.9 \mathrm{~mL}, 64 \mathrm{mmol}, 4$ equiv) was added slowly and the resulting reaction mixture was stirred at room temperature overnight. The reaction mixture was washed with brine ($3 \times 100 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification of the residue by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave 12a ($2.34 \mathrm{~g}, 13.8 \mathrm{mmol}, 86 \%$) as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $5.76-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.06-5.03(\mathrm{~m}, 1 \mathrm{H}), 4.96-4.93(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 6 \mathrm{H}), 2.50-2.47(\mathrm{~m}$, $1 \mathrm{H}), 2.41-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.87(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.29$, 136.47, 116.08, 48.12, 37.65, 35.48, 34.56, 30.84, 21.10, 19.87. HRMS (ESI-MS) Found 170.1544 $[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NO}$ requires 170.1545 ; found $192.1362[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NNaO}$ requires 192.1364.

Synthesis of 12b was carried out according to the same procedure as the synthesis of 12a. 11b ($3.96 \mathrm{~g}, 25.35 \mathrm{mmol}, 1$ equiv) afforded $\mathbf{1 2 b}(2.54 \mathrm{~g}, 17.3 \mathrm{mmol}, 69 \%)$ as a
colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.52-5.41(\mathrm{~m}, 1 \mathrm{H}), 5.37-5.27(\mathrm{~m}, 1 \mathrm{H})$, $3.02(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.47-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.83(\mathrm{~m}, 1 \mathrm{H})$, $1.61(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.62,128.82,126.57,48.64,37.63,35.52,33.44,30.78,21.18$, 19.95, 17.92. HRMS (ESI-MS) Found $184.1697[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{11} \mathrm{H}_{22} \mathrm{NO}$ requires 184.1701.

Synthesis of 12c was carried out according to the same procedure as the synthesis of 12a. 11c ($3.39 \mathrm{~g}, 19.9 \mathrm{mmol}, 1$ equiv) afforded $\mathbf{1 2 c}(2.84 \mathrm{~g}, 14.4 \mathrm{mmol}, 72 \%$) as a colourless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.07-5.01(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{~s}$, $3 \mathrm{H}), 2.40(\mathrm{dd}, J=15.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.65$ (s, 3H), $1.61(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.97,132.85,122.09,48.44,37.71,35.65,30.95,29.04,25.84$, 21.26, 20.12, 17.77. HRMS (ESI-MS) Found $198.1853[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{12} \mathrm{H}_{24} \mathrm{NO}$ requires 198.1858.

Synthesis of $14 .{ }^{3 \mathrm{~g}}$ To a round-bottom flask equipped with a condenser and a nitrogen balloon was charged 5-bromo-2-methoxyphenol ($20.30 \mathrm{~g}, 0.1 \mathrm{~mol}, 1.0$ equiv) and a magnetic stirrer. The reaction vessel was then flushed with nitrogen and dried acetonitrile (160 mL) was introduced via a glass syringe. Then potassium carbonate $(41.47 \mathrm{~g}, \quad 0.3 \mathrm{~mol}, 3$ equiv), KI $(33.2 \mathrm{~g}, 0.2 \mathrm{~mol}, 2$ equiv) and 1-bromo-3-methoxypropane ($17 \mathrm{~mL}, 0.15 \mathrm{~mol}, 1.5$ equiv) were added. The resulting solution was stirred under reflux for 24 h . The reaction mixture was then diluted with water $(200 \mathrm{~mL})$ and the bulk of acetonitrile was removed under reduced pressure. The resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 200 \mathrm{~mL})$ and the combined organic layer was washed with brine (200 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. Purification of the residue by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave $14(27.12 \mathrm{~g}, 99 \mathrm{~mol}, 99 \%)$ as a lightly yellow solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}(600$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.02-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.11-2.07(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.37,148.78,123.53,116.52,113.07,112.77,69.14$, 66.33, 58.72, 56.18, 29.53.

Synthesis of 16a: To a dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (100 mL) of 11a ($2.85 \mathrm{~g}, 20 \mathrm{mmol}, 1$ equiv) was added dropwise $(\mathrm{COCl})_{2}(5.1 \mathrm{~mL}, 60 \mathrm{mmol}, 3$ equiv) and a few drops of DMF at room temperature. After being stirred for 10 h , the resulting solution was evaporated under reduced pressure to remove the volatile materials. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and N, O-dimethylhydroxylamine hydrochloride (3.9 g , $40 \mathrm{mmol}, 2$ equiv) and DMAP ($122 \mathrm{mg}, 1 \mathrm{mmol}, 0.05$ equiv) were added. Then, $\mathrm{Et}_{3} \mathrm{~N}$ ($11.2 \mathrm{~mL}, 80 \mathrm{mmol}, 4$ equiv) was added slowly and the resulting reaction mixture was stirred overnight. The reaction mixture was washed with brine ($3 \times 100 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification of the residue by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave 13a as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.78-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.07-5.04(\mathrm{~m}, 1 \mathrm{H}), 4.98-4.96(\mathrm{~m}, 1 \mathrm{H}), 3.66$ $(\mathrm{s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~s}, 1 \mathrm{H}), 2.40-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.86$ $(\mathrm{m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta 176.81,136.57,116.22,61.36,47.43,34.31,32.01,30.61,21.09,20.00$. HRMS (ESI-MS) Found $186.1487[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NO}_{2}$ requires 186.1494; found $208.1308[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NNaO}_{2}$ requires 208.1314.

To a round-bottom flask equipped with a condenser and a magnetic stirrer was charged 14 ($11.01 \mathrm{~g}, 40 \mathrm{mmol}, 2.0$ equiv). Then dried THF (120 mL) was introduced via a glass syringe. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$. n-butyl lithium solution (1.6 M in hexane, $25 \mathrm{~mL}, 40 \mathrm{mmol}, 2$ equiv) was added. The solution was stirred for 3 h at $-78{ }^{\circ} \mathrm{C}$. Then Weinreb amide 13a (1 equiv) was dissolved in a minimal amount of THF and was added dropwise. The resulting solution was further stirred at $-78^{\circ} \mathrm{C}$ and then room temperature for 1 h , respectively. The reaction mixture was quenched with saturated aq. NH4Cl. The THF solvent was evaporated under reduced pressure. The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 100 \mathrm{~mL})$ and the combined organic layer was washed with brine (100 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. Purification of the residue by column chromatography (1:20 ethyl acetate-hexanes) gave 15a as a slight yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.57-7.55(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.76-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=17.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.90(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{t}, J=6.1$ $\mathrm{Hz}, 2 \mathrm{H}$), $3.36(\mathrm{~s}, 3 \mathrm{H}), 3.32-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.27(\mathrm{~m}, 1 \mathrm{H})$, $2.17-1.99(\mathrm{~m}, 3 \mathrm{H}), 0.93$ (dd, $J=6.6,4.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 202.27, 153.58, 148.54, 136.47, 131.52, 122.80, 116.17, 112.19, 110.32, 69.25, 66.13, 58.71, 56.06, 51.75, 33.48, 30.77, 29.51, 21.29, 19.67. HRMS (ESI-MS) Found $321.2047[\mathrm{M}+\mathrm{H}]^{+}, \quad \mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{4}$ requires 321.2066 ; found $343.1861 \quad[\mathrm{M}+\mathrm{Na}]^{+}$, $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NaO}_{4}$ requires 343.1885. The enantiomeric excess of 97% ee was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol $=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, $\mathrm{T}=30^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \mathrm{tR}$ (minor) $16.481 \mathrm{~min}, \mathrm{tR}$ (major) 13.257 min).

To a dried $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ suspension of $\mathrm{AlCl}_{3}(5.40 \mathrm{~g}, 40 \mathrm{mmol}, 2$ equiv) was added slowly LiAlH_{4} ($759 \mathrm{mg}, 20 \mathrm{mmol}, 1$ equiv) and a $\mathrm{Et}_{2} \mathrm{O}$ solution of $\mathbf{1 5 a}$ at room temperature. The reaction mixture was stirred for 1 h . Then EtOAc (20 mL), $\mathrm{H}_{2} \mathrm{O}(40$ $\mathrm{mL})$, saturated aq. potassium tartrate (40 mL) and 1 M aq. $\mathrm{NaOH}(40 \mathrm{~mL})$ were added sequentially. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and the combined organic layers were washed with brine (50 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. Purification of the residue by column chromatography (1:20 ethyl acetate-hexanes) gave 16a ($4.30 \mathrm{~g}, 14 \mathrm{mmol}, 70 \%$ for three steps from 11a) as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.78(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.70-6.67(\mathrm{~m}, 2 \mathrm{H}), 5.78-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.00-4.97(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{t}, \mathrm{J}=6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{dd}, J=13.8,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.38(\mathrm{dd}, J=13.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~m}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.06-2.02(\mathrm{~m}, 1 \mathrm{H})$, $1.96-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.53(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $0.88(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.33,147.63,138.27$, 134.71, 121.44, 115.76, 114.61, 111.84, 69.53, 66.19, 58.78, 56.18, 45.99, 37.57, 36.24, 34.51, 29.79, 28.41, 19.21, 18.96. HRMS (ESI-MS) Found $307.2261[M+H]^{+}$, $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{3}$ requires 307.2273 ; found $329.2077[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NaO}_{3}$ requires 329.2093.

Synthesis of 16b was carried out accroding to the same procedure for the synthesis of 16a. 16b was afforded in 38% overall yield via a three-step transformation from 11b as a colorless oil.

13b: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.53-5.30(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H})$, $2.65(\mathrm{~s}, 1 \mathrm{H}), 2.33-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{dd}$, $J=16.3,6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.13,129.01,126.68,61.32$, 47.88, 33.13, 32.03, 30.59, 21.09, 20.09, 17.90. HRMS (ESI-MS) Found 222.1477 $[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NNaO}_{2}$ requires 222.1470.

15b: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{dd}, J=4.3,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.90-6.87(\mathrm{~m}, 1 \mathrm{H})$, $5.48-5.24(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.36(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.08(\mathrm{~m}$, $2 \mathrm{H}), 2.06-1.97$ (m, 1H), 1.53 (dd, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.92$ (dd, $J=6.7,4.4 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.69,153.52,148.54,131.74,128.89,126.71$, $122.82,112.32,110.36,69.33,66.21,58.78,56.12,52.37,32.33,30.70,29.58,21.33$, 19.77, 17.96. HRMS (ESI-MS) Found $335.2218[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{4}$ requires 335.2222 ; found $357.2035[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NaO}_{4}$ requires 357.2042; found $373.1770[\mathrm{M}+\mathrm{K}]^{+}$, $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{KO}_{4}$ requires 373.1781.

16b: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.79-6.66$ (m, 3H), 5.45-5.29 (m, 2H), 4.10 (t, J $=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{dd}, J=13.8$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=13.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~m}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.81(\mathrm{~m}$, $2 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{dd}, J=$ $10.8,6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.31,147.58,134.96,130.53$, $126.11,121.45,114.65,111.85,69.54,66.20,58.76,56.19,46.32,36.26,33.12,29.79$, 28.39, 19.21, 19.02, 18.11. HRMS (ESI-MS) Found $320.2340[M]^{+}, \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3}$ requires 320.2351 ; found $343.2235[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NaO}_{3}$ requires 343.2249.

Synthesis of $\mathbf{1 6 c}$ was carried out according to the same procedure for the synthesis of 16a. 16c was afforded in 26% overall yield via a three-step transformation from 11c as a colorless oil.

13c: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.11-5.05(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H})$, $2.63(\mathrm{~s}, 1 \mathrm{H}), 2.35-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}^{3}\right) \delta 177.30$, 132.76, 122.23, 61.18, 47.62, 32.06, 30.72, 28.57, 25.76, 21.03, 20.18, 17.72. HRMS (ESI-MS) Found 214.1802 $[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{12} \mathrm{H}_{24} \mathrm{NO}_{2}$ requires 214.1807.

15c: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 7.56-7.52(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.86(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.97$ (m, 1H), $4.18(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H})$, 3.21 (ddd, $J=9.7,6.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.17-1.98$ $(\mathrm{m}, 3 \mathrm{H}), 1.58(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{dd}, J=7.6,7.0 \mathrm{~Hz},, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.00,153.46,148.48,132.77,131.83,122.80,122.21,112.31$, $110.32,69.31,66.19,58.74,56.08,52.39,30.79,29.57,27.98,25.75,21.34,19.86$, 17.77. HRMS (ESI-MS) Found $349.2372[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{21} \mathrm{H}_{33} \mathrm{O}_{4}$ requires 349.2379 .

16c: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.67(\mathrm{~m}, 2 \mathrm{H}), 5.09$
$(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.36$ (s, 3H), $2.50(\mathrm{dd}, J=13.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=13.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~m}, J=$ $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H})$, $1.53-1.48(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{dd}, J=12.2,6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $148.30,147.57,135.07,131.95,123.98,121.45,114.65,111.86,69.56,66.21,58.77$, $56.22,46.90,36.48,29.79,28.51,28.42,25.98,19.34,19.01,17.91$. HRMS (ESI-MS) Found $357.2393[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{21} \mathrm{H}_{34} \mathrm{NaO}_{3}$ requires 357.2406; found $373.2133[\mathrm{M}+\mathrm{K}]^{+}$, $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{KO}_{3}$ requires 373.2145.

General synthesis of 2a via the olefin cross-metathesis:

A round-bottom flask equipped with a condenser and a magnetic stirrer bar was charged 16 (1.0 equiv), 12 (3.0 or 4.0 equiv), additives (added or not) and $5 \mathrm{~mol} \%$ of catalyst under nitrogen atmosphere. The reaction vessel was flushed with nitrogen. Then solvent was added via a glass syringe. The resulting reaction mixture was refluxed for 24 h under nitrogen atmosphere. The solvent was then removed under reduced pressure. The product was isolated by column chromatography on silica gel with ethyl acetate and hexane $(\mathrm{v} / \mathrm{v}=1: 5)$ as eluent to gave $\mathbf{2 a}$ as a slightly yellow oil.

Synthesis of 18: To a THF/ $\mathrm{H}_{2} \mathrm{O}(115 / 60 \mathrm{~mL})$ solution of $\mathbf{1 2 a}(3.27 \mathrm{~g}, 19.3 \mathrm{mmol}, 1$ equiv) was added $\mathrm{OsO}_{4}\left(0.08 \mathrm{M}\right.$ in $t \mathrm{BuOH}, 2.5 \mathrm{~mL}, 0.2 \mathrm{mmol}, 0.01$ equiv) and NaIO_{4} $\left(16.57 \mathrm{~g}, 77.5 \mathrm{mmol}, 4\right.$ equiv) at $0^{\circ} \mathrm{C}$. The solution was stirred at $0^{\circ} \mathrm{C}$ for 4 h and then evaporated under reduced pressure. The resulting mixture was diluted with water $(200 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 150 \mathrm{~mL})$. The combined organic layer was washed with brine (200 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification of the residue by column chromatography (1:3 ethyl acetate-hexane) gave $18(2.28 \mathrm{~g}, 13.3 \mathrm{mmol}, 69 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.78$ ($\mathrm{s}, 1 \mathrm{H}$), 3.16 (s, 3H), 3.13-2.98 (m, 2H), 2.96 (s, 3H), 2.54 (dd, J $=18.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.84(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{dd}, J=6.7,3.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.63,174.54,44.01,41.20,37.70,35.74,30.16,20.74,19.35$. HRMS (ESI-MS) Found $172.1333[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}_{2}$ requires 172.1338; found $212.1259\left[\mathrm{M}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Na}\right]^{+}, \mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NNaO}_{3}$ requires 212.1263. The enantiomeric excess of 97% ee was determined by HPLC (Daicel Chiralpak OD-H, hexane/isopropanol $=$ $85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}, 215 \mathrm{~nm}, \mathrm{tR}$ (minor) $7.857 \mathrm{~min}, \mathrm{tR}$ (major) 5.839 min).

Synthesis of 19: To a THF/ $\mathrm{H}_{2} \mathrm{O}(60 / 30 \mathrm{~mL})$ solution of $\mathbf{1 6 a}(3.08 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv) was added $\mathrm{OsO}_{4}(0.08 \mathrm{M}$ in $t \mathrm{BuOH}, 1.2 \mathrm{~mL}, 0.1 \mathrm{mmol}, 0.01$ equiv), $\mathrm{NaIO} 4(8.61 \mathrm{~g}$, $40.0 \mathrm{mmol}, 4$ equiv) and DABCO ($4.50 \mathrm{~g}, 40 \mathrm{mmol}, 4$ equiv) at $0{ }^{\circ} \mathrm{C}$. The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 4 h and then evaporated under reduced pressure. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic layer was washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification of the residue by column chromatography (1:10 ethyl acetate-hexane) gave 19 ($2.76 \mathrm{~g}, 8.94 \mathrm{mmol}, 89 \%$) as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 6.79-6.67(\mathrm{~m}, 3 \mathrm{H}), 4.10(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.83$ (s, $3 \mathrm{H}), 3.56(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.70-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.09(\mathrm{~m}, 6 \mathrm{H})$,
$1.78-1.72(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{dd}, J=10.1,6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 203.01, 148.56, 148.07, 133.08, 121.56, 114.52, 111.94, 69.50, 66.26, 58.79, 56.16, 45.00, 41.32, 37.39, 30.02, 29.75, 19.69, 18.74. HRMS (ESI-MS) found 331.1862 $[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NaO}_{4}$ requires 331.1885.

Synthesis of 22: A PhMe solution (10 mL) of 19 ($308.4 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv) and TsNHNH_{2} ($186.0 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv) was stirred for 45 min at room temperature and then evaporated under reduced pressure. The N-tosylhydrazone 21 thus obtained was re-dissolved in $\mathrm{PhMe}(10 \mathrm{~mL})$. Then $\mathrm{CuI}\left(19.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 0.1\right.$ equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}$ $\left(1.28 \mathrm{~g}, 6 \mathrm{mmol}, 6\right.$ equiv) and $\mathrm{HOP}(\mathrm{OEt})_{2}(0.65 \mathrm{~mL}, 5 \mathrm{mmol}, 5$ equiv) were added to the reaction vessel. The reaction system was flushed with nitrogen for 3 times and heated under refluxing for 12 h . The reaction mixture was filtered and the filtrate was evaporated under reduced pressure. Purification of the residue by column chromatography ($2: 1$ ethyl acetate-hexane) gave $22(342.4 \mathrm{mg}, 0.80 \mathrm{mmol}, 80 \%$) as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.79-6.67(\mathrm{~m}, 3 \mathrm{H}), 4.11-4.00(\mathrm{~m}, 6 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{dd}, J=13.7,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.33 (dd, $J=13.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.41(\mathrm{~m}, 6 \mathrm{H}), 1.28(\mathrm{td}, J=$ $7.0,2.6 \mathrm{~Hz}, 6 \mathrm{H}$), 0.90 (dd, $J=14.0,6.8 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 148.37, 147.68, 134.11, 121.28, 114.33, 111.87, 69.40, 66.13, 61.37, 58.68, 56.12, 46.67 (d, $J=16.0 \mathrm{~Hz}$), $36.29,29.68,28.66,23.80(\mathrm{~d}, J=140.0 \mathrm{~Hz}$), $22.54(\mathrm{~d}, J=3.9$ Hz), 19.08, 18.87, 16.48, 16.43. ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 32.40. HRMS (ESI-MS) Found $431.2556[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{P}$ requires 431.2563 ; found 453.2378 $[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NaO}_{6} \mathrm{P}$ requires 453.2382.

Synthesis of 24: To a THF solution (1 mL) of $22(91.9 \mathrm{mg}, 0.21 \mathrm{mmol}, 1$ equiv) was added dropwise $n-\mathrm{BuLi}\left(1.6 \mathrm{M}\right.$ in hexane, $0.2 \mathrm{~mL}, 0.32 \mathrm{mmol}, 1.5$ equiv) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for 40 min . Then allyl bromide 23 ($0.1 \mathrm{~mL}, 1.16 \mathrm{mmol}, 5.4$ equiv) was added slowly. The mixture was allowed to reach to room temperature gradually and then evaporated under reduced pressure to remove the volatile materials. Purification of the residue by column chromatography ($1: 6$ acetone $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave $24(69.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 69 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.79-6.67(\mathrm{~m}, 3 \mathrm{H}), 5.88-5.61(\mathrm{~m}, 1 \mathrm{H})$, 5.09-5.03 (m, 1H), 4.99-4.89 (m, 1H), 4.12-3.98 (m, 6H), $3.83(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H})$, $3.58(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.56-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.45(\mathrm{~m}, 2 \mathrm{H})$, $1.32-1.25(\mathrm{~m}, 6 \mathrm{H}), 0.94-0.82(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.26$, $147.61,136.02,134.26,121.36,116.75,114.50,111.82,69.39,66.09,61.57,61.35$, $58.65,56.11,43.02,36.37,33.66,33.36,29.66,28.60,28.37,18.96,18.05,16.49$. HRMS (ESI-MS) Found $471.2862[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{P}$ requires 471.2876; found $493.2692[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{25} \mathrm{H}_{43} \mathrm{NaO}_{6} \mathrm{P}$ requires 493.2695; found $509.2442[\mathrm{M}+\mathrm{K}]^{+}$, $\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{KO}_{6} \mathrm{P}$ requires 509.2434.

Synthesis of 26: To a THF solution (2 mL) of methyl 2-(diethoxyphosphoryl)acetate $25(183 \mu \mathrm{~L}, 0.75 \mathrm{mmol}, 1.5$ equiv) was added $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $0.5 \mathrm{~mL}, 0.75$ $\mathrm{mmol}, 1.5$ equiv) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for 40 min . Then 18 ($85.6 \mathrm{mg}, 0.5 \mathrm{mmol}, 1$ equiv) in THF was added slowly. The mixture was allowed to reach to room temperature gradually and then evaporated
under reduced pressure to remove the volatile materials. Purification of the residue by column chromatography ($2: 1$ ethyl acetate-hexane) gave 26 ($84.1 \mathrm{mg}, 0.37 \mathrm{mmol}$, 74%) in a cis/trans mixture as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for $\boldsymbol{E}-\mathbf{2 6}: \delta$ 6.90-6.82 (m, 1H), $5.84(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H})$, $2.60-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.89(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{dd}, J=10.9,6.8 \mathrm{~Hz}$, $6 \mathrm{H})$. for Z-26: $\delta 6.30-6.23(\mathrm{~m}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.18-3.11$ $(\mathrm{m}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.69-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.89(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{dd}, \mathrm{J}$ $=6.7,2.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) for $\boldsymbol{E}-26: \delta 174.22,166.83,147.17$, $122.25,51.34,47.12,37.61,35.58,32.45,30.81,20.95,19.55$. For Z-26: $\delta 174.89$, 166.59, 148.22, 120.25, 51.01, 47.43, 37.61, 35.54, 30.81, 28.93, 21.05, 19.55. HRMS (ESI-MS) Found $250.1423[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NNaO}_{3}$ requires 250.1419.

Synthesis of 27: To a THF solution (43 mL) of $19(2.70 \mathrm{~g}, 8.75 \mathrm{mmol}, 1$ equiv) was added LiBH_{4} ($235.4 \mathrm{mg}, 10.8 \mathrm{mmol}, 1.2$ equiv) at room temperature. The solution was stirred at room temperature for 1 h and quenched with of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(1$ $\mathrm{mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for three times. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification of the residue by column chromatography ($1: 1$ ethyl acetate-hexane) gave $27(2.71 \mathrm{~g}, 8.74 \mathrm{mmol}, 100 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 6.79-6.68 (m, 3H), $4.11(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.55(\mathrm{~m}, 4 \mathrm{H}), 3.36(\mathrm{~s}$, $3 \mathrm{H}), 2.61-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.71(\mathrm{~m}, 1 \mathrm{H})$, $1.63-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 1 \mathrm{H}), 0.93-0.87(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.24,147.60,134.43,121.28,114.39,111.78,69.44,66.09$, 61.66, 58.70, 56.08, 42.43, 37.02, 33.30, 29.62, 29.17, 19.16, 18.60. HRMS (ESI-MS) Found $311.2206[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{4}$ requires 311.2222 .

Synthesis of 28: To a THF solution (60 mL) of $27(3.67 \mathrm{~g}, 11.8 \mathrm{mmol}, 1$ equiv), TsCl ($2.55 \mathrm{~g}, 13.4 \mathrm{mmol}, 1.1$ equiv) and DMAP ($69.5 \mathrm{mg}, 0.6 \mathrm{mmol}, 0.05$ equiv) was added dropwise $\mathrm{Et}_{3} \mathrm{~N}$ ($5 \mathrm{~mL}, 35.8 \mathrm{mmol}, 3$ equiv) at room temperature. The solution was stirred at room temperature for 14 h and then evaporated under reduced pressure. The resulting mixture was diluted with of $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$, filtered and concentrated under reduced pressure. Purification of the residue by column chromatography (1:2 ethyl acetate-hexane) gave $28(5.25 \mathrm{~g}, 11.3 \mathrm{mmol}, 96 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{t}, J$ $=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{dd}, J=13.7$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{dd}, J=13.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~m}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.68-1.46(\mathrm{~m}, 4 \mathrm{H}), 0.84(\mathrm{dd}, J=16.3,6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 148.46, 147.83, 144.68, 133.61, 133.32, 129.86, 127.90, 121.24, 114.34, 111.94, 69.72, 69.49, 66.20, 58.76, 56.17, 42.22, 36.71, 29.75, 29.47, 29.02, 21.70, 19.07, 18.51. HRMS (ESI-MS) Found $464.2238[M]^{+}, \mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{6}$ S requires 464.2233; found $487.2111[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{25} \mathrm{H}_{36} \mathrm{NaO}_{6} \mathrm{~S}$ requires 487.2130 .

Synthesis of 30a (Method A): A mixture of 28 ($4.45 \mathrm{~g}, 9.6 \mathrm{mmol}, 1$ equiv), 29a (3.42 $\mathrm{g}, 19.2 \mathrm{mmol}, 2$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(6.63 \mathrm{~g}, 48.0 \mathrm{mmol}, 5$ equiv) in $\mathrm{MeCN}(60 \mathrm{~mL})$ was heated at $50{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$,
filtered and concentrated under reduced pressure. Purification of the residue by column chromatography (1:10 ethyl acetate-hexane) gave 30a ($4.27 \mathrm{~g}, 9.1 \mathrm{mmol}, 95 \%$) as a colorless oil.

Method B: To a THF solution (80 mL) of $27\left(2.48 \mathrm{~g}, 7.99 \mathrm{mmol}, 1\right.$ equiv), $\mathrm{PPh}_{3}(3.17$ $\mathrm{g}, 12 \mathrm{mmol}, 1.5$ equiv) and $29 \mathrm{a}(2.85 \mathrm{~g}, 16 \mathrm{mmol}, 2$ equiv) was added a THF solution of DEAD ($2.6 \mathrm{~mL}, 16 \mathrm{mmol}, 2$ equiv) at $-40^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-40{ }^{\circ} \mathrm{C}$ for 10 min and room temperature for 20 min , and then evaporated under reduced pressure. The resulting mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ and washed with brine ($6 \times 100 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification of the residue by column chromatography (1:10 ethyl acetate-hexane) gave $30 \mathrm{a}(3.01 \mathrm{~g}, 6.39 \mathrm{mmol}, 80 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~s}, 5 \mathrm{H}), 6.76(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.67(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{t}$, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.35-3.23(\mathrm{~m}, 5 \mathrm{H}), 2.65-2.60$ $(\mathrm{m}, 1 \mathrm{H}), 2.41-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.58(\mathrm{~m}$, 2H), 0.94-0.88 (m, 6H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.36,148.32,147.69$, 133.81, 133.73, 130.05, 129.76, 123.81, 121.26, 114.28, 111.82, 69.39, 66.11, 58.67, $56.05,45.51,36.59,36.04,35.23,32.07,29.76,29.64,29.08,19.03,18.80$. HRMS (ESI-MS) Found $471.2424[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ requires 471.2430; found 493.2245 $[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{NaO}_{3} \mathrm{~S}$ requires 493.2249 .

Synthesis of 30b was carried out according to the method A for the synthesis 30a. 30b was obtained in 60% yield from 28 as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $6.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.68(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, 3.58 (t, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.36 (s, 3H), 3.32-3.26 (m, 2H), 2.62 (dd, $J=13.8,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.41(\mathrm{dd}, J=13.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~m}, \mathrm{~J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.85-1.73(\mathrm{~m}, 2 \mathrm{H})$, $1.70(\mathrm{~s}, 9 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{dd}, J=16.3,6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 152.80,148.45,147.81,134.03,121.37,114.45,111.94,69.52,66.26,60.95$, $58.79,56.19,45.68,36.71,32.74,29.78,29.74,29.06,28.78,19.20,18.81$. HRMS (ESI-MS) Found $473.2551[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{23} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{NaO}_{3} \mathrm{~S}$ requires 473.2562; found $489.2293[\mathrm{M}+\mathrm{K}]^{+}, \mathrm{C}_{23} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{KO}_{3} \mathrm{~S}$ requires 489.2302 .

Synthesis of 30c was carried out according to the method A for the synthesis 30a. 30c was obtained in 85% yield from 28 as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 6.77-6.65 (m, 3H), 4.10 (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 6 \mathrm{H}), 3.58(\mathrm{t}, J=6.1$ Hz, 2H), 3.36 (s, 3H), 3.34-3.13 (m, 2H), 2.63 (dd, $J=13.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.35$ (dd, J $=13.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.58(\mathrm{~m}, 2 \mathrm{H}), 0.92$ $(\mathrm{dd}, J=14.8,6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.34,148.41,147.79$, 133.90 , 121.40, 114.41, 111.84, 69.49, 66.25, 58.78, 56.16, 45.52, 36.69, 33.32, 32.22, $30.00,29.76,29.28,19.08,18.95$. HRMS (ESI-MS) Found $409.2266[\mathrm{M}+\mathrm{H}]^{+}$, $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ requires 409.2273; found $431.2089[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{NaO}_{3} \mathrm{~S}$ requires 431.2093.

Synthesis of 31a: To a EtOH solution (33 mL) of $\mathbf{3 0 a}(1.54 \mathrm{~g}, 3.3 \mathrm{mmol}$, 1 equiv) was added a $\mathrm{H}_{2} \mathrm{O}_{2}$ solution (7 mL) of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}(859.7 \mathrm{mg}, 0.7 \mathrm{mmol}, 0.2$ equiv) at room temperature. The solution was stirred at room temperature for 24 h and
evaporated under reduced pressure. Purification of the residue by column chromatography (1:6 ethyl acetate-hexane) gave 31a ($1.55 \mathrm{~g}, 3.09 \mathrm{mmol}, 94 \%$) as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.58(\mathrm{~m}, 5 \mathrm{H}), 6.79-6.67(\mathrm{~m}, 3 \mathrm{H})$, $4.10(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.47(\mathrm{~m}, 4 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{dd}, J=$ $14.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=13.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.89(\mathrm{~m}$, $1 \mathrm{H}), 1.86-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{dd}, J=12.3,6.8 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.45,148.58,148.00,133.09,133.02,131.49$, $129.73,125.16,121.20,114.14,112.04,69.44,66.20,58.73,56.13,54.95,45.24$, 36.62, 29.65, 22.82, 19.01, 18.90. HRMS (ESI-MS) Found $503.2309[\mathrm{M}+\mathrm{H}]^{+}$, $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ requires 503.2328 ; found $525.2116[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{NaO}_{5} \mathrm{~S}$ requires 525.2148.

Synthesis of 31b was carried out according to the same procedure for the synthesis 31a. 31b was obtained in 90% yield from $\mathbf{3 0 b}$ as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.69(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}$, $3 \mathrm{H}), 3.74-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H})$, $2.69(\mathrm{dd}, J=13.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=13.9,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~m}, J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.99-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 9 \mathrm{H}), 1.80-1.75(\mathrm{~m}, 1 \mathrm{H})$, $1.73-1.66(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{dd}, J=15.2,6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 154.11, 148.62, 148.04, 133.22, 121.29, 114.28, 112.10, 69.54, 66.27, 65.47, 58.80, $56.21,55.68,45.39,36.72,29.78,29.58,22.96,19.18,18.88$. HRMS (ESI-MS) Found $505.2445[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{23} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{NaO}_{5} \mathrm{~S}$ requires 505.2461 ; found $521.2181[\mathrm{M}+\mathrm{K}]^{+}$, $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{KO}_{5} \mathrm{~S}$ requires 521.2200.

Synthesis of 31c was carried out according to the same procedure for the synthesis 31a. 31c was obtained in 98% yield from 30c as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.79-6.64(\mathrm{~m}, 3 \mathrm{H}), 4.29(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.58$ (t, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.53-3.34 (m, 5H), 2.70 (dd, $J=13.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.27$ (m, $1 \mathrm{H}), 2.15-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.64(\mathrm{~m}, 4 \mathrm{H}), 0.94(\mathrm{dd}, J=11.1,6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.22,148.65,148.09,132.99,121.21,114.18,112.09,69.48$, $66.28,58.79,56.20,54.78,45.21,36.70,36.09,29.83,29.72,22.86,19.01$. HRMS (ESI-MS) Found $441.2157[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{20} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ requires 441.2172; found 463.1971 $[\mathrm{M}+\mathrm{Na}]^{+}, \quad \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{NaO}_{5} \mathrm{~S}$ requires 463.1991; found $479.1711 \quad[\mathrm{M}+\mathrm{K}]^{+}$, $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{KO}_{5} \mathrm{~S}$ requires 479.1730.

General Synthesis of 2a via the Julia-Kocienski olefination: A dried tube equipped with a magnetic stirrer was charged $31(0.2 \mathrm{mmol}, 1.0$ equiv) and flushed with nitrogen. Then dried solvent (2.5 mL) was added via a glass syringe. Unless otherwise noted, the solution was cooled to $-70^{\circ} \mathrm{C}$ and a solution of MHMDS base $(0.4 \mathrm{mmol}$ in solvent (1 mL), where $\mathrm{M}=\mathrm{Li}, \mathrm{Na}$, or K) was added dropwise. After being stirred at -70 ${ }^{\circ} \mathrm{C}$ for 1 h , aldehyde $\mathbf{1 8}(0.8 \mathrm{mmol}$ in solvent $(1 \mathrm{~mL}))$ was added dropwise. The resulting reaction mixture was stirred at $-70{ }^{\circ} \mathrm{C}$ for 1 h and then allowed to warm gradually to room temperature and stirred for a few hours until $\mathbf{3 1}$ has disappeared as monitored by TLC. The reaction mixture was quenched with brine and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and purified by flash column chromatography on silica gel with a mixed ethyl acetate
and hexane $(\mathrm{v} / \mathrm{v}=1: 2)$ as eluent to gave 2 a as a light yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.65(\mathrm{~m}, 2 \mathrm{H}), 5.41-5.37(\mathrm{~m}, 1 \mathrm{H}), 5.32-5.27$ $(\mathrm{m}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H})$, $2.99(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.18(\mathrm{~m}, 1 \mathrm{H})$, $2.10(\mathrm{p}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 1 \mathrm{H})$, $1.51-1.45(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.84(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}, \mathrm{DMSO}) \delta 6.83(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.64$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.34-5.29(\mathrm{~m}, 1 \mathrm{H}), 5.27-5.22(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H})$, $2.54-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=13.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=13.7,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.12(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.56(\mathrm{~m}, 1 \mathrm{H})$, $1.48-1.42(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{dd}, J=21.1,6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.81(\mathrm{dd}, J=9.5,7.0 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 MHz , DMSO) $\delta 174.05,147.78,147.11,134.00,130.31,129.02$, $120.99,114.20,112.09,68.58,65.37,57.91,55.55,46.93,45.46,37.06,35.37,34.89$, $32.93,32.38,30.28,29.11,27.72,20.70,19.57,19.06,18.68$. HRMS (ESI-MS) Found $448.3408[\mathrm{M}+\mathrm{H}]^{+}, \quad \mathrm{C}_{27} \mathrm{H}_{46} \mathrm{NO}_{4}$ requires 448.3427; found $470.3216[\mathrm{M}+\mathrm{Na}]^{+}$, $\mathrm{C}_{27} \mathrm{H}_{45} \mathrm{NNaO}_{4}$ requires 470.3246 .

Synthesis of Aliskiren HCl salt: The synthesis of 33 from 2a was carried out according to the reported procedures in ref. 3p and 3s.

Compound 32: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H})$, $6.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.03-4.00$ $(\mathrm{m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{dd}, J=13.8,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.63-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.08(\mathrm{~m}, 6 \mathrm{H}), 1.95-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 2 \mathrm{H})$, $1.62-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{t}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}) \cdot[\alpha]_{\mathrm{D}}{ }^{20}=39.2\left(c 1, \mathrm{CHCl}_{3}\right)$.

Compound 33: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H})$, $6.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.47-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H})$, $3.35-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.51(\mathrm{~m}, 1 \mathrm{H})$, 2.49-2.46 (m, 1H), 2.12-2.06 (m, 3H), 1.90-1.84 (m, 1H), 1.78-1.70 (m, 2H), $1.68-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H}), 0.93-0.87(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.32,176.02,148.44,147.79,133.94,121.32,114.35,111.97$, $72.21,69.44,66.55,66.17,58.66,56.13,50.80,47.31,43.10,42.59,37.48,34.37$, 31.78, 30.29, 29.91, 29.61, 24.20, 24.06, 21.22, 20.37, 19.99, 17.50.

Conversion of 33 into the aliskiren HCl salt was performed as following: To a MeOH solution (4 mL) of $33(21.6 \mathrm{mg}, 0.037 \mathrm{mmol}, 1$ equiv) and 2-aminoethanol (6.7 mg , $0.11 \mathrm{mmol}, 3$ equiv) was added $10 \% \mathrm{Pd} / \mathrm{C}(24.0 \mathrm{mg})$ and stirred at room temperature under H_{2} atmosphere for 3 h . The mixture was filtered and evaporated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and washed with de-ionized $\mathrm{H}_{2} \mathrm{O}(6 \times 1 \mathrm{~mL})$, then acidified with $17 \% \mathrm{HCl}$ in $\mathrm{MeOH}(0.14 \mathrm{~mL})$. The solution was evaporated under reduced pressure and the residue was dried under vacuum at room temperature to give Aliskiren HCl salt ($18.1 \mathrm{mg}, 0.031 \mathrm{mmol}, 82 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{DMSO}, 400 \mathrm{MHz}) \delta 7.70(\mathrm{~s}, 3 \mathrm{H}), 7.59(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H})$, $6.83(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 6.71(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}$, $3 \mathrm{H}), 3.47$ (t, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.32 (dd, $J=13.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 4 \mathrm{H}), 3.10-3.05$ $(\mathrm{m}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 1 \mathrm{H}), 2.46-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.81$ $(\mathrm{s}, 1 \mathrm{H}), 1.73-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 6 \mathrm{H}), 0.87-0.79(\mathrm{~m}, 12 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO, 100 MHz) $\delta 178.46,174.61,147.89,147.20,133.15,121.17$, $114.27,111.97,68.66,68.00,65.41,57.95,55.57,54.29,48.76,46.34,42.51,36.42$, $33.89,30.64,30.32,29.18,28.12,23.63,23.52,20.76,20.01,19.09,17.38$. HRMS (ESI-MS) Found $552.3992[\mathrm{M}-\mathrm{Cl}]^{+}, \mathrm{C}_{30} \mathrm{H}_{54} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires 552.4013; found 574.3815 $[\mathrm{M}-\mathrm{HCl}+\mathrm{Na}]^{+}, \mathrm{C}_{30} \mathrm{H}_{53} \mathrm{~N}_{3} \mathrm{NaO}_{6}$ requires 574.3832. $[\alpha]_{\mathrm{D}}{ }^{20}=-5.5$ (c 1, DMSO).

Conversion of 33 into the Aliskiren Hemifumarate salt was performed as following: To a MeOH solution (3 mL) of $33(17.3 \mathrm{mg}, 0.03 \mathrm{mmol}, 1$ equiv) and 2-aminoethanol $(5.5 \mathrm{mg}, 0.09 \mathrm{mmol}, 3$ equiv) was added $10 \% \mathrm{Pd} / \mathrm{C}(8.0 \mathrm{mg})$ and stirred at room temperature under H_{2} atmosphere for 3 h . The mixture was filtered and evaporated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and washed with de-ionized $\mathrm{H}_{2} \mathrm{O}(6 \times 1 \mathrm{~mL})$, then acidified with 13.5 mM fumaric acid in $\mathrm{MeOH}(1$ $\mathrm{mL}, 0.45$ equiv). The solution was evaporated under reduced pressure and the residue was dried under vacuum at room temperature to give aliskiren hemifumarate salt $(16.7 \mathrm{mg}, 0.027 \mathrm{mmol}, 91 \%)$ as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}, \mathrm{DMSO}) \delta 7.57(\mathrm{t}$, $\mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$, $3.30-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.16-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 1 \mathrm{H}), 2.49-2.43(\mathrm{~m}, 1 \mathrm{H})$, $2.40-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~s}, 1 \mathrm{H}), 1.71-1.51(\mathrm{~m}$, $3 \mathrm{H}), 1.37-1.24(\mathrm{~m}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 6 \mathrm{H}), 0.89-0.75(\mathrm{~m}, 12 \mathrm{H}) .[\alpha]_{\mathrm{D}}{ }^{20}=-20.8(c 1$, DMSO).

Copies of NMR spectra and HPLC charts

M

Figure S1. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound 10a

Figure S2. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (lower) spectra of compound 10b’

Figure S3. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (lower) spectra of compound 10b

Figure S4. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound 10c

Figure S5. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (lower) spectra of compound 11a

Figure S6. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound 11b

Figure S7. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound 11c

Figure S8. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound 12a

Figure S9. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound 12b

Figure S10. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (lower) spectra of compound 12c

Figure S11. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound 14

Figure S12. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (lower) spectra of compound 13a

Figure S13. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (lower) spectra of compound $\mathbf{1 3} \mathbf{b}$

Figure S14. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound $\mathbf{1 3 c}$

Figure S15. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (lower) spectra of compound 15a

Figure S16. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (lower) spectra of compound 15 b

Figure S17. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (lower) spectra of compound 15 c

Figure S18. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (lower) spectra of compound 16a

Figure S19. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (lower) spectra of compound $16 \mathbf{b}$

Figure S20. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (lower) spectra of compound $\mathbf{1 6 c}$

Figure S21. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (lower) spectra of compound 18

Figure S22. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound 19

Figure S23. ${ }^{1} \mathrm{H}$ - (upper), ${ }^{13} \mathrm{C}$ - (mid) and ${ }^{31} \mathrm{P}$-NMR (bottom) of 22

Figure S24. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound 24

Figure S25. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound 26

Figure S26. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound 27

Figure S27. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound 28

Figure S28. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound 30a

Figure S29. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound 30b

Figure S30. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound 30c

Figure S31. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (lower) spectra of compound 31a

Figure S32. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (lower) spectra of compound 31b

Figure S33. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound 31c

Figure S34. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound 2a

Figure S35. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of compound 32

Figure S36. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound 33

Figure S37. ${ }^{1} \mathrm{H}$ - (upper) and ${ }^{13} \mathrm{C}$-NMR (lower) spectra of compound Aliskiren HCl salt

Figure S38. ${ }^{1} \mathrm{H}$-NMR spectra of compound Aliskiren hemifumarate salt

Peak	Retention Time	Area	Area \%	Height	Height \%
1	13.257	11303394	97.748	324447	97.812
2	16.481	165987	1.435	4359	1.314

Figure S39. Chiral HPLC chart of compound 15a

rac-18

Peak	Retention Time	Area	Area \%	Height	Height \%
1	6.304	882278	47.417	41650	53.500
2	7.039	29724	1.598	3123	4.011
3	7.457	948664	50.985	33078	42.489

(S)-18

Peak	Retention Time	Area	Area \%	Height	Height \%
1	5.839	4934492	98.524	143112	96.655
2	7.857	73931	1.476	4953	3.345

Figure S40. Chiral HPLC chart of compound 18
mV

Peak	Retention Time	Area	Area \%	Height	Height \%
1	20.725	32382	6.721	1169	8.453
2	22.224	439945	91.309	12298	88.936

Figure S41. HPLC chart of compound 2a synthesized under the conditions of entry 14 in
Table 2

