Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Supporting Information

For

Pd(II)-Catalyzed C-H Arylation of Aryl and Benzyl Weinreb Amides

Yan Wang, Kai Zhou, Quan Lan and Xi-Sheng Wang*

Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China

Table of Contents

General Information	S2
Tables of the Optimization of Reaction Conditions	S 3
Experimental Procedures	
General Procedure for Preparation of Substrates	S5
General Procedure of Pd(II)-Catalyzed C-H Arylation of Aryl and Benzyl	Weinreb
Amides	S 11
Mechanistic Investigation	S17
Deuterium Kinetic Isotope Effect Experiment	S17
Control Experiments	S17
References	S18
¹ H, ¹³ C NMR Spectra	S19

General Information:

Unless otherwise noted, all the reagents were commercially available, and used as received. NMR spectra were recorded on Bruker-400 (400 MHz for ¹H; 100 MHz for ¹³C) instruments internally referenced to SiMe₄ signal. Chemical shifts are reported in δ ppm, High resolution mass spectra were recorded on P-SIMS-Gly of Bruker Daltonics Inc. using ESI-TOF (electrospray ionization-time of flight) or Micromass GCT using EI (electron impact).

Tables of the Optimization of Reaction Conditions

 Table S1. Silver Salts Screening:

• • • • • • • • • • • • • • • • • • •	Pd(OAc) ₂ (5 r DCE (0.2 M), 80 silver salt 2a (2 eq.)	nol%) °C, 24h
entry	silver salt (equiv)	yield (%) ^a
1	Ag ₂ O (1)	N. R.
2	$Ag_2CO_3(1)$	N. R.
3	AgTFA (2)	N. R.
4	AgOAc (2)	N. R.
5	AgOTf (2)	69 (4)

^aGC yield using dodecane as the internal standard, yield of diarylation product was given in the parentheses.

Table S2. Solvent Screening:

N(ОМе	ļ				∕_ _N ∕OMe
	~ +		Pd(OAc) ₂	(5 mol%)		
			AgOTf	(2.0 eq.)	24h	
1a (0.2 mr	mol)	2a (2 eq.)	solvent (0.2 i	vi), 00 °C, 2	.411	3a
	entry		solvent	yie	∍ld (%) ^a	
	1		PhMe	6	67 (6)	
	2	t	-AmlyOH		0	
	3		dioxane	Ę	50 (3)	
	4		DMF		N. R.	
	5		CH ₃ CN		N. R.	
	6		DMSO		N. R.	
	7		acetone	cc	omplex	
	8		DCE	6	39 (4)	

^aGC yield using dodecane as the internal standard, yield of diarylation product was given in the parentheses.

Table S3. Additive Screening:

+ Pd(C Ag DCE (0.	DAc) ₂ (5 mol%) OTf (2.0 eq.) 2 M), 80 °C, 24h	N ^{OMe}
2a (2 eq.) additi	ve (0.5 equiv)	3a 🧹
/ additive	yield (%)	a
HOTf	89 (5), 91	1 ^{<i>b</i>}
HOAc	66 (19)	
TFA	75 (21)	
PivOH	70 (20)	
TsOH	74 (17)	
HBF ₄	62 (18)	
	+ Pd(O Ag DCE (0. 2a (2 eq.) additive HOTf HOAc TFA PivOH TsOH HBF ₄	$\begin{array}{c} + & & \begin{array}{c} & \begin{array}{c} Pd(OAc)_2 \ (5 \ mol\%) \\ \hline AgOTf \ (2.0 \ eq.) \\ DCE \ (0.2 \ M), \ 80 \ ^{\circ}C, \ 24h \\ additive \ (0.5 \ equiv) \end{array} \end{array}$

^aGC yield using dodecane as the internal standard, yield of diarylation product was given in the parentheses. ^bIsolated yield.

Table S4. Other conditions:

	OMe	+		Palladium, AgOTf	N ^{OMe}
	о 'н	•		HOTf (0.5 eq.) DCE (0.2 M), 80 °C, 24h	
1a (0.2	? mmol)		2a (2 equiv)		3a 💙
	entry		Pd (mol %)	AgOTf (equiv)	yield(%) ^a
	1		Pd(OAc) ₂ (5)	AgOTf (1.0)	77 (3)
	2 ^b		Pd(OAc) ₂ (5)	AgOTf (2)	80 (6)
	3 ^c		Pd(OAc) ₂ (5)	AgOTf (2)	76 (3)
	4		Pd(Ph ₃ P) ₄ (5) AgOTf (2)	90 (6)
	5		Pd ₂ (dba) ₃ (2.	5) AgOTf (2)	56 (1)
	6		-	AgOTf (2)	N. R.
	7		Pd(OAc) ₂ (1)	AgOTf (2)	81 (4)

^aGC yield using dodecane as the internal standard, yield of diarylation product was given in the parentheses. ^bPhI (1.1 equiv). ^c60 °C.

Preparation of Substrates:

Weinreb amides 1a-1g,¹ $1o-1p^1$ and $4a-4l^2$ were prepared according to the known methods, respectively. [D₅]-N-methoxy-N-methylbenzamide ([D₅]-1a) was prepared from D₆-Benzene according to the literature.^{1,3} All the aryl iodides were commercially available and used as received.

General Procedure for Pd(II)-Catalyzed C–H Arylation of Aryl and Benzyl Weinreb Amides:

1a (33.0 mg, 0.2 mmol), $Pd(OAc)_2$ (2.2 mg, 5 mol%), AgOTf (102.8 mg, 2 equiv), PhI (40.8 mg, 2 equiv), DCE (1 mL) and HOTf (15 mg, 0.5 equiv) were sequentially added to a 35 mL sealed tube. The reaction mixture was then placed into a preheated oil bath at 80 °C for 24 h. After cooling to room temperature, the mixture was diluted with ethyl acetate, filtered through a plug of silica. The filtrate was concentrated under vacuum, and the residue was purified by flash column chromatography on silica gel (petroleum ether : EtOAc = 5 : 1) to give monoarylation product **3a** (91% yield) as a white solid with minor diarylation product (5% yield) (determined by ¹H NMR and GC-MS) (Note: Arylation products **3a-3l** were showed as mixture in the NMR spectra because of the C-N bond rotation of the amide bond.⁴ Substrates **1a-1h**, **1j**, **1k**, **1m** affroded monoarylation product majorly along with minor diarylation product which were detected by crude ¹H NMR, ¹³C NMR and GC-MS.)

3a: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **3a** (91% yield) as a white solid and minor diarylation product (5% yield) (The yields were determined by ¹H NMR and GC). ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.26 (m, 9H), 3.49 (br s, 1.2H), 3.26 (br s, 1.8H), 3.09

(br s, 1.8H), 2.66 (br s, 1.2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.90, 167.05, 140.49, 139.45, 139.18, 134.85, 134.28, 129.90, 129.35, 128.41, 128.29, 127.68, 127.57, 127.36, 126.84, 61.00, 59.74, 35.76, 32.37. HRMS EI (*m*/*z*): [M + Na]⁺ calcd. for C₁₅H₁₅NO₂Na: 264.1000, found: 264.1001.

3b: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **3b** (93% yield) as a yellow oil and minor diarylation product (6% yield) (determined by ¹H NMR). ¹H NMR (400 MHz, CDCl₃) δ 7.31 (m, 2H), 7.24-7.21 (m, 4H), 7.09-7.05 (m, 2H), 3.34 (br s, 1.3H), 3.12 (br s, 1.9H),

2.94 (br s, 1.9H), 2.54 (br s, 1.3H), 2.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.86, 167.06, 140.42, 139.67, 139.08, 131.74, 131.35, 129.87, 128.07, 127.35, 127.16, 126.73, 60.76, 59.43, 35.55, 32.17, 21.11. HRMS EI (m/z): [M+Na]⁺ calcd. for C₁₆H₁₇NO₂Na: 278.1157, found: 278.1159.

3c: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **3c** (71% yield) as a yellow oil and minor diarylation product (8% yield) (determined by ¹H NMR and GC). ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.10 (m, 6H), 7.08-6.94 (m, 2H), 3.38 (br s, 1.2H), 3.12 (br s, 2H), 2.95

(br s, 1.9H), 2.53 (br s, 0.9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.86, 166.12, 162.84 (d, J = 251.0 Hz), 142.06, 141.67, 139.28, 138.16, 128.84, 128.33, 127.81, 116.22, 116.01, 114.55, 113.78, 113.57, 60.87, 59.77, 35.66, 32.27. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₅H₁₄NO₂NaF: 282.0926, found: 282.0916.

3d: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **3d** (88% yield) as a yellow oil and minor diarylation product (9% yield) (determined by ¹H NMR and GC). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 2.0 Hz, 1H), 7.45 (d, *J* = 8.4 Hz, 1H), 7.33-7.11(m, 6H), 3.41

(br s, 1.2H), 3.18 (br s, 1.8H), 2.99 (br s, 2H), 2.58 (br s, 0.8H). ¹³C NMR (101 MHz, CDCl₃) δ 170.95, 141.69, 140.79, 139.19, 134.73, 133.83, 132.38, 130.81, 130.66, 129.98, 129.81, 129.39, 128.52, 128.42, 128.03, 127.10, 126.89, 123.39, 61.23, 59.95, 35.91, 32.50. HRMS ESI (m/z): [M+Na]+ calcd. for C₁₅H₁₄NO₂NaBr: 342.0104, found: 342.0106.

3e: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **3e** (91% yield) as a white solid and minor diarylation product (4% yield) (determined by ¹H NMR and GC). ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.49 (m, 4H), 7.41-7.39 (m, 3H), 7.33-7.21 (m, 6H), 3.37 (br s,

1.2H), 3.16 (br s, 1.8H), 2.98 (br s, 1.8H), 2.58 (br s, 1.2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.76, 166.95, 142.73, 142.21, 140.48, 140.06, 133.70, 133.14, 130.98, 130.53, 129.90, 128.85, 128.48, 128.38, 128.19, 127.79, 127.52, 127.12, 126.95, 126.81, 126.55, 126.21, 125.50, 61.08, 59.80, 35.92, 32.41. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₁H₁₉NO₂Na: 340.1313, found: 340.1314.

3f: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **3f** (93% yield) as a yellow oil and minor diarylation product (4% yield) (determined by ¹H NMR). ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.40 (m, 2H), 7.39-7.25 (m, 6H), 3.49 (br s, 1.7H), 3.22 (br s, 1.9H), 3.08 (br

s, 1.8H), 2.65 (br s, 1.5H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.11, 167.29, 140.51, 139.41, 137.66, 136.73, 136.33, 134.64, 134.09, 130.78, 130.17, 129.46, 129.28, 128.64, 128.39, 127.62, 127.44, 127.31, 127.15, 61.05, 59.80, 35.68, 32.39, 20.98. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₆H₁₇NO₂Na: 278.1157, found: 278.1166.

3g: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **3g** (92% yield) as a yellow oil and minor diarylation product (3% yield) (determined by ¹H NMR and GC). ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.27 (m, 8H), 3.49 (br s, 1.1H), 3.27 (br s, 1.8H), 3.08 (br s, 1.9H), 2.67

(br s, 0.9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.31, 165.60, 135.75, 133.88, 133.17, 132.96, 131.06, 130.81, 130.73, 130.13, 129.91, 129.79, 129.46, 128.45, 128.37, 128.22, 127.97, 127.76, 127.06, 126.88, 126.72, 126.53, 61.23, 59.91, 35.88, 32.44. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₅H₁₄NO₂NaCl: 298.0611, found: 298.0616.

3h: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **3h** (88% yield) as a yellow oil and minor diarylation product (8% yield) (determined by ¹H NMR). ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.17 (m, 6H), 7.06 (m, 2H), 3.40 (br s, 1.2H), 3.11 (br s, 1.8H), 2.97 (br s, 1.9H),

2.52 (br s, 1.2H), 2.22 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.79, 166.83, 139.11, 138.87, 137.35, 136.69, 136.27, 134.57, 134.00, 129.61, 129.05, 128.80, 128.01, 127.25, 127.17, 126.46, 126.33, 60.70, 59.82, 35.49, 32.09, 20.86. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₆H₁₇NO₂Na: 278.1157, found: 278.1160.

3i: Purification by flash chromatography (petroleum ether/ EtOAc = 2:1) on silica gel to give **3i** (39.1 mg, 72%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.14(m, 6H), 6.76 (d, *J* =8.4, 2H), 3.60 (s, 3H), 3.38 (br s, 1.2H), 3.07 (br s, 1.7H), 2.94 (br s, 1.7H), 2.49 (br s, 1H). ¹³C NMR (101 MHz,

CDCl₃) δ 171.56, 166.68, 158.87, 158.60, 138.51, 138.27, 134.41, 133.73, 132.43, 131.32, 129.25, 129.05, 128.78, 127.04, 126.72, 126.19, 125.90, 113.30, 60.44, 59.33, 54.62, 35.18, 31.80. HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₆H₁₇NO₃Na: 294.1106, found: 294.1113.

3j: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **3j** (51.8 mg, 94%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.17 (m, 8H), 3.37 (br s, 0.9H), 3.09 (br s, 2H), 2.93(br s, 2H), 2.53 (br s, 0.9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.05, 166.20, 138.63,

137.68, 134.47, 132.99, 129.42, 129.03, 128.81, 128.04, 127.65, 126.81, 126.41, 60.57, 59.42, 35.46, 31.90. HRMS ESI (m/z): $[M+Na]^+$ calcd. for $C_{15}H_{14}NO_2NaCl$: 298.0611, found: 298.0617.

3k: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **3k** (90% yield) as a yellow oil and minor diarylation product (4% yield) (determined by ¹H NMR and GC). ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 7.6 Hz, 2H), 7.34-7.31 (m, 2H), 7.28-7.27 (m, 1H), 7.24-7.19 (m, 3H), 3.42 (br s, 0.9H), 3.15(br s, 2H), 2.98 (br s, 2H), 2.59 (br, 0.8H). ¹³C NMR (101 MHz, CDCl₃) δ 171.23, 166.50, 139.23, 137.91, 134.52, 131.19, 129.91, 129.25, 128.95, 127.80, 127.04, 126.63, 121.80, 121.49, 60.81, 59.61, 35.56, 32.16. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₅H₁₄NO₂NaBr: 342.0106, found: 342.0104.

31: Purification by flash chromatography (petroleum ether/ EtOAc = 4:1) on silica gel to give **31** (51.2 mg, 89%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 8.4 Hz, 2H), 7.61-7.56 (m, 2H), 7.56-7.47 (m,3H), 7.43 (d, *J* = 7.2 Hz, 1H), 7.27 (s, 1H), 3.69-3.33 (br, 3H), 3.11-2.67 (br, 3H). ¹³C

NMR (101 MHz, CDCl3) δ 170.98, 147.42, 137.41, 135.01, 129.85, 129.42, 129.28, 128.42, 127.32, 123.68, 61.25, 32.47, 29.83. HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₅H₁₄N₂O₄Na: 309.0851, found:309.0852.

3m: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **3m** (89% yield) as a yellow oil and minor diarylation product (9% yield) (determined by ¹H NMR). ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.20 (m, 4H), 7.12-7.10 (m, 3H), 6.98 (s, 1H), 3.32 (br s, 1.3H), 3.09 (br s,

1.8H), 2.93(br s, 1.7H), 2.48 (br, 1.2H), 2.20 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.69, 166.50, 140.05, 139.09, 137.33, 134.58, 133.93, 129.46, 128.93, 127.76, 127.14, 126.27, 125.09, 60.53, 59.13, 35.35, 31.99, 21.00. HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₆H₁₇NO₂Na: 278.1157, found:278.1165.

3n: Purification by flash chromatography (petroleum ether/ EtOAc = 3:1) on silica gel to give **3n** (55.0 mg, 96%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.93 (d, J = 7.2, 1H), 7.55 (d, J = 4.4 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.27-7.20 (m, 4H), 3.33-3.16 (br, 3H), 2.90-2.66 (br, 3H). ¹³C

NMR (101 MHz, CDCl₃) δ 170.53, 165.69, 147.60, 141.50, 136.36, 134.61, 134.08, 129.20, 128.94, 128.81, 127.50, 126.44, 122.58, 121.71, 60.56, 59.42, 35.40, 31.73.

HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₅H₁₄N2O₄Na: 309.0851, found: 309.0853.

5a: Purification by flash chromatography (petroleum ether/ EtOAc = 8:1) on silica gel to give **5a** (27.2 mg, 43%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.29 (m, 8H), 7.28-7.25 (m, 1H), 3.71 (s, 2H), 3.34(s, 3H), 3.12 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.44, 141.59,

132.68, 130.35, 130.12, 129.43, 128.24, 127.62, 127.13, 126.93, 60.99, 37.02, 32.41. HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₆H₁₇NO₂Na: 278.1157, found: 278.1168.

5a': Purification by flash chromatography (petroleum ether/ EtOAc =8:1) on silica gel to give **5a'** (18.1 mg, 27%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.28 (m, 8H), 7.28-7.22 (m, 3H), 7.19 (s, 1H), 7.18-7.17 (m, 1H), 3.45 (s, 2H), 3.02 (s, 3H), 2.91 (s, 3H). ¹³C NMR

(101 MHz, CDCl₃) δ 173.18, 143.70, 142.18, 130.93, 129.45, 129.30, 128.14, 127.10, 126.57, 60.56, 35.12, 32.32. HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₂₂H₂₁NO₂Na: 354.1470, found: 354.1458.

5b: Purification by flash chromatography (petroleum ether/ EtOAc =10:1) on silica gel to give **5b** (21.0 mg, 39%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.37 (m, 2H), 7.34-7.29 (m, 3H), 7.26-7.23 (m, 1H), 7.16-7.10 (m, 1H), 7.09 (s, 1H), 3.66 (s, 2H), 3.34 (s, 3H),

3.11 (s, 3H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ142.26, 141.75, 136.49, 130.88, 130.24, 129.58, 129.41, 128.42, 128.20, 127.05, 36.47, 32.07, 21.18. HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₇H₁₉NO₂Na: 292.1313, found: 292.1324.

5b': Purification by flash chromatography (petroleum ether/ EtOAc = 10:1) on silica gel to give **5b'** (19.5 mg, 28%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.28 (m, 10H), 7.08 (s, 2H), 3.48 (s, 2H), 3.09 (s, 3H), 2.95 (s, 3H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃)

 $\delta 143.56,\, 142.33,\, 136.04,\, 130.14,\, 129.43,\, 128.11,\, 127.87,\, 127.01,\, 60.50,\, 34.68,\, 32.33,\, 128.11,\, 127.87,\, 127.01,\, 60.50,\, 34.68,\, 32.33,\, 128.11,\, 127.87,\, 127.01,\, 60.50,\, 34.68,\, 32.33,\, 128.11,\, 127.87,\, 127.01,\, 60.50,\, 34.68,\, 32.33,\, 128.11,\, 127.87,\, 127.01,\, 60.50,\, 34.68,\, 32.33,\, 128.11,\, 127.87,\, 127.01,\, 60.50,\, 34.68,\, 32.33,\, 128.11,\, 127.87,\, 127.01,\, 60.50,\, 34.68,\, 32.33,\, 128.11,\, 127.87,\, 127.01,\, 60.50,\, 34.68,\, 32.33,\, 128.11,\, 127.87,\, 127.01,\, 60.50,\, 34.68,\, 32.33,\, 128.11,\, 127.87,\, 127.01,\, 60.50,\, 34.68,\, 32.33,\, 128.11,\, 127.87,\, 127.01,\, 60.50,\, 34.68,\, 32.33,\, 128.11,\, 127.87,\, 127.87,\, 127.01,\, 60.50,\, 34.68,\, 32.33,\, 128.11,\, 127.87,\,$

21.14. HRMS ESI (m/z): $[M+Na]^+$ calcd. for C₂₃H₂₃NO₂Na: 368.1626, found: 368.1626.

5c: Purification by flash chromatography (petroleum ether/ EtOAc = 10:1) on silica gel to give **5c** (26.3 mg, 45%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.25 (m, 3H), 7.24-7.19 (m, 5H), 3.58 (s, 2H), 3.28 (s, 3H), 3.05 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.56, 143.99,

140.26, 132.53, 131.85, 131.24, 129.97, 129.21, 128.39, 127.64, 61.04, 36.37, 32.41. HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₆H₁₆NO₂NaCl: 312.0767, found: 312.0764.

5c': Purification by flash chromatography (petroleum ether/ EtOAc = 10:1) on silica gel to give **5c'** (17.9 mg, 24%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.24 (m, 10H), 7.19 (s, 2H), 3.39 (s, 2H), 3.01 (s, 3H), 2.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.86,

145.14, 140.85, 132.01, 129.72, 129.19, 129.06, 128.27, 127.55, 60.55, 34.66, 32.22. HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₂₂H₂₀NO₂NaCl: 388.1080, found: 388.1083.

5d: Purification by flash chromatography (petroleum ether/ EtOAc = 10:1) on silica gel to give **5d** (43.8 mg, 81%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.28 (m, 2H), 7.23-7.22 (m, 3H), 7.16-7.12 (m, 2H), 7.03 (m, 1H), 3.60(s, 2H), 3.35 (s, 3H), 3.09 (s, 3H), 2.82

(s, 2H).¹³C NMR (101 MHz, CDCl₃) δ172.76, 143.35, 142.36, 138.00, 131.55, 129.48, 129.31, 128.15, 127.71, 126.97, 126.72, 60.99, 34.45, 32.56, 20.35. HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₇H₁₉NO₂Na: 292.1313, found: 292.1311.

5e: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **5e** (35.6mg, 61%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.29 (m, 2H), 7.25-7.21 (m, 3H), 7.12 (d, *J* = 8.4Hz, 1H), 6.84 (d, *J* = 2.4Hz, 1H), 6.78 (dd, *J* =8.4, 2.8Hz, 1H), 3,76 (s, 3H),

3.61 (s, 2H), 3.27 (s, 3H), 3.04 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ172.74, 158.95,

141.30, 135.08, 133.86, 131.13, 129.67, 128.21, 126.87, 115.41, 112.76, 60.89, 55.36, 37.21, 32.46. HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₇H₁₉NO₃Na: 308.1263, found: 308.1259.

5f: Purification by flash chromatography (petroleum ether/ EtOAc = 10:1) on silica gel to give **5f** (48.6 mg, 84%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.38 (m, 2H), 7.36-7.32 (m, 2H), 7.29-7.27 (m, 3H), 7.19 (d, *J* =8.0 Hz, 1H), 3.67(s, 2H), 3.36 (s, 3H), 3.13 (s, 3H). ¹³C NMR

(101 MHz, CDCl₃) 172.25, 140.94, 140.37, 134.52, 133.28, 131.28, 130.37, 129.30, 128.34, 127.44, 127.10, 61.04, 36.75, 32.38. HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₆H₁₆NO₂NaCl: 312.0767, found: 312.0767.

5g: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **5g** (47.9 mg, 72%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J*=2.0 Hz, 1H), 7.36-7.32 (m, 2H), 7.31-7.25 (m, 2H), 7.21-7.18 (m, 2H), 7.05 (d, *J* =8.4 Hz, 1H), 3.58 (s, 2H), 3.28 (s, 3H),

3.05 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ172.16, 141.37, 140.32, 134.85, 133.27, 131.56, 130.03, 129.21, 128.34, 127.46, 121.44, 61.03, 36.69, 32.42. HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₆H₁₆NO₂NaBr: 356.0262, found:356.0259.

5h: Purification by flash chromatography (petroleum ether/ EtOAc =10:1) on silica gel to give **5h** (39.4 mg, 73%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.27 (m, 2H), 7.24-7.22 (m, 3H), 7.16-7.09 (m, 2H), 7.05-7.01 (m, 1H), 3.60 (s, 2H), 3.35(s, 3H), 3.08 (s, 3H),

2.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.74, 143.34, 142.36, 137.99, 131.55, 129.48, 129.31, 128.15, 127.71, 126.96, 126.71, 60.89, 34.45, 32.53, 20.28. HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₇H₁₉NO₂Na: 292.1313, found: 292.1317.

5i: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **5i** (36.5 mg, 67%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.31 (m, 1H), 7.30-7.29 (m, 1H), 7.28-7.26 (m, 1H), 7.26-7.24 (m, 1H), 7.24-7.22 (m, 1H), 7.21-7.17 (m, 1H), 3.64 (s, 2H),

3.01(s, 3H), 3.00 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.75, 161.86 (d, *J* = 246.44 Hz), 144.91 (d, *J* = 4.14 Hz), 140.28 (d, *J* = 2.63 Hz), 129.25, 128.34, 128.12 (d, *J* = 9.09 Hz), 127.53, 125.55 (d, *J* = 9.80 Hz), 120.86 (d, *J* = 16.16 Hz), 114.07 (d, *J* = 16.16 Hz), 61.07, 32.47, 30.63. HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₆H₁₆NO₂NaF: 296.1063, found: 296.1068.

5j: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **5j** (36.3 mg, 63%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.31 (m, 2H), 7.29-7.26 (m, 2H), 7.25-7.23 (m, 2H), 7.19-7.15 (m, 1H), 7.11-7.09 (dd, *J* =7.6, 0.8 Hz, 1H), 3.74 (s, 2H), 3.48

(s, 3H), 3.11 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) 171.70, 145.13, 141.08, 135.82, 131.53, 129.13, 128.53, 128.34, 127.87, 127.53, 61.09, 35.35, 32.52. HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₆H₁₆NO₂NaCl: 312.0767, found: 312.0766.

5k: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **5k** (38.1mg, 59%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 1H), 7.35-7.33 (m, 1H), 7.32-7.26 (m, 3H), 7.20-7.19 (m, 1H), 7.18-7.17 (m, 1H), 3.56 (s, 2H), 3.30 (s, 3H), 3.05 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.77, 142.42, 139.29, 132.90, 132.32, 131.60, 131.39, 130.77, 129.13, 128.48, 127.89, 61.27, 36.18, 32.40. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₆H₁₅NO₂NaCl₂: 346.0378, found: 346.0376.

51: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **51** (27.2 mg, 45%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.40 (m, 3H), 7.39-7.36 (m, 1H), 7.36-7.29 (m, 2H), 7.26-7.23 (m, 1H), 7.17 (d, J = 8.4 Hz, 1H), 4.08 (m, 1H), 3.06 (br, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 174.71, 141.29, 140.53, 139.80, 133.80, 131.48, 129.33, 128.37, 127.49, 127.29, 126.86, 60.16, 38.05, 32.36, 19.92. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₇H₁₈NO₂NaCl: 326.0924, found: 326.0923.

5m: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **5m** (48.0 mg, 79%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (t, *J* =2.0 Hz, 1H), 7.17 (dd, *J* =8.0, 2.0 Hz, 1H), 7.20 (d, *J* =8.0 Hz, 2H), 7.11-7.06 (m, 3H), 3.60 (s, 2H), 3.31 (s, 3H),

3.05(s, 3H), 2.30(s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.35, 140.90, 137.38, 137.11, 134.54, 133.05, 131.36, 130.22, 129.14, 129.01, 127.04, 61.04, 36.78, 32.36, 21.25. HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₇H₁₈NO₂NaCl: 326.0924, found: 326.0921.

5n: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **5n** (52.2 mg, 71%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.61 (m, 4H), 7.48-7.44 (m, 2H), 7.38-7.35 (m, 4H), 7.29 (dd, *J* =8.4, 2.4 Hz, 1H), 7.24-7.22 (m, 1H), 3.72 (s, 2H), 3.39 (s,

3H), 3.14 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.25, 140.65, 140.56, 140.27, 139.36, 134.60, 133.38, 131.32, 130.46, 129.77, 128.98, 127.58, 127.20, 127.13, 127.03, 61.09, 36.78, 32.41. HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₂₂H₂₀NO₂NaCl: 388.1080, found: 388.1083.

50: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **50** (44.7 mg, 69%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (t, *J* =2.4 Hz, 1H), 7.28 (t, *J* =2.4 Hz, 1H), 7.25 (d, *J* =2.0 Hz, 1H), 7.20 (dd, *J* =6.0, 2.0 Hz, 1H), 7.16 (t, *J* = 2.4 Hz, 1H), 7.14

(t, J = 2.0 Hz, 1H), 7.07 (d, J = 8.4 Hz, 1H), 3.57 (s, 2H), 3.37 (s, 3H), 3.06 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.98, 139.74, 138.78, 134.52, 133.64, 133.57, 131.20, 130.66, 130.54, 128.51, 127.25, 61.14, 36.61, 32.40. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₆H₁₅NO₂NaCl₂: 346.0378, found: 346.0374.

5p: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **5p** (52.9 mg,72%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.4 Hz, 2H), 7.25 (d, *J* = 1.0 Hz, 1H), 7.20 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.08 (t, *J* = 8.4 Hz, 3H), 3.57 (s, 2H), 3.37 (s, 3H),

3.06 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.05, 139.76, 139.29, 134.47, 133.70, 131.49, 131.15, 131.02, 130.57, 127.29, 121.76, 61.17, 36.62, 32.46. HRMS ESI (*m/z*): [M+Na]⁺ calcd. for C₁₆H₁₅NO₂NaClBr: 389.9872, found: 389.9872.

5q: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **5q** (41.9 mg, 69%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, *J* = 2.4 Hz, 1H), 7.22-7.17 (m, 2H), 7.11-7.00 (m, 3H), 6.99 (d, *J* = 8.0 Hz, 2H), 3.59 (s, 2H), 3.29 (s, 3H), 3.06 (s, 3H),

2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.30, 141.03, 140.28, 137.94, 134.50, 133.13, 131.22, 130.35, 129.98, 128.31, 128.14, 127.03, 126.25, 60.98, 36.80, 32.37, 21.51. HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₇H₁₈NO₂NaCl: 326.0924, found: 326.0925.

5r: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **5r** (46.3 mg, 75%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.25 (m, 2H), 7.21-7.18 (m, 1H), 7.09 (d, *J* = 8.0 Hz, 1H), 7.00-6.91 (m, 3H), 3.58 (s, 2H), 3.35 (s, 3H), 3.06 (s, 3H). ¹³C NMR

(101 MHz, CDCl₃) δ 171.97, 162.56 (d, *J* =251.5 Hz), 142.52 (d, *J* =7.7 Hz), 139.66, 134.50, 133.75, 131.10, 130.60, 129.90(d, *J* =8.1 Hz), 127.23, 125.13(d, *J* =3.0 Hz), 116.35 (d, *J* =21.6 Hz), 114.38 (d, *J* =10.9 Hz), 61.09, 36.63, 32.39. HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₆H₁₅NO₂NaClF: 330.0673, found: 330.0677.

5s: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **5s** (39.9 mg, 66%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.29 (d, *J* = 2.0 Hz, 2H), 7.22-7.16 (m, 3H), 7.15-7.10 (m, 1H), 7.02-6.99 (m, 2H), 3.42 (d, *J* = 8.0 Hz, 1H), 3.35 (d, *J* =

8.0 Hz, 1H), 3.21 (s, 3H), 3.00 (s, 3H), 1.20 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ171.72, 140.17, 139.65, 136.21, 135.07, 133.13, 130.92, 130.22, 130.09, 129.79, 127.82, 127.03, 125.68, 60.93, 36.40, 32.13, 20.02. HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₇H₁₈NO₂NaCl: 326.0924, found: 326.0920.

5t: Purification by flash chromatography (petroleum ether/ EtOAc = 5:1) on silica gel to give **5t** (35.5 mg, 54%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* = 2.0 Hz, 1H), 7.22 (dd, J = 10.4, 2.4 Hz, 1H), 7.19-7.13 (m, 1H), 7.08 (d, J = 8.0 Hz, 1H), 6.88-6.84 (m, 1H), 6.84-6.80 (m,

1H), 3.53 (s, 2H), 3.35 (s, 3H), 3.02 (s, 3H). ¹³C NMR (101 MHz, CDCl3) δ 171.65, 162.73 (dd, *J* =250.5, 12.1 Hz), 159.60 (dd, *J* =249.5, 12.1 Hz), 135.83, 134.32, 133.56, 132.75 (dd, *J* =9.1, 5.1 Hz), 131.85, 130.36, 127.26, 123.63 (dd, *J* =16.2, 4.4 Hz), 123.63 (dd, *J* =16.2, 4.0 Hz), 104.06 (t, *J* =25.3 Hz), 61.15, 36.65, 32.36. HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₆H₁₄NO₂NaClF₂: 348.0579, found: 348.0581.

4I: ¹H NMR (400 MHz, CDCl₃) δ 7.33 (s, 1H), 7.23-7.13 (m, 3H), 4.14 (m, 1H), 3.34 (s, 3H), 3.12 (s, 3H), 1.41 (d, *J* = 8.0Hz, 3H). ¹³C NMR (101 MHz, CDCl3) δ 173.90, 143.47, 133.74, 129.43, 127.29, 126.45, 125.53, 60.69, 41.01, 31.77, 18.96. HRMS ESI (*m*/*z*): [M+Na]⁺ calcd. for

C₁₁H₁₄NO₂NaCl: 250.0611, found: 250.0619.

Mechanistic Investigation:

Deuterium Kinetic Iisotope Effect Experiment (KIE)

Control Experiments

References:

[1] K.-J. Hana, M. Kim, Lett. Org. Chem. 2007, 4, 20.

[2] H. A. Duong, R. E. Gilligan, M. L. Cooke, R. J. Phipps, M. J.Gaunt, Angew. Chem. Int.Ed. 2011, 50, 463.

[3] M. Schlosser, J. H. Choi, S. Takagishi, Tetrahedron 1990, 46, 5633.

[4] (a) M. Jithunsa, M. Ueda, O. Miyata, *Org. Lett.* **2011**, *13*, 518. (b) J. R. Martinelli, D. M. M. Freckmann, S. L. Buchwald, *Org. Lett.*, **2006**, *8*, 4795.

Copies of ¹H and ¹³C Spectra

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

---0.00

 $\begin{array}{c} -3.40 \\ -3.40 \\ -2.97 \\ -2.22 \\ -2.22 \\ -2.22 \end{array}$

---0.00

70 60 50 40 30 20 10 0 -10

180 170 160 150 140 130 120 110 100 90 80 f1 (ppm)

210 200 190

---0.00

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

