Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry

This journal is © The Royal Society of Chemistry 2014

Kinetic evaluation of glucose 1-phosphate analogues with a thymidylyltransferase using a continuous coupled assay

S. M. Forget,^a A. Jee,^b D. A. Smithen,^a R. Jagdhane,^c S. A. Beaton,^a D. R. J. Palmer,^c R. T. Syvitski,^a and D. L. Jakeman^{* a,b} ‡

^a Department of Chemistry, Dalhousie University, 6274 Coburg Rd., PO Box 15,000, Halifax, Nova Scotia, B3H 4R2, Canada.

^b College of Pharmacy, Dalhousie University, 5968 College St., PO Box15,000, Halifax, Nova Scotia, B3H 4R2, Canada.

^c Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, S7N 5C9, Canada.

david.jakeman@dal.ca

This journal is © The Royal Society of Chemistry 2014

Table of Contents

Analytical enzyme assays	
HPLC retention times and MS fragmentation	3
HPLC traces for small scale enzyme assays	4
IPP-PNP-XO Kinetic Assays	9
Michealis-Menten and Lineweaver-Burk plots	9
NMR Binding Studies	12
<i>K</i> _d Determination using WaterLOGSY NMR Spectroscopy with Glc-2CP (6)	12
Chemoenzymatic synthesis of sugar nucleotides	
HPLC traces for purified sugar nucleotides	13
NMR spectra for final purified sugar nucleotides	15
UDP-glucosamine (16)	
dTDP-kanosamine (17)	
dTDP-3AzGlc (19)	20
NMR data for synthetic compounds	23
Diethyl-2-(2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl)-ethylphosphonate (14)	23
Bis(ammonium)-2-(α -D-glucopyranosyl)-ethylphosphonate (6)	24

Analytical enzyme assays

HPLC retention times and MS fragmentation

NDP-sugar	HPLC retention time	EPI (<i>m/z</i>)
product	$(\min)^a$	
dTTP	7.52	-
UTP	7.43	-
dTDP-Gln 15^{b}	2.60^{b}	562,383,357 ^b
UDP-Gln 16	2.34	564, 385, 320
dTDP-kan 17	2.87	562, 321, 273
UDP-Kan 18	2.34	564,385,323
dTDP-3AzGlc 19	6.45	589, 321, 266
UDP-3azGlc 20	5.75	590, 323
dTDP- <i>myo</i> -Ino 21	5.46	563, 321, 241
dTDP-Glc1CP 22 ^c	5.47 ^c	561,321 ^c
UDP-Glc1CP 23 ^c	5.27¢	563, 323 ^c

Table 1. Sugar nucleotide retention times and EPI fragmentation.

^{*a*}The provided retention times are representative, as some variability in the retention times (+/- 0.2 min) was observed due to instrument variability; ^{*b,c*}Previous work^{1; 2}

1. Timmons, S. C.; Mosher, R. H.; Knowles, S. A.; Jakeman, D. L. Org. Lett. 2007, 9, 857-860.

2. Beaton, S. A.; Huestis, M. P.; Sadeghi-Khomami, A.; Thomas, N. R.; Jakeman, D. L. *Chem. Commun.* **2009**, 238-240.

Figure 1. Small scale Cps2L (2 EU) assay containing Gln-1P **1** (2 mM) + **UTP** (1 mM) after 24h at 37 °C. The peak at a T_R 2.162 min is a result of the formation of dTDP-Gln **16**.

Figure 2. Small scale Cps2L (2 EU) assay containing Kan-1P **2** (2 mM) + **dTTP** (1 mM) after 30 min at 37 °C. The peak at a T_R 2.590 min is a result of the formation of dTDP-Kan **17**.

Figure 3. Small scale Cps2L (8 EU) assay containing Kan-1P **2** (2 mM) + **UTP** (1 mM) after 48 h at 37 °C. The peak at a T_R 2.404 min is a result of the formation of UDP-Kan**18**.

Figure 4. Small scale Cps2L (8 EU) assay containing 3AzGlc-1P **3** (2 mM) + **dTTP (1** mM) after 17 h at 37 °C. The peak at a T_R 6.341 min is a result of the formation of dTDP-3AzGlc **19**.

Figure 5. Small scale Cps2L (8 EU) assay containing 3AzGlc-1P **3** (2 mM) + **UTP** (1 mM) after 24 h at 37 °C. The peak at a T_R 5.746 min is a result of the formation of UDP-3AzGlc **20**.

Figure 6. Small scale Cps2L (8 EU) assay containing *myo*-Ino-2P **4** (2 mM) + **dTTP (1** mM) after 8 h at 37 °C. The peak at a T_R 5.718 min is a result of the formation of dTDP-*myo*-Ino **21**.

Figure 7. Small scale Cps2L (8 EU) assay containing *myo*-Ino-2P **4** (2 mM) + dTTP (1 mM) after 24 h at 37 °C. The peak at a T_R 5.744 min is a result of the formation of dTDP-*myo*-Ino **21**. Breakdown products are visible at 6.193 and 1.4-1.8 minutes.

Figure 8. Small scale Cps2L (8 EU) assay containing *myo*-Ino-2P **4** (2 mM) + dTTP (1 mM) after 48 h at 37 °C. Breakdown products are visible at 6.193 and 1.4-1.8 minutes.

Figure 9. HPLC traces obtained at various time intervals to monitor the enzymatic reaction between dTTP and Glc-2CP **6** showing no conversion to product over 46 h.

This journal is © The Royal Society of Chemistry 2014

IPP-PNP-XO Kinetic Assays

Figure 10. Variable Glc-1P in the presence of constant dTTP (1 mM) and 0.003 µM Cps2L.

Figure 11. Variable Glc-1P in the presence of constant UTP (1 mM) and 0.0925 μM Cps2L.

Figure 12. Variable Gln-1P 1 in the presence of constant dTTP (1 mM) and 0.06 µM Cps2L.

Figure 13. Variable Gln-1P 1 in the presence of constant UTP (1 mM) and 1.34 µM Cps2L.

Figure 14. Variable Kan-1P 2 in the presence of constant dTTP (1 mM) and 3 µM Cps2L.

Figure 15. Variable 3AzGlc-1P 3 in the presence of constant dTTP (1 mM) and 134 µM Cps2L.

Figure 16. Variable Glc-1CP 5 in the presence of constant dTTP (1 mM) and 0.03 μM Cps2L.

Figure 17. Variable Glc-1CP 5 in the presence of constant UTP (1 mM) and 1.85 µM Cps2L.

NMR Binding Studies

*K*_d Determination using WaterLOGSY NMR Spectroscopy with Glc-2CP (6)

Figure 18. Determination of K_d for **6** binding to Cps2L in the presence of dTTP. Plot of signal intensity with (\blacklozenge) and without (\blacksquare) Cps2L and corrected signal intensity (\blacktriangle) *vs* concentration of **6** for peaks at 3.35 ppm (left) and 3.88 ppm (right).

Chemoenzymatic synthesis of sugar nucleotides

HPLC traces for purified sugar nucleotides

Figure 19. HPLC trace of purified UDP-Gln 16.

Figure 20. HPLC trace of purified dTDP-Kan 17.

Figure 21. HPLC trace of purified dTDP-3AzGlc 19.

NMR spectra for final purified sugar nucleotides

UDP-glucosamine (16)

¹H NMR (D₂O, 500 MHz) of **16**:

This journal is © The Royal Society of Chemistry 2014

 ^{31}P {¹H} NMR (D₂O, 202 mHz) of $\mathbf{16}:$

dTDP-kanosamine (17)

2D HSQC (D₂O) of **17**:

This journal is © The Royal Society of Chemistry 2014

³¹P {¹H} NMR (D₂O, 202 mHz) of **17**:

dTDP-3AzGlc (19)

HSQC (D₂O) of **19**:

This journal is © The Royal Society of Chemistry 2014

³¹P {¹H} NMR (D₂O, 202 mHz) of **19**:

NMR data for synthetic compounds

 $Diethyl-2-(2,3,4,6-tetra-0-acetyl-\alpha-D-glucopyranosyl)-ethylphosphonate (14)$

¹H NMR (CDCl₃, 500 MHz)

³¹P {¹H } NMR (CDCl₃, 202 MHz)

¹³C NMR (CDCl₃, 125 MHz)

Bis(ammonium)-2-(α -D-glucopyranosyl)-ethylphosphonate (6)

¹H NMR (D₂O, 500 MHz):

³¹P {¹H } NMR (D₂O, 202 MHz):

¹³C NMR (D₂O, 125 MHz):

