Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Supplementary Information for

Late-Stage Diversification of Biologically Active Pyridazinones via Direct C-H Functionalization Strategy

Wei Li,^{‡,a} Zhoulong Fan,^{‡,b} Kaijun Geng,^b Youjun Xu^{*,a} and Ao Zhang^{*,b}

^a School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
 ^b CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China;

Table of Contents

1. Copies of NMR Data for All Compounds	S2
2. X-ray Data of Compound 12	S44

1. Copies of NMR Data for All Compounds.

¹H and ¹³C NMR spectra of compound **3a.**

1.18 1.17 1.15 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound **3b.**

7.71 7.75 7.75 7.75 7.48 7.48 7.48 7.48 7.48 7.38 7.38 7.33 7.33 7.33 7.33 7.33

4.43 4.44 4.39 4.38 1.19 1.17 1.15

-2.31

 1 H and 13 C NMR spectra of compound **3c.**

1.22 1.18 ¹H and ¹³C NMR spectra of compound **3c'**.

7.56 7.55 7.55 7.55 7.56 7.72 8.80 8.90 6.91 6.95 6.96 6.96 6.97 6.96 6.97 6.98 6.99 6.99 6.90 6.90 6.91 </tr

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound **3d'.**

¹H and ¹³C NMR spectra of compound **3e.**

4.43 4.41 4.37 -3.91 **1.20 1.18 1.16**

(

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound **3f.**

121 119 1.19 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound **3g.**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound **3h.**

 123 121 121

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound **3i.**

1.20 1.18 1.16 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound **3j.**

-1.66

 1 H and 13 C NMR spectra of compound **3k**.

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound **31.**

¹H and ¹³C NMR spectra of compound **3m**.

7.7.7. 7.7.50

1.18 1.18 1.18

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound **3n.**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound **30.**

-7.70 -7.33 -7.23 -7.24 -7.23 -7.24 -7.24 -7.24 -7.24 -7.24 -7.24 -7.24 -7.24 -7.24 -7.24 -7.24 -7.24 -7.24 1.18 1.16 1.14

4.36

¹H and ¹³C NMR spectra of compound **3p**.

¹H and ¹³C NMR spectra of compound **3q.**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound **3r.**

-2.42

f1 (ppm) $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound **5a.**

¹H and ¹³C NMR spectra of compound **5b.**

4.49 4.47 4.45 129 124

S24

¹H and ¹³C NMR spectra of compound **5c.**

1.35 1.35 1.30

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound **5d.**

 8.33
 8.32

 8.22
 8.36

 8.21
 8.36

 8.21
 7.74

 7.75
 7.75

 7.75
 7.75

 7.75
 7.75

 7.75
 7.75

 7.75
 7.75

 7.75
 7.75

 7.75
 7.75

 7.75
 7.75

 7.75
 7.75

 7.75
 7.75

 7.75
 7.75

 7.75
 7.75

 7.75
 7.75

 7.75
 7.75

 7.75
 7.75

 7.75
 7.75

 7.75
 7.75

 7.75
 7.75

 7.75
 7.75

 7.75
 7.75

 7.75
 7.75

 7.75
 7.75

 7.75
 7.75

 7.34
 7.75

 7.34
 7.35

 7.34
 7.35

 7.35
 7.35

 7.34
 7.35

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 5e.

 7.7

 7.65

 7.65

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.66

 7.76

 7.76

 7.76

 7.76

 7.76

 7.76

 7.76

 7.76

 7.76

 7.76

 7.76

 7.76

 7.76

 7.76

 7.76

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound **5f.**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 7a.

 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.75
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73
 7.7.73

 <th 7.7.73</t

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 7b.

 7.35

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

 7.15

√1.42 √1.39 √1.37 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 7c.

 1.38

 4.17

 1.32

 4.17

 1.33

 1.45

 1.33

 1.33

 1.33

 1.45

 1.33

 1.33

 1.33

 1.33

 1.33

 1.34

 1.35

 1.36

 1.37

 1.38

 1.38

 1.38

 1.38

 1.38

 1.38

 1.38

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 8.

-7.73 -7.35 -7.35 -7.35 -7.33 -7.33 -7.33 -7.33 -7.33 -7.33 -7.33 -7.33 -7.33 -7.33 -7.33 -7.33 -7.35 -7.33 -7.35 -7.25 -7.55

4.68 4.68 4.66 1.41 1.39 1.36

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 9.

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 10.

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.7

 7.7.7
 7.7.40

 7.7.7
 7.48

 7.7.7
 7.48

 7.7.7
 7.48

 7.7.7
 7.48

 7.7.7
 7.48

 7.7.33
 7.7.33

 7.7.33
 7.7.33

 7.7.33
 7.7.33

 7.7.33
 7.7.33

 7.7.33
 7.7.33

 7.7.33
 7.7.33

 7.7.33
 7.7.33

 7.7.33
 7.7.33

 7.7.33
 7.7.33

 7.7.33
 7.7.33

 7.7.33
 7.7.33

 7.7.34
 7.7.33

 7.7.35
 7.7.33

 7.7.36
 7.7.33

 7.7.37
 7.7.34

 7.7.37
 7.7.34

 7.7.37
 7.7.34

 7.7.37
 7.7.34

 7.7.37
 7.7.34

 7.7.37
 7.7.34

 7.7.37
 7.7.34

 7.7.37
 7.7.34

1.44 1.41 1.39

¹H and ¹³C NMR spectra of compound **11**.

1.37 1.35 1.35 ^{1}H and ^{13}C NMR spectra of compound **12**.

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 14a.

¹H and ¹³C NMR spectra of compound **14b.**

7.85 7.46 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.3	7.12 7.12 7.109 6.91 6.92 6.92 6.92 6.92 6.92 7.09 6.92 6.93 6.92 6.93
1	m

1.14 1.12 1.09

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 14c.

 7.57
 7.57

 7.51
 7.57

 7.51
 7.57

 7.52
 7.57

 7.52
 7.57

 7.51
 7.57

 7.52
 7.57

 7.52
 7.57

 7.52
 7.57

 7.52
 7.57

 7.52
 7.57

 7.52
 7.57

 7.52
 7.57

 7.52
 7.57

 7.52
 7.57

 7.52
 7.57

 7.52
 7.57

 7.52
 7.57

 7.52
 7.57

 7.52
 7.57

 7.52
 7.57

 7.52
 7.57

 7.52
 7.57

 7.52
 7.57

 7.52
 7.57

 7.53
 7.57

 7.54
 7.57

 7.55
 7.57

 7.55
 7.57

 7.55
 7.57

 7.55
 7.57

 7.56
 7.57

 7.57
 7.57

 7.57
 7.57

 7.57
 7.57

 7.57
 7.57

 7.57
 7.57

 7.57
 7.57

 7.57
 7.57

 7.57
 7.57

 <t

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 14d.

1.30 1.28 1.26 ¹H and ¹³C NMR spectra of compound **14e.**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 14f.

1.37 1.35 1.35 1.33

2. X-ray Data of Compound 12.

Table 1 Crystal data and structure refinement details for compound 12.

Identification code	2014283		
Chemical formula	$C_{39}H_{26}Cl_2N_2O$		
Formula weight	609.52		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal size	0.200 x 0.300 x 0.700 mm		
Crystal system	orthorhombic		
Space group	P 21 21 21		
Unit cell dimensions	a = 7.1928(3) Å	$\alpha = 90^{\circ}$	
	b = 13.3215(6) Å	$\beta = 90^{\circ}$	
	c = 32.7007(16) Å	$\gamma = 90^{\circ}$	
Volume	3133.3(2) Å ³		
Z	4		
Density (calculated)	1.292 Mg/cm ³		
Absorption coefficient	0.242 mm ⁻¹		
F(000)	1264		
Theta range for data collection	1.65 to 27.65°		
Index ranges	-9<=h<=8, -17<=k<=16, -33<=l<=42		
Reflections collected	16279		
Independent reflections	7109 [R(int) = 0.0221]		
Coverage of independent reflections	99.6%		
Absorption correction	multi-scan		
Max. and min. transmission	0.9522 and 0.8459		
Structure solution technique	direct methods		

Structure solution program	SHELXS-97 (Sheldrick, 2008)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-97 (Sheldrick, 2008)		
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$		
Data / restraints / parameters	7109 / 0 / 399		
Goodness-of-fit on F ²	1.023		
Final R indices	5579 data; I>2σ(I)	R1 = 0.0596, $wR2 = 0.1151$	
	all data	R1 = 0.0418, $wR2 = 0.1051$	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0600P) ² +0.2800P] where P=(F_o^2 +2 F_c^2)/3		
Extinction coefficient	0.0018(6)		
Largest diff. peak and hole	0.242 and -0.221 eÅ ⁻³		
R.M.S. deviation from mean	0.037 eÅ ⁻³		
CCDC	1023268		