Supporting Information

UV-visible and ¹H-¹⁵N NMR Spectroscopic Studies of Colorimetric

Thiosemicarbazide Anion Sensors

Kristina Farrugia,¹ Damjan Makuc,² Aganieszka Podborska,³ Konrad Szacilowski,^{3,4}

Janez Plavec² and David C. Magri¹*

Email Address: david.magri@um.edu.mt

Contents

Fig. S1	UV-visible absorption spectra of 2.73×10^{-5} M 1 in 9:1 DMSO/H ₂ O	
	solution upon addition of $0 \rightarrow 4$ equiv. of anions; (a) OH ⁻ , (b) F ⁻ , (c) AcO ⁻	
	, (d) $H_2PO_4^-$ and (e) Cl ⁻ . The anions were added as sodium salts	3
Fig. S2	UV-visible absorption spectra of 2.73×10^{-5} M 4 in 9:1 DMSO/H ₂ O	
	solution upon addition of $0 \rightarrow 4$ equiv. of anions; (a) OH ⁻ , (b) F ⁻ , (c) AcO ⁻	
	, (d) H_2PO_4 and (e) Cl ⁻ . The anions were added as sodium salts	4
Fig. S3	UV-visible absorption spectra of 2.73×10^{-5} M 4 in DMSO upon addition	
	of $0 \rightarrow 4$ equivalents of anion: (a) OH ⁻ (b), F ⁻ (c), AcO ⁻ and (d) H ₂ PO ₄ ⁻	5
Fig. S4	Titration profile in DMSO solution $(2.73 \times 10^{-5} \text{ M})$ for (a) changes in the	
	absorbance at 535 nm for 3 , (b) changes in the absorbance at 532 nm for	
	4 with $0 \rightarrow 4$ equiv. of anion: OH ⁻ (\blacksquare), F ⁻ (\blacksquare), AcO ⁻ (\blacksquare) and H ₂ PO ₄ ⁻	
	(■)	6
Fig. S5	(a) UV-visible absorption spectra of 2.73×10^{-5} M 3 in 9:1 DMSO/H ₂ O up	
	on addition of $4 \rightarrow 80$ equivalents of anions; (a) OH ⁻ and (b) F ⁻ anions.	
	The anions were added as sodium salts. The asterisks '*' mark is used to	
	indicate the position of the shifted absorption band. (b) The colour	
	changes of 2.73×10^{-5} M 3 in 9:1 DMSO/H ₂ O on addition of 4 and 80	
	equivalents of OH ⁻	7
Fig. S6	¹ H NMR spectrum of 1 in DMSO- d_6	8
Fig. S7	¹ H NMR spectrum of 2 in DMSO- d_6	8
Fig. S8	¹ H NMR spectrum of 3 in DMSO- d_6	9
Fig. S9	¹ H NMR spectrum of 4 in DMSO- d_6	9
Fig. S10	^{1}H H- ^{15}N gHSQC spectrum of 1 in DMSO- d_{6}	10
Fig. S11	¹ H- ¹ SN gHMBC spectrum of 1 in DMSO- d_6	10
Fig. S12	$^{1}H^{-1}N$ gHSQC spectrum of 2 in DMSO- d_{6}	11
Fig. S13	¹ H- ¹⁵ N gHMBC spectrum of 2 in DMSO- d_6	11
Fig. S14	¹ H- ¹⁵ N gHSQC spectrum of 3 in DMSO- d_6	12
Fig. S15	¹ H- ¹³ N gHMBC spectrum of 3 in DMSO- d_6	12
Fig. S16	¹ H- ¹³ N gHSQC spectrum of 4 in DMSO- d_6	13
Fig. S17	¹ H- ¹³ N gHMBC spectrum of 4 in DMSO- d_6	13
Fig. S18	¹ H NMR stacked spectra of 0.01 M 3 upon addition of AcO ⁻ in DMSO-	14
	$d_6/0.5\%$ water at 298 K	
Fig. S19	'H-''N gHSQC spectrum of 3 upon addition of 2 equiv. AcO ⁻ in DMSO-	15
	$d_6/0.5\%$ H ₂ O. [Compare to Fig. S14, without the addition of 2 equiv. of	
	AcO ⁻ , which has three N–H correlations compared to only two as shown	
	in this figure].	

Fig. S20	Fig. S20 1 H- 15 N gHSQC spectrum of 4 upon addition of 2 equiv. AcO ⁻ in	
	DMSO- $d_6/0.5\%$ H ₂ O. [Compare to Fig. S16, without the addition of 2 equiv. of AcO ⁻ , which has three resonances N–H correlations compared	15
	to only two as shown in this figure].	
Fig. S21	13 C NMR spectrum of 3 upon addition of 2 equiv. of AcO ⁻ in DMSO-	16
	<i>d</i> ₆ /0.5% H ₂ O	10
Fig. S22	1 H- 13 C gHSQC NMR spectrum of 3 upon addition of 2 equiv. of AcO ⁻ in	16
-	DMSO- <i>d</i> ₆ /0.5% water	10
Fig. S23	1 H- 13 C gHMBC NMR spectrum of 3 upon addition of 2 equiv. of AcO ⁻ in	17
-	DMSO- <i>d</i> ₆ /0.5% water	1/
Fig. S24	13 C NMR spectrum of 4 upon addition of 2 equiv. of AcO ⁻ in DMSO-	17
C	<i>d</i> ₆ /0.5% H ₂ O	1/
Fig. S25	¹ H- ¹³ C NMR gHSQC spectrum of 4 upon addition of 2 equiv. of AcO ⁻ in	10
C	DMSO- <i>d</i> ₆ /0.5% water	19
Fig. S26	¹ H- ¹³ C NMR gHMBC spectrum of 4 upon addition of 2 equiv. of AcO ⁻ in	10
0	DMSO- $d_6/0.5\%$ water.	18
Fig. S27	Charge distribution calculations for the anions sensors 1-4	19
0	5	

Fig. S1 UV-visible absorption spectra of 2.73×10^{-5} M **1** in 9:1 DMSO/H₂O solution upon addition of $0 \rightarrow 4$ equiv. of anions; (a) OH⁻, (b) F⁻, (c) AcO⁻ and (d) H₂PO₄⁻. The anions were added as sodium salts.

Fig. S2 UV-visible absorption spectra of 2.73×10^{-5} M **4** in 9:1 DMSO/H₂O solution upon addition of $0 \rightarrow 4$ equiv. of anions; (a) OH⁻, (b) F⁻, (c) AcO⁻ and (d) H₂PO₄⁻. The anions were added as sodium salts.

Fig. S3: UV-visible absorption spectra of 2.73×10^{-5} M **4** in DMSO upon addition of $0 \rightarrow 4$ equivalents of anion: (a) OH⁻ (b), F⁻ (c), AcO⁻ and (d) H₂PO₄⁻.

Fig. S4 Titration profile in DMSO solution $(2.73 \times 10^{-5} \text{ M})$ for (a) changes in the absorbance at 535 nm for **3**, (b) changes in the absorbance at 532 nm for **4** with $0 \rightarrow 4$ equiv. of anion: OH⁻ (\blacksquare), F⁻ (\blacksquare), AcO⁻ (\blacksquare) and H₂PO₄⁻ (\blacksquare).

Fig. S5 (a) UV-visible absorption spectra of 2.73×10^{-5} M **3** in 9:1 DMSO/H₂O upon addition of $4 \rightarrow 80$ equivalents of anions (a) OH⁻ and (b) F⁻ added as sodium salts. The asterisks '*' mark is used to indicate the position of the shifted absorption band; the colour changes of 2.73×10^{-5} M **3** in 9:1 DMSO/H₂O on addition of 4 and 80 equivalents of OH⁻.

Fig. S6 ¹H NMR spectrum of **1** in DMSO- d_6 .

Fig. S7 ¹H NMR spectrum of 2 in DMSO- d_6 .

Fig. S8 ¹H NMR spectrum of **3** in DMSO- d_6 .

Fig. S9 ¹H NMR spectrum of 4 in DMSO- d_6 .

Fig S11 1 H- 15 N gHMBC spectrum of **1** in DMSO- d_{6} .

Fig. S12 1 H- 15 N gHSQC spectrum of **2** in DMSO- d_{6} .

Fig. S13 1 H- 15 N gHSQC spectrum of **2** in DMSO- d_{6} .

Fig. S15 1 H- 15 N gHMBC spectrum of **3** in DMSO- d_{6} .

Fig. S17 1 H- 15 N gHMBC spectrum of **4** in DMSO- d_{6} .

Fig. S18 ¹H NMR stacked spectra of 0.01 M **3** upon addition of AcO⁻ in DMSO- $d_6/0.5\%$ water at 298 K. Numbers on the left correspond to the equivalence of anion added. Assignments of ¹H resonances are shown for the receptor before the addition of anion, and after adding increasing amount of anion. The asterisk * is used to mark.

Fig. S19 ¹H-¹⁵N gHSQC spectrum of **3** upon addition of 2 equiv. AcO⁻ in DMSO- $d_6/0.5\%$ H₂O. [Compare to Fig. S14, without the addition of 2 equiv. of AcO⁻, which has three N–H correlations compared to only two as shown in this figure].

Fig. S20 ¹H-¹⁵N gHSQC spectrum of **4** upon addition of 2 equiv. AcO⁻ in DMSO- $d_6/0.5\%$ H₂O. [Compare to Fig. S16, without the addition of 2 equiv. of AcO⁻, which has three resonances N–H correlations compared to only two as shown in this figure].

Fig. S21 ¹³C spectrum of **3** upon addition of 2 equiv. of AcO^{-} in DMSO- $d_6/0.5\%$ H₂O.

Fig. S22 ¹H-¹³C gHSQC spectrum of **3** upon addition of 2 equiv. of AcO⁻ in DMSO- $d_6/0.5\%$ water.

Fig. S23 ¹H-¹³C gHMBC spectrum of **3** upon addition of 2 equiv. of AcO⁻ in DMSO- $d_6/0.5\%$ water.

Fig. S24 ¹³C spectrum of **4** upon addition of 2 equiv. of AcO^{-} in DMSO- $d_6/0.5\%$ H₂O.

Fig. S25 ¹H-¹³C gHSQC spectrum of **4** upon addition of 2 equiv. of AcO⁻ in DMSO- $d_6/0.5\%$ water.

Fig. S26 ¹H-¹³C gHMBC spectrum of **4** upon addition of 2 equiv. of AcO⁻ in DMSO- $d_6/0.5\%$ water.

Fig. S27 Charge distribution calculations for the anions sensors 1-4.