A Facile Approach to Tryptophan Derivatives for the Total Synthesis of Argyrin Analogues

Chou-Hsiung Chen, Sivaneswary Genapathy, Peter M. Fischer and Weng C. Chan* School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K

* Corresponding author: e-mail: weng.chan@nottingham.ac.uk, phone: +44 (0)115 9515080

Electronic Supplementary Information

1.		General information	S2
2.		Synthetic procedures Preparation of:	S3
	2.1	Indole-3-carbaldehyde 2	S3
	2.2	2-(2-Hydroxy-1-phenylethylamino)-3-(1 <i>H</i> -indol-3-yl)propanenitrile 4	S5
	2.3	(S)-2-((R)-2-Hydroxy-1-phenylethylamino)-3-(1H-indol-3-yl)propanamide 6	S10
	2.4	(S)-2-Amino-3-(1H-indol-3-yl)propanamide 7	S15
	2.5	(S)-Tryptophans 8	S19
	2.6	(S)-N-(Fluoren-9-ylmethoxycarbonyl)-tryptophans 9	S22
	2.7	Linear argyrin analogues 18 (by Fmoc/tBu solid-phase peptide synthesis)	S26
		(S)-N-(Fluoren-9-ylmethoxycarbonyl)-β-phenylselenocysteine 15 (<i>R</i>)-2-(1- <i>tert</i> -Butoxycarbonylaminoethyl)thiazole-4-carboxylic acid 16	S27
		Macrocyclized argyrin analogues 19	S28
	2.8	Argyrin analogues 20 (an oxidation–elimination reaction to reveal the dehydroalanine residue)	S32
3.		Antibacterial activity	S37
		Table S1. MIC ₅₀ of selected argyrin analogues evaluated against <i>P. aeruginosa</i> PAO1 and <i>Proteus mirabilis</i> Hauser 1885.	S37
		Figure S1. The effects of argyrin A 20h and analogue 20g on the growth of <i>P. aeruginosa</i> PAO1 in Muller–Hinton broth at 13 h.	S37
4.		¹ H and ¹³ C NMR spectra of (S)-tryptophan analogues	S43
5.		References	S50

1. General information

Chemicals and solvents were purchased from standard suppliers and used without further purification. Deuterated solvents were purchased from Goss and Aldrich Chemical Co. Anhydrous solvents were purchased from Fluka and Acros. All other solvents were used as supplied (Analytical or HPLC grade) without further purification. All reactions requiring anhydrous conditions were performed using flame- or oven-dried apparatus under nitrogen atmosphere. Reactions were monitored by analytical thin-layer chromatography on commercially available pre-coated aluminium backed plates (Merck Kieselgel 60 F254). Visualization of the silica plates was achieved using either a UV lamp ($\lambda = 254$ nm) or by staining with diluted potassium permanganate solution. Organic solvents were evaporated under reduced pressure at *ca*. 35 °C (water bath temperature).

Melting points were recorded on a Gallenkamp melting point apparatus. Infrared spectra were measured on an Avatar 360 Nicolet FT-IR spectrophotometer in the range of 4000–500 cm⁻¹ using KBr discs. Absorption maxima (v_{max}) are reported in wavenumbers (cm⁻¹). Only signals representing functional groups are reported. Absorptions from the fingerprint region are not listed.

Optical rotation was measured on an ADP220 polarimeter (Bellingham & Stanley Ltd). $[\alpha]_D$ values are reported in 10⁻¹ deg cm⁻² g⁻¹, and concentration (*c*) is in gram per 100 mL. High-resolution mass spectra were recorded on a Waters 2795 separation module/micromass LCT platform.

¹H and ¹³C NMR spectra were recorded at 20 °C on a Bruker AV400 operating at 400.13 MHz and 101.62 MHz, respectively. Chemical shifts (δ) are reported in parts per million (ppm), referenced to CDCl₃ (¹H, 7.28 ppm; ¹³C, 77.1 ppm), DMSO-d₆ (¹H, 2.50 ppm; ¹³C, 39.51 ppm) or CD₃OD (¹H, 3.31 ppm; ¹³C, 77.23 ppm). Coupling constants (*J*) are recorded in Hz and significant multiplicities described by singlet (s), doublet (d), triplet (t), quadruplet (q), broad (br), multiplet (m) or doublet of doublets (dd). Spectra were assigned using appropriate COSY, DEPT and HSQC.

Analytical reverse-phase high performance liquid chromatography (RP-HPLC) was performed on an Onyx monolithic-C18 column (100 x 4.6 mm) and a linear gradient of 10–60% B in 12.0 min at a flow rate of 3.0 mL min⁻¹. Eluent detection was monitored by UV absorbance at 214 nm. Solvent A was 0.06 % TFA in water and solvent B was 0.06 % TFA in 90% aqueous acetonitrile. Preparative RP-HPLC was performed on an Onyx monolithic-C18 semi-preparative column (100 x 10 mm) at a flow rate of 9.0 mL min⁻¹.

Solid-phase peptide synthesis (SPPS) was carried out in a glass column on a continuous flow manual peptide synthesiser NOVASYN[®] GEM. Acylation with activated Fmoc-amino acids were typically accomplished with a four-fold excess of Fmoc-amino acid, 3.9 equivalents of HATU or PyOxim and eight equivalents of DIEA. Coupling cycles were carried out for a minimum of 4 h. The washing and Fmoc-deprotection cycles were performed at a flow rate of 2.8 mL min⁻¹ with DMF and 20% piperidine in DMF, respectively. The Fmoc-deprotection was monitored using an in-line UV detector and monitoring at 344 nm.

2. Synthetic procedures

2.1 General procedure for the preparation of indole-3-carbaldehyde 2

Phosphoryl chloride (1.5 eq) was added dropwise to dry DMF (8–10 mL) at 0 °C. The mixture was stirred for 10 min. Then the solution of indole (1.0 eq) in DMF was added dropwise to the mixture. The solution was heated to 45 °C and was stirred for a further 2 h. The reaction was poured into ice water and extracted with Et_2O (2 x 30 mL). The aqueous layer was treated with 1 M aq NaOH to pH 9 and extracted with EtOAc (3 x 30 mL). The organic extracts were combined, washed with brine, dried over MgSO₄ and concentrated *in vacuo* to yield the indole-3-carbaldehyde.

6-Fluoro-1*H*-indole-3-carbaldehyde (2d)

The synthesis was carried out using phosphoryl chloride (1.2 mL, 13.4 mmol), 5-fluoroindole (1.2 g, 9.0 mmol) in DMF (8 mL) to yield **2d**¹ as yellow crystals (0.90 g, 66 % yield): m.p. 174–178 °C; TLC $R_{\rm f}$ = 0.2 (Hexane–EtOAc, 2:1); IR (KBr): v = 2933, 1641, 1530, 1448, 1149 cm⁻¹. ¹H NMR (400 MHz, acetone-d₆): δ 7.08 (td, J = 8 and 2 Hz, 1H, H-5 or H-7), 7.31 (dd, J = 8 and 2 Hz, 1H, H-5 or H-7), 8.22 (dd, J = 8 and 2 Hz, 1H, H-4), 8.24 (s, 1H, H-2), 10.03 (s, 1H, CHO), 11.28 (br, 1H, NH). ¹³C NMR (100 MHz, acetone-d₆): δ 98.5 (d, J = 26 Hz), 110.4 (d, J = 24 Hz), 119.1, 121.2, 122.4 (d, J = 10 Hz), 137.9, 159.18, 161.5, 184.4; MS: m/z (+ESI) calcd for C₉H₇FNO⁺ 164.0512, found 164.0430 [MH⁺].

7-Ethyl-1*H*-indole-3-carbaldehyde (2e)

The synthesis was carried out using phosphoryl chloride (1.0 mL, 10.9 mmol), 7-ethylindole (1.0 mL, 7.3 mmol) and DMF (8 mL) to afford $2e^2$ as a brown powder (1.1 g, 95 % yield): m.p. 92–94 °C; TLC R_f = 0.2 (Hexane–EtOAc, 2:1). IR (KBr): v = 3166, 3054, 1628, 1456, 1228 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.38 (t, J = 7.5 Hz, 3H, CH₂CH₃), 2.98 (q, J = 7.5 Hz, 2H, CH₂CH₃), 7.18 (d, J = 7 Hz, 1H, H-5 or H-6), 7.29 (t, J = 7 Hz, 1H, H-5 or H-6), 7.90 (d, J = 1 Hz, 1H, H-2), 8.19 (d, J = 7 Hz, 1H, H-4), 9.95 (br, 1H, NH), 10.05 (s, 1H, CHO). ¹³C NMR (100 MHz, CDCl₃): δ 14.1, 24.0, 119.3, 119.70, 123.1, 123.4, 127.6, 135.91, 136.3, 146.5, 185.7. MS: m/z (+ESI) calcd for C₁₁H₁₂NO⁺ 174.0919, found 174.0805 [MH⁺]

Using phosphoryl chloride (1.0 mL, 11.3 mmol), 5-methylindole (1.0 g, 7.58 mmol) and DMF (10 mL) the title compound $2f^3$ was obtained as yellow crystals (0.8 g, 65 % yield): m.p. 150–151 °C; TLC $R_f = 0.2$ (Hexane–EtOAc, 2:1). IR (KBr): v = 3214, 1636, 1437, 1388 cm⁻¹. ¹H NMR (400 MHz, acetone-d₆): δ 2.45 (s, 3H, CH₃), 7.12 (dd, J = 8 and 2 Hz, 1H, H-6 or H-7), 7.44 (dd, J = 8 and 2 Hz, 1H, H-6 or H-7), 8.06 (d, J = 2 Hz, 1H, H-4), 8.15 (s, 1H, H-2), 10.02 (s, 1H, CHO), 11.08 (br, 1H, NH). ¹³C NMR (100 MHz, acetone-d₆): δ 20.7, 111.7, 118.9, 121.1, 124.9, 125.12, 131.5, 135.72, 137.2, 184.4. MS: m/z (+ESI) calcd for C₁₀H₁₀NO⁺ 160.0762, found 160.0667 [MH⁺].

5-Methoxy-1*H*-indole-3-carbaldehyde (2g)

Using phosphoryl chloride (2.87 mL, 30.6 mmol), 5-methoxyindole (3 g, 20.4 mmol) and DMF (10 mL), the title compound **2g** was obtained as yellow crystals (1.9 g, 54 % yield): m.p. 179–183 °C; TLC $R_{\rm f}$ = 0.2 (Hexane–EtOAc, 2:1) IR (KBr): v = 3170, 1641, 1432, 1263, 790 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.89 (s, 3H, OCH₃), 6.95 (dd, J = 7 and 2 Hz, 1H, H-6), 7.34 (d, J = 7 Hz, 1H, H-7), 7.78 (s, 1H, H-2), 7.79 (d, J = 2 Hz, 1H, H-4), 9.99 (s, 1H, CHO). ¹³C NMR (100 MHz, CDCl₃): δ 55.8, 103.1, 112.5, 114.8, 119.4, 125.2, 131.6, 136.3, 156.57, 185.2. MS: m/z (+ESI) calcd for C₁₀H₁₀NO₂⁺ 176.0712, found 176.0650 [MH⁺].

4-Methoxy-1H-indole-3-carbaldehyde (2h)

The synthesis was carried out using phosphoryl chloride (0.9 mL, 10.2 mmol), 4-methoxylindole (1 g, 6.8 mmol) and DMF (10 mL) to afford **2h** as a yellow solid (0.8 g, 70 % yield): m.p. 148–150 °C; TLC $R_{\rm f}$ = 0.2 (Hexane–EtOAc, 2:1). IR (KBr): v = 3250, 1642, 1361, 1323, 790 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 4.01 (s, 3H, OCH₃), 6.77 (dd, J = 7, 2 Hz, 1H, H-6), 7.18 (d, J = 7 Hz, 1H, H-7), 7.19 (s, 1H, H-5), 8.04 (s, 1H, H-2), 10.51 (s, 1H, CHO). ¹³C NMR (100 MHz, acetone-d₆): δ 54.8, 102.1, 105.7, 116.2, 119.1, 123.7, 128.5, 138.2, 154.4, 186.7. MS: m/z (+ESI) calcd for C₁₀H₁₀NO₂⁺ 176.0712, found 176.0672 [MH⁺].

2.2 General procedure for the preparation of 2-(2-hydroxy-1-phenylethylamino)-3-(1*H*-indol-3-yl)propanenitrile **4**

2-(2-Hydroxy-1-phenylethylamino)-3-(1H-indol-3-yl)propanenitrile (4a)

A suspension of (methoxymethyl)triphenylphosphonium chloride (2.3 g, 6.9 mmol) in dry THF (18 mL) cooled to 0 °C under nitrogen was treated with 2.5 M butyllithium solution in THF (3.3 mL, 8.28 mmol). The mixture was stirred for 15 min, then **2a** (500 mg, 3.45 mmol) in dry THF (15 mL) was added and stirred at room temperature for a further 2 h. Excess butyllithium was quenched by adding a few drops of MeOH. The mixture was neutralized with 3 M aq HCl. The solvent was removed *in vacuo*. The residual material was partitioned between EtOAc (100 mL) and brine (100 mL). The organic extract was dried over MgSO₄, concentrated, and was subjected to column chromatography (hexane–EtOAc, 1:1) to afford the enol ether intermediate. The enol ether intermediate was subsequently treated with a mixture of THF (18 mL) and 1 M aq HCl (12 mL). After being heated under reflux for 3 h, the solution was cooled and partitioned between Et₂O (80 mL) and brine (80 mL). The organic extract was dried and concentrated to afford the unstable **3a**, which was taken to the next step without further purification.

(R)-2-phenylglycinol (449 mg, 3.3 mmol) and acetic acid (372 μ L, 6.57 mmol) was added to a solution of **3a** (435 mg, 2.74 mmol) in MeOH (20 mL) at 0 °C. Sodium cyanide (160 mg, 3.28 mmol) was added to the solution immediately. The mixture was allowed to warm to room temperature and stirred for 16 h. The solvent was removed under reduced pressure, and the residual material was partitioned between CH₂Cl₂ (2 x 40 mL) and brine (80 mL). The organic extracts were combined, dried over MgSO₄ and concentrated *in vacuo*, followed by purification using column chromatography (CHCl₃-MeOH, 30:1) to afford 4a as an amorphous orange solid (307 mg, 29 % yield from 2a): TLC $R_{\rm f} = 0.3$ (Hexane-EtOAc, 1:1); RP-HPLC 10-60 % B in 12 min, $t_{\rm R}$ 5.7 min for (*R*,*R*) isomer and 6.7 min for (S,R) isomer; IR (KBr): v = 3413, 2924, 2873, 1455, 1356, 744 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.53 (br, 1 H, NH), 3.12 (d, *J* = 6 Hz, 1H, C*H*_AH_B), 3.21 (d, *J* = 5 Hz, 1H, CH_AH_B), 3.49 $(dd, J = 11 and 9 Hz, 1H, CH_A H_B OH)$, 3.65 $(dd, J = 6 and 4 Hz, 1H, \alpha - H)$, 3.67 (dd, J = 6 and 4 Hz, 1H)1H, CH_AH_BOH), 4.03 (dd, J = 9 and 4 Hz, 1H, $CHCH_2OH$), 7.11 (m, 2H, Ar Hs), 7.20 (m, 1H, Ar H) 7.27–7.34 (m, 6 H, Ar Hs), 7.53 (d, J = 8 Hz, 1H, Ar H), 8.28 (br, 1 H, NH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 29.5, 49.1, 63.1, 67.3, 109.2, 111.5, 118.6, 119.7, 120.6, 122.3, 123.8, 127.3, 127.7, 128.3, 128.9, 136.2, 138.3, 139.6. MS: m/z (+ESI) calcd for $C_{19}H_{20}N_3O^+$ 306.1606, found 306.1680 $[MH^+].$

3-(5-Bromo-1*H*-indol-3-yl)-2-[1-(4-methoxyphenyl)ethylamino|propanenitrile (S1)

The reagents (methoxymethyl)triphenylphosphonium chloride (2.14 g, 6.3 mmol), 2.5 M butyllithium solution (3 mL, 7.5 mmol) and **2b** (700 mg, 3.1 mmol) were used to yield the unstable **3b**, which was taken to the next step without further purification.

Synthesis was then carried out using **3b** (486 mg, 2.1 mmol), (*S*)-4-methoxy- α -methylbenzylamine (362 µL, 2.5 mmol), acetic acid (277 µL, 4.9 mmol) and sodium cyanide (120 mg, 2.5 mmol) to afford **S1** as a yellow oil (442 mg, 39 % yield from **2b**): TLC $R_f = 0.4$ (Hexane–EtOAc, 2:1); RP-HPLC 10–60 % B in 12 min, t_R 7.0 min for (*R*,*R*) isomer and 7.6 min for (*S*,*R*) isomer; IR (KBr): $v = 3418, 2960, 1459, 1244, 755 \text{ cm}^{-1}$. ¹H NMR (400 MHz, CDCl₃): δ 1.32 (d, J = 7 Hz, 3H, CH₃), 1.66 (br, 1H, NH), 3.11 (d, J = 6 Hz, 2H, CH₂), 3.54 (t, J = 6 Hz, 1H, α -H), 3.83 (s, 3H, OCH₃), 4.00 (q, J = 6 Hz, 1H, CHCH₃), 6.90 (d, J = 9 Hz, 2H, Ar Hs), 7.13 (d, J = 2.5 Hz, 1H, Ar H) 7.19–7.25 (m, 3H, Ar Hs), 7.28 (d, J = 2 Hz, 1H, Ar H), 7.66 (d, J = 2 Hz, 1H, Ar H), 8.40 (br, 1H, NH). ¹³C NMR (100 MHz, CDCl₃): δ 24.9, 28.7, 49.3, 55.4, 56.0, 109.2, 112.9, 113.0, 114.2, 120.6, 121.3, 124.8, 125.2, 127.9, 129.1, 134.8, 135.1, 159.1.

3-(5-Chloro-1*H*-indol-3-yl)-2-[1-(4-methoxyphenyl)ethylamino]propanenitrile (S2)

Synthesis was carried out according to the procedure described under 2.2 using (methoxymethyl)triphenylphosphonium chloride (2.68 g, 7.8 mmol), 2.5 M butyllithium solution (3.7 mL, 9.4 mmol) and 2c (700 mg, 3.9 mmol) to afford the unstable 3c which was taken to the next step without further purification.

Using **3c** (754 mg, 3.9 mmol), (*S*)-4-methoxy- α -methylbenzylamine (690 µL, 4.7 mmol) and acetic acid (530 µL, 9.4 mmol) and sodium cyanide (229 mg, 4.7 mmol), the title compound **S2** was obtained as a yellow oil (611 mg, 45 % yield from **2c**): TLC $R_f = 0.4$ (Hexane–EtOAc, 2:1); RP-HPLC 10–60 % B in 12 min, t_R 7.0 min for (*R*,*R*) isomer and 7.6 min for (*S*,*R*) isomer; IR (KBr): v = 3419, 2963, 1609, 1457, 756 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.32 (d, J = 6 Hz, 3H, CH₃), 1.68 (br, 1H, NH), 3.11 (d, J = 6 Hz, 2H, CH₂), 3.53 (t, J = 6 Hz, 1H, α -H), 3.82 (s, 3H, OCH₃), 4.00 (q, J = 6 Hz, 1H, *CH*CH₃), 6.87-6.89 (m, 2H, Ar Hs), 7.12-7.19 (m, 2H, Ar Hs), 7.23-7.30 (m, 3H, Ar Hs), 7.47 (d, J = 2 Hz, 1H, Ar H), 8.38 (br, 1H, NH). ¹³C NMR (100 MHz, CDCl₃): δ 24.9, 29.6, 49.3, 55.4, 56.0, 109.3, 112.5, 114.2, 118.3, 120.7, 122.7, 125.0, 125.5, 127.9, 128.6, 134.6, 135.1, 159.1.

3-(6-Fluoro-1*H*-indol-3-yl)-2-(2-hydroxy-1-phenylethylamino)propanenitrile (4d)

Synthesis carried out according to the procedure described under section 2.2 using (methoxymethyl)triphenylphosphonium chloride (2.9 g, 8.6 mmol), 2.5 M butyllithium solution (4 mL, 10.2 mmol) and **2d** (700 mg, 4.3 mmol) to afford the unstable **3d** which was taken to the next step without further purification.

Compound **3d** (759 mg, 4.3 mmol), (*R*)-2-phenylglycinol (704 mg, 5.1 mmol), acetic acid (581 µL, 10.3 mmol) and sodium cyanide (251 mg, 5.1 mmol) were used to give **4d** as a yellow amorphous solid (614 mg, 44 % yield from **2d**): TLC $R_f = 0.3$ (Hexane–EtOAc, 1:1); RP-HPLC 10–60 % B in 12 min, t_R 6.0 min for (*R*,*R*) isomer and 7.2 min for (*S*,*R*) isomer; IR (KBr): v = 3425, 3025, 2925, 1627, 758 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.50 (br, 1 H, NH), 3.14 (d, J = 4 Hz, 1H, CH_AH_B), 3.16 (d, J = 4 Hz, 1H, CH_AH_B), 3.49 (dd, J = 12 and 8 Hz, 1H, CH_AH_BOH), 3.62 (t, J = 6 Hz, 1H, α -H), 3.67 (dd, J = 11 and 4 Hz, 1H, CH_AH_BOH), 4.0 (dd, J = 9 and 4 Hz, 1H, $CHCH_2OH$), 76.81-6.88 (m, 1H, Ar H), 6.98 (dd, J = 4 and 9 Hz, 1H, Ar H), 7.04-7.08 (m, 1H, Ar H), 7.24-7.32 (m, 5 H, Ar Hs), 7.40 (dd, J = 9 and 5 Hz, 1H, Ar H), 8.27 (br, 1 H, NH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 29.5, 49.0, 63.1, 67.3, 97.7 (d, J = 26 Hz), 108.6 (d, J = 24 Hz), 109.4, 119.5 (d, J = 11 Hz), 120.5, 123.9, 124.0 (d, J = 3 Hz), 127.6, 128.4, 129.0, 136.2 (d, J = 12 Hz), 138.2, 160.1 (d, J = 237 Hz). MS: m/z (+ESI) calcd for C₁₉H₁₉FN₃O⁺ 324.1512, found 324.1248 [MH⁺].

3-(7-Ethyl-1*H*-indol-3-yl)-2-(2-hydroxy-1-phenylethylamino)propanenitrile (4e)

Synthesis was carried out according to the procedure described under section 2.2 using (methoxymethyl)triphenylphosphonium chloride (2.7 g, 8.0 mmol), 2.5 M butyllithium solution (3.8 mL, 9.7 mmol) and **2e** (700 mg, 4.04 mmol) to afford the unstable **3e** which was taken to the next step without further purification.

Compound **3e** (700 mg, 3.74 mmol), (*R*)-2-phenylglycinol (613 mg, 4.5 mmol), acetic acid (507 µL, 8.97 mmol) and sodium cyanide (219 mg, 4.48 mmol) were reacted to afford **4e** as a brown amorphous solid (444 mg, 33 % yield from **2e**): TLC $R_f = 0.3$ (Hexane–EtOAc, 1:1); RP-HPLC 10–60 % B in 12 min, t_R 7.0 min for (*R*,*R*) isomer and 8.1 min for (*S*,*R*) isomer; IR (KBr): v = 3415, 2964, 2930, 1453, 753 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.37 (t, J = 8 Hz, 3H, CH₂CH₃), 2.49 (br, 1 H, NH), 2.85 (q, J = 8 Hz, 2H, CH₂CH₃), 3.25 (d, J = 6 Hz, 1H, CH_AH_B), 3.27 (d, J = 4 Hz, 1H, CH_AH_B), 3.56 (dd, J = 12 and 9 Hz, 1H, CH_AH_BOH), 3.70 (dd, J = 8 and 6 Hz, 1H, α -H), 4.09 (dd, J = 11 and 4 Hz, 1H, CH_AH_BOH), 4.09 (dd, J = 8, 4 Hz, 1H, CHCH₂OH), 7.06-7.13 (m, 2H, Ar Hs), 7.17 (d, J = 3 Hz, 1H, Ar H), 7.30-7.38 (m, 5H, Ar Hs), 7.41 (m, 1H, Ar H), 8.27 (br, 1 H, NH). ¹³C NMR (100 MHz, CDCl₃): δ 13.8, 24.0, 29.7, 49.2, 63.1, 67.3, 109.7, 116.3, 120.0, 120.5, 120.8, 123.3, 126.9,

127.1, 127.6, 128.3, 128.9, 135.1, 138.4. MS: m/z (+ESI) calcd for $C_{21}H_{24}N_3O^+$ 334.1919, found 334.1843 [MH⁺].

3-(5-Methyl-1H-indol-3-yl)-2-(2-hydroxy-1-phenylethylamino)propanenitrile (4f)

Synthesis was carried out using (methoxymethyl)triphenylphosphonium chloride (3 g, 8.8 mmol), 2.5 M butyllithium solution (4.2 mL, 10.5 mmol) and **2f** (700 mg, 4.4 mmol) to afford the unstable **3f** which was taken to the next step without further purification.

Compound **3f** (600 mg, 3.5 mmol), (*R*)-2-phenylglycinol (570 mg, 4.2 mmol), acetic acid (470 µL, 8.3 mmol) and sodium cyanide (203 mg, 4.2 mmol) were reacted to yield **4f** as a brown oil (496 mg, 35 % yield from **2f**): TLC $R_f = 0.4$ (Hexane–EtOAc, 1:1); RP-HPLC 10–60 % B in 12 min, t_R 6.5 min for (*R*,*R*) isomer and 7.2 min for (*S*,*R*) isomer; IR (KBr): v = 3405, 3017, 2922, 1450, 756 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.33 (br, 1 H, NH), 2.44 (s, 3H, CH₃), 3.21 (d, J = 4 Hz, 1H, CH_AH_B), 3.23 (d, J = 3 Hz, 1H , CH_AH_B), 3.55 (dd, J = 12 and 9 Hz, 1H, CH_AH_BOH), 3.68 (dd, J = 12 and 6 Hz, 1H, α -H), 3.73 (dd, J = 11 and 4 Hz, 1H, CH_AH_BOH), 4.08 (dd, J = 9 and 4 Hz, 1H, $CHCH_2OH$), 7.04 (m, 1H, Ar H), 1.2 (m, 1H, Ar H), 7.24 (s, 1H, Ar H), 7.26 (s, 1H, Ar H), 7.29-7.36 (m, 5 H, Ar Hs), 8.12 (br, 1H, NH). ¹³C NMR (100 MHz, CDCl₃): δ 21.5, 29.7, 48.9, 63.1, 67.3, 108.8, 111.1, 118.2, 120.5, 123.7, 123.9, 127.4, 127.6, 128.2, 128.8, 128.9, 134.5, 138.3. MS: m/z (+ESI) calcd for C₂₀H₂₂N₃O⁺ 320.1763, found 320.1711 [MH⁺].

3-(5-Methoxy-1*H*-indol-3-yl)-2-(2-hydroxy-1-phenylethylamino)propanenitrile (4g)

(Methoxymethyl)triphenylphosphonium chloride (2.74 g, 8 mmol), 2.5 M butyllithium solution (3.8 mL, 9.6 mmol) and 2g (700 mg, 4 mmol) were used to afford the unstable 3g which was taken to the next step without further purification.

Compound **3g** (500 mg, 2.6 mmol), (*R*)-2-phenylglycinol (434 mg, 3.1 mmol), acetic acid (359 µL, 6.3 mmol) and sodium cyanide (155 mg, 3.2 mmol) were reacted to yield **4g** as a brown oil (177 mg, 13 % yield from **2g**): TLC $R_f = 0.5$ (Hexane–EtOAc, 1:1), RP-HPLC 10–60 % B in 12 min, t_R 5.5 min for (*R*,*R*) isomer and 6.4 min for (*S*,*R*) isomer; IR (KBr): v = 3405, 3011, 2938, 1480, 757 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.05 (br, 1 H, NH), 3.18 (d, J = 2 Hz, 1H , CH_AH_B), 3.20 (s, 1H , CH_A H_B), 3.52 (dd, J = 11 and 9 Hz, 1H, CH_AH_BOH), 3.64 (t, J = 6 Hz, 1H, α -H), 3.72 (dd, J = 11 and 4 Hz, 1H, CH_AH_BOH), 3.78 (s, 3H, OCH₃), 4.05 (dd, J = 9 and 4 Hz, 1H, $CHCH_2OH$), 6.85 (dd, J = 9 and 2 Hz, 1H, Ar H), 6.92 (d, J = 2.5 Hz, 1H, Ar H), 7.12 (d, J = 3 Hz, 1H, Ar H), 7.22 (d, J = 11 and 4 Hz, 1H, Ar H), 7.27–7.35 (m, 5 H, Ar H), 8.09 (br, 1H, NH). ¹³C NMR (100 MHz, CDCl₃): δ 29.7, 48.9, 55.9, 63.1, 67.3, 100.2, 109.1, 112.1, 112.8, 120.4, 124.3, 127.6, 128.2, 128.8, 131.3, 138.3, 154.2. MS: m/z (+ESI) calcd for C₂₀H₂₂N₃O₂⁺ 336.1712, found 336.1786 [MH⁺].

3-(4-Methoxy-1*H*-indol-3-yl)-2-(2-hydroxy-1-phenylethylamino)propanenitrile (4h)

(Methoxymethyl)triphenylphosphonium chloride (2.74 g, 8 mmol), 2.5 M butyllithium solution (3.8 mL, 9.6 mmol) and **2h** (700 mg, 4 mmol) were reacted to afford the unstable **3h** which was taken to the next step without further purification.

Using **3h** (756 mg, 4.0 mmol), (*R*)-2-phenylglycinol (657 mg, 4.8 mmol), acetic acid (543 μ L, 9.6 mmol) and sodium cyanide (235 mg, 4.8 mmol), the title compound **4h** was obtained as a brown oil (258 mg, 19 % yield from **2h**): TLC *R*_f = 0.5 (Hexane–EtOAc, 1:1); RP-HPLC 10–60 % B in 12 min, *t*_R 5.8 min for (*R*,*R*) isomer and 6.2 min for (*S*,*R*) isomer; IR (KBr): *v* = 3401, 2924, 1357, 1255, 733 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.51 (br, 1 H, NH), 3.18 (dd, *J* = 14 and 9 Hz, 1H , *CH*_AH_B), 3.47 (dd, *J* = 14 and 7 Hz,1H , CH_AH_B), 3.58 (dd, *J* = 11 and 9 Hz, 1H, *CH*₄H_BOH), 3.65 (s, 3H, OCH₃), 3.77 (dd, *J* = 11 and 4 Hz, 1H, α-H), 3.93 (dd, *J* = 9 and 6 Hz, 1H, CH₄H_BOH), 4.14 (dd, *J* = 2.5 Hz, 1H, Ar H), 7.09 (t, *J* = 7 Hz, 1H, Ar H), 7.26 –7.28 (m, 5 H, Ar Hs), 8.25 (br, 1H, NH). ¹³C NMR (100 MHz, CDCl₃): δ 31.6, 50.4, 54.8, 63.1, 67.3, 99.4, 104.7, 109.9, 116.9, 120.9, 122.7, 123.1, 127.6, 128.0, 128.7, 138.1, 138.6, 154.2. MS: *m/z* (+ESI) calcd for C₂₀H₂₂N₃O₂⁺ 336.1712, found 336.1656 [MH⁺].

2.3 General procedure for the preparation of (*S*)-2-((*R*)-2-hydroxy-1-phenylethyl amino)-3-(1*H*-indol-3-yl)propanamide **6**

To a solution of α -aminonitrile **4a** (257 mg, 0.8 mmol) in DMSO (3.5 mL), K₂CO₃ (138 mg, 1.3 mmol) and 30 % H₂O₂ (0.6 mL, 6.3 mmol) were added at 20 °C. After stirring at room temperature for 2 h, another portion of 30 % H₂O₂ (0.4 mL, 4.7 mmol) was added and stirred for a further hour. The resultant mixture was extracted with Et₂O (3 x 50 mL) and brine (50 mL). The organic extracts were combined, dried over MgSO₄ and concentrated. Purification of the residual material by column chromatography (CHCl₃–MeOH, 10:1) gave (*R*,*R*)-**5a** as yellow oil (first eluting diastereoisomer, 35 mg, 13 % yield) and (*S*,*R*)-**6a** as a white foam (second eluting diastereoisomer, 101 mg, 38 % yield).

(*R*,*R*)-**5a** TLC *R*_f = 0.5 (CHCl₃–MeOH, 6:1), IR (KBr): *v* = 3412, 2917, 1662, 744 cm⁻¹. ¹H NMR (400 MHz, acetone-d₆): δ 3.10 (br, 1 H, NH), 3.24 (dd, *J* = 14 and 6 Hz, 1H, CH_A*H*_B), 3.20 (d, *J* = 6 Hz, 1H, CH_A*H*_B), 3.36 (dd, *J* = 9 and 3 Hz, 1H, α-H), 3.51 (dd, *J* = 10 and 8 Hz, 1H, C*H*_A*H*_BOH), 3.60 (dd, *J* = 11 and 4 Hz, 1H, CH_A*H*_BOH), 3.96 (dd, *J* = 9 and 4 Hz, 1H, C*H*CH₂OH), 6.40 (br, 1H, NH), 7.00 (m, 1H, Ar H) 7.10 (m, 1H, Ar H), 7.22–7.33 (m, 5H, Ar Hs), 7.36-7.41 (m, 2H, Ar Hs), 7.69 (d, *J* = 8 Hz 1H, Ar H), 10.16 (br, 1H, NH). ¹³C NMR (100 MHz, acetone-d₆): δ 26.6, 59.5, 63.6, 66.7, 110.4, 111.1, 118.5, 119.2, 121.2, 124.3, 127.3, 128.0, 128.0, 128.2, 136.8, 141.3, 176.3. MS: *m/z* (+ESI) calcd for C₁₉H₂₂N₃O₂⁺ 324.1712, found 324.1638 [MH⁺].

(*S*,*R*)-**6a** TLC R_f = 0.4 (CHCl₃–MeOH, 6:1), IR (KBr): v = 3412, 2917, 1662, 744 cm⁻¹. ¹H NMR (400 MHz, acetone-d₆): δ 2.97 (dd, *J* = 15 and 8 Hz, 1H, CH_AH_B), 3.22 (dd, *J* = 14 and 5 Hz, 1H, CH_AH_B), 3.31 (dd, *J* = 9 and 5 Hz, 1H, α-H), 3.46 (dd, *J* = 11 and 8 Hz, 1H, CH_AH_BOH), 3.60 (dd, *J* = 11 and 5 Hz, 1H, CH_AH_BOH), 3.77 (dd, *J* = 9 and 4 Hz, 1H, CHCH₂OH), 6.71 (br, 1H, NH), 6.92–7.13 (m, 7H, Ar Hs), 7.14 (d, *J* = 2 Hz, 1H, Ar H), 7.45 (m, 3H, Ar H), 10.17 (br, 1H, NH). ¹³C NMR (100 MHz, acetone-d₆): δ 30.0, 60.4, 63.5, 67.2, 111.1, 111.3, 118.6, 121.3, 123.6, 126.8, 127.2, 127.8, 127.9, 136.8, 140.9, 177.1. MS: m/z (+ESI) calcd for C₁₉H₂₂N₃O₂⁺ 324.1712, found 324.1365 [MH⁺].

(S)-3-(5-Bromo-1H-indol-3-yl)-2-((S)-1-(4-methoxyphenyl)ethylamino)propanamide ((S,S)-13)

Synthesis was carried out according to the procedure described under section 2.3 using α -aminonitrile **S1** (356 mg, 0.9 mmol) in DMSO (3.5 mL), K₂CO₃ (172 mg, 1.2 mmol) and 30 % H₂O₂ (0.8 mL, 7.3 mmol), followed by a further 30 % H₂O₂ (0.4 mL, 2.3 mmol). The synthesized compound was

purified column chromatography (Hexane–EtOAc, 1 : 4) followed by RP-HPLC (Onyx Monolithic C₁₈, 100 x 10 mm) gave (*S*,*S*)-**13** as a yellow foam (196 mg, 53 %): TLC R_f = 0.2 (Hexane–EtOAc, 1: 4); IR (KBr): v = 3267, 3006, 2961, 1669, 1244, 755 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.24 (d, *J* = 7 Hz, 3H, CH₃), 1.83 (br, 1H, NH), 2.79 (dd, *J* = 14 and 9 Hz, 1H, CH_A*H*_B), 3.22 (m, 2H, CH_A*H*_B, α -H), 3.55 (q, *J* = 7 Hz, 1H, CHCH₃), 3.76 (s, 3H, OCH₃), 6.10 (br, 1H, NH), 6.53 (d, *J* = 9 Hz, 2H, Ar Hs), 6.63 (d, *J* = 8 Hz, 2H, Ar Hs), 6.90 (d, *J* = 2 Hz, 1H, Ar H), 7.21 (s, 1H, Ar H), 7.23 (d, *J* = 2 Hz, 1H, Ar H), 7.48 (d, *J* = 2 Hz, 1H, Ar H), 8.75 (br, 1H, NH). ¹³C NMR (100 MHz CDCl₃): δ 24.1, 29.6, 55.2, 56.4, 59.8, 110.9, 112.7, 112.8, 113.5, 121.5, 124.3, 125.0, 127.0, 128.9 135.1, 135.7, 158.4, 178.2. MS: m/z (+ESI) calcd for C₂₀H₂₃BrN₃O₂⁺ 416.0974, found 416.0773 [MH⁺].

(S)-3-(5-Chloro-1*H*-indol-3-yl)-2-((S)-1-(4-methoxyphenyl)ethylamino)propanamide ((S,S)-14)

Synthesis was carried out according to the procedure described under section 2.3 using α -aminonitrile **S2** (542 mg, 1.5 mmol) in DMSO (3.5 mL), K₂CO₃ (275 mg, 2.0 mmol) and 30 % H₂O₂ (1.1 mL, 11.6 mmol), followed by a further portion of 30 % H₂O₂ (0.4 mL, 2.3 mmol). Purification was achieved by column chromatography (Hexane–EtOAc, 1:4) followed by RP-HPLC (Onyx Monolithic C18, 100 x 10 mm) gave (*S*,*S*)-**14** as a yellow foam (406 mg, 71 %): TLC *R*_f = 0.4 (Hexane–EtOAc, 2:1); IR (KBr): *v* = 3269, 2961, 2928, 1670, 1279, 755 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.24 (d, *J* = 7 Hz, 3H, CH₃), 1.85 (br, 1H, NH), 2.79 (dd, *J* = 14 and 9 Hz, 1H, CH_AH_B), 3.22 (m, 2H, CH_AH_B, α -H), 3.54 (q, *J* = 6 Hz, 1H, CHCH₃), 3.75 (s, 3H, OCH₃), 6.12 (br, 1H, NH), 6.52 (d, *J* = 8 Hz, 2H, Ar Hs), 6.63 (d, *J* = 8 Hz, 2H, Ar Hs), 6.91 (d, *J* = 2 Hz, 1H, Ar H), 7.05–7.18 (m, 2H, Ar Hs), 7.31 (d, *J* = 2 Hz, 1H, Ar H), 8.75 (br, 1H, NH). ¹³C NMR (100 MHz CDCl₃): δ 24.1, 29.6, 55.1, 56.4, 59.8, 110.9, 112.2, 113.5, 118.4, 121.5, 124.5, 125.2, 127.0, 128.3, 134.8, 135.8, 158.4, 178.2. MS: *m/z* (+ESI) calcd for C₂₀H₂₃ClN₃O₂⁺ 372.1479, found 372.1255 [MH⁺].

(S)-3-(6-Fluoro-1H-indol-3-yl)-2-((R)-2-hydroxy-1-phenylethylamino)propanamide ((S,R)-6d)

The α -aminonitrile **4d** (557 mg, 1.7 mmol) in DMSO (4 mL), K₂CO₃ (308 mg, 2.2 mmol) and 30 % H₂O₂ (1.3 mL, 13 mmol) were reacted, followed by an additional 30 % H₂O₂ (0.4 mL, 4.7 mmol) to afford (*R*,*R*)-**5d** as a yellow foam (first eluting diastereoisomer, 71 mg, 12 % yield) and (*S*,*R*)-**6d** as white foam (second eluting diastereoisomer, 207 mg, 35 % yield).

(*R*,*R*)-**5d** TLC $R_f = 0.5$ (CHCl₃–MeOH, 6:1); IR (KBr): v = 3423, 3311, 2919, 1664, 759 cm⁻¹. ¹H NMR (400 MHz, acetone-d₆): δ 3.23 (dd, J = 14 and 5 Hz, 1H, CH_AH_B), 3.32 (m, 2H, CH_AH_B, α -H), 3.52 (dd, J = 11 and 9 Hz, 1H, CH_AH_BOH), 3.62 (dd, J = 11 and 4 Hz, 1H, CH_AH_BOH), 3.97 (dd, J = 9 and 4 Hz, 1H, CHCH₂OH), 6.58 (br, 1H, NH), 6.80 (td, J = 9 and 2 Hz, 1H, Ar H), 7.14 (dd, J = 10 and 2 Hz, 1H, Ar H), 7.21–7.43 (m, 6H, Ar Hs), 7.66 (dd, J = 9 and 5 Hz, 1H, Ar H), 10.29 (br, 1H, NH). ¹³C NMR (100 MHz, acetone-d₆): δ 26.5, 59.3, 63.6, 66.9, 97.1 (d, J = 26 Hz), 106.9 (d, J = 24

Hz), 110.6, 120.2 (d, J = 10 Hz), 124.8, 124.9 (d, J = 3 Hz), 127.3, 127.9, 128.3, 136.7 (d, J = 13 Hz), 141.3, 159.7 (d, J = 233 Hz), 176.8. MS: m/z (+ESI) calcd for C₁₉H₂₁FN₃O₂⁺ 342.1618, found 342.1321 [MH⁺].

(*S*,*R*)-6d TLC $R_f = 0.4$ (CHCl₃–MeOH, 6:1); IR (KBr): v = 3423, 3311, 2919, 1664, 759 cm⁻¹. ¹H NMR (400 MHz, acetone-d₆): δ 2.95 (dd, J = 16 and 8 Hz, 1H, CH_A H_B), 3.21 (dd, J = 14 and 5 Hz, 1H, CH_A H_B), 3.30 (dd, J = 9 and 5 Hz, 1H, α-H), 3.48 (dd, J = 11 and 8 Hz, 1H, C H_A H_BOH), 3.62 (dd, J = 11 and 4 Hz, 1H, CH_A H_B OH), 3.77 (dd, J = 9 and 4 Hz, 1H, CHCH₂OH), 6.73 (td, J = 9 and 2 Hz, 1H, Ar H), 6.84 (br, 1H, NH), 6.92–7.18 (m, 7H, Ar Hs), 7.41 (dd, J = 9 and 6 Hz, 1H, Ar H), 7.50 (br, 1H, NH), 10.29 (br, 1H, NH). ¹³C NMR (100 MHz, acetone-d₆): δ 28.0, 60.2, 63.5, 67.1, 97.2 (d, J = 26 Hz), 107.0 (d, J = 24 Hz), 111.3, 119.6 (d, J = 10 Hz), 124.3 (d, J = 3 Hz), 124.5, 126.9, 127.2, 128.0, 136.7 (d, J = 13 Hz), 140.9, 159.7 (d, J = 233 Hz), 177.4. MS: m/z (+ESI) calcd for C₁₉H₂₁FN₃O₂⁺ 342.1618, found 342.1298 [MH⁺].

(S)-3-(7-Ethyl-1*H*-indol-3-yl)-2-((*R*)-2-hydroxy-1-phenylethylamino)propanamide ((S,R)-6e)

Synthesis was carried out using α -aminonitrile **4e** (396 mg, 1.1 mmol) in DMSO (3 mL), K₂CO₃ (172 mg, 1.4 mmol) and 30 % H₂O₂ (0.8 mL, 8.4 mmol), followed by a further portion of 30 % H₂O₂ (0.4 mL, 4.7 mmol) to give (*R*,*R*)-**5e** as a yellow oil (first eluting diastereoisomer, 71 mg, 17 % yield) and (*S*,*R*)-**6e** as a yellow foam (second eluting diastereoisomer, 196 mg, 47 % yield).

(*R*,*R*)-**5e** TLC $R_f = 0.5$ (CHCl₃–MeOH, 6:1), IR (KBr): v = 3417, 3311, 2929, 1665, 749 cm⁻¹. ¹H NMR (400 MHz, acetone-d₆): δ 1.32 (t, J = 8 Hz, 3H, CH₂CH₃), 2.91 (q, J = 8 Hz, 2H, CH₂CH₃), 3.24 (dd, J = 14 and 5 Hz, 1H, CH_AH_B), 3.23 (d, J = 7 Hz, 1H, CH_AH_B), 3.34 (d, J = 6 Hz, 1H, α-H), 3.51 (dd, J = 12 and 6 Hz, 1H, CH_AH_BOH), 3.61 (dd, J = 11 and 5 Hz, 1H, CH_AH_BOH), 3.97 (dd, J = 9 and 5 Hz, 1H, CHCH₂OH), 6.45 (br, 1H, NH), 6.96 (d, J = 5 Hz, 2H, Ar Hs), 7.21–7.23 (m, 4H, Ar Hs), 7.36-7.41 (m, 2H, Ar Hs), 7.55 (t, J = 5 Hz, 1H, Ar H), 10.18 (br, 1H, NH). ¹³C NMR (100 MHz, acetone-d₆): δ 13.8, 23.9, 26.7, 59.5, 63.6, 66.9, 110.8, 116.9, 118.9, 119.9, 123.9, 126.6, 127.3, 128.0, 128.0, 128.2, 135.4, 141.4, 176.6. MS: m/z (+ESI) calcd for C₂₁H₂₆N₃O₂⁺ 352.1947, found 352.1683 [MH⁺].

(*S*,*R*)-**6e** TLC $R_f = 0.4$ (CHCl₃–MeOH, 6:1); IR (KBr): v = 3417, 3311, 2929, 1665, 749 cm⁻¹. ¹H NMR (400 MHz, acetone-d₆): δ 1.35 (t, J = 8 Hz, 3H, CH₂CH₃), 2.94 (q, J = 8 Hz, 2H, CH₂CH₃), 3.21 (dd, J = 15 and 5 Hz, 1H, CH_AH_B), 3.23 (dd, J = 16 and 8 Hz, 1H, CH_AH_B), 3.30 (dd, J = 9 and 5 Hz, 1H, α-H), 3.45 (dd, J = 11 and 8 Hz, 1H, CH_AH_BOH), 3.60 (dd, J = 12 and 4 Hz, 1H, CH_AH_BOH), 3.76 (dd, J = 8 and 4 Hz, 1H, CHCH₂OH), 6.73 (br, 1H, NH), 6.89–7.10 (m, 6H, Ar Hs), 7.12 (d, J = 2 Hz, 1H, Ar H), 7.32 (d, J = 8 Hz, 1H, Ar H), 7.45 (br, 1H, NH), 10.15 (br, 1H, NH). ¹³C NMR (100 MHz, acetone-d₆): δ 13.9, 24.0, 30.1, 60.5, 63.6, 67.2, 111.5, 116.4, 119.0, 120.0, 123.2, 126.8, 127.2, 127.8, 127.9, 135.5, 141.0, 177.2. MS: m/z (+ESI) calcd for C₂₁H₂₆N₃O₂⁺ 352.1947, found 352.1595 [MH⁺].

(S)-3-(5-Methyl-1H-indol-3-yl)-2-((R)-2-hydroxy-1-phenylethylamino)propanamide ((S,R)-6f)

The α -aminonitrile **4f** (468 mg, 1.5 mmol) in DMSO (3 mL), K₂CO₃ (261 mg, 1.9 mmol) and 30 % H₂O₂ (1.3 mL, 11.1 mmol), and a further 30 % H₂O₂ (0.4 mL, 4.7 mmol) were reacted to give (*R*,*R*)-**5f** as a yellow oil (first eluting diastereoisomer, 12 mg, 2 % yield) and (*S*,*R*)-**6f** as a yellow foam (second eluting diastereoisomer, 48 mg, 10 % yield).

(*R*,*R*)-**5f** TLC *R*_f = 0.6 (CHCl₃–MeOH, 6:1); IR (KBr): *v* = 3310, 2919, 1662, 756 cm⁻¹. ¹H NMR (400 MHz, acetone-d₆): δ 2.39 (s, 3H, CH₃), 3.22 (dd, *J* = 6 and 4 Hz, 2H, C*H*_A*H*_B), 3.32 (t, *J* = 6 Hz, 1H, α-H), 3.49 (dd, *J* = 11 and 9 Hz, 1H, C*H*_AH_BOH), 3.58 (dd, *J* = 11 and 4 Hz, 1H, CH_A*H*_BOH), 3.93 (dd, *J* = 9 and 4 Hz, 1H, C*H*CH₂OH), 6.31 (br, 1H, NH), 6.94 (dd, *J* = 8 and 2 Hz, 1H, Ar H), 7.22–7.33 (m, 5H, Ar Hs), 7.35-7.39 (m, 2H, Ar Hs), 7.44 (s, 1H, Ar H), 9.97 (br, 1H, NH). ¹³C NMR (100 MHz, acetone-d₆): δ 20.8, 26.8, 59.5, 63.6, 66.8, 110.1, 110.8, 118.8, 122.8, 124.2, 127.2, 127.2, 127.9, 128.2, 128.3, 135.2, 141.5, 176.3. MS: *m*/*z* (+ESI) calcd for C₂₀H₂₄N₃O₂⁺ 338.1869, found 338.1823 [MH⁺].

(*S*,*R*)-**6f** TLC R_f = 0.5 (CHCl₃–MeOH, 6:1); IR (KBr): v = 3310, 2919, 1662, 756 cm⁻¹. ¹H NMR (400 MHz, acetone-d₆): δ 2.33 (s, 3H, CH₃), 2.91 (dd, *J* = 15 and 9 Hz, 1H, CH_A*H*_B), 3.18 (dd, *J* = 14 and 4 Hz, 1H, CH_A*H*_B), 3.29 (dd, *J* = 9 and 5 Hz, 1H, α-H), 3.45 (dd, *J* = 12 and 8 Hz, 1H, C*H*_A*H*_BOH), 3.59 (dd, *J* = 12 and 8 Hz, 1H, CH_A*H*_BOH), 3.75 (dd, *J* = 8 and 4 Hz, 1H, C*H*CH₂OH), 6.61 (br, 1H, NH), 6.90–6.95 (m, 2H, Ar Hs), 7.00-7.05 (m, 2H, Ar Hs), 7.07-7.12 (m, 2H, Ar Hs), 7.20 (s, 1H, Ar H), 7.37 (br, 1H, NH), 10.00 (br, 1H, NH). ¹³C NMR (100 MHz, acetone-d₆): δ 20.8, 30.1, 60.2, 63.5, 67.1, 110.5, 110.9, 118.3, 122.9, 123.7, 126.8, 127.2, 127.3, 127.9, 128.0, 135.3, 141.0, 177.0. MS: m/z (+ESI) calcd for C₂₀H₂₄N₃O₂⁺ 338.1869, found 338.1942 [MH⁺].

(S)-3-(5-Methoxy-1*H*-indol-3-yl)-2-((*R*)-2-hydroxy-1-phenylethylamino)propanamide ((S,R)-6g)

The α -aminonitrile **4g** (266 mg, 0.8 mmol) in DMSO (3 mL), K₂CO₃ (141 mg, 1.0 mmol) and 30 % H₂O₂ (0.6 mL, 5.9 mmol), followed by a further 30 % H₂O₂ (0.4 mL, 4.7 mmol) were reacted to yield (*R*,*R*)-**5g** as a yellow oil (first eluting diastereoisomer, 17 mg, 6 % yield) and (*S*,*R*)-**6g** as a yellow foam (second eluting diastereoisomer, 30 mg, 10 % yield).

(*R*,*R*)-5g TLC $R_f = 0.6$ (CHCl₃–MeOH, 6:1); IR (KBr): v = 3331, 2931, 1661, 1481, 1216, 756 cm⁻¹. ¹H NMR (400 MHz, acetone-d₆): δ 2.93 (br, 1H, NH), 3.18 (dd, J = 15 and 7 Hz, 1H, CH_AH_B), 3.30 (m, 2H, CH_AH_B, α-H), 3.50 (dd, J = 11 and 9 Hz, 1H, CH_AH_BOH), 3.60 (dd, J = 11 and 4 Hz, 1H, CH_AH_BOH), 3.78 (s, 3H, OCH₃), 3.98 (dd, J = 8 and 4 Hz, 1H, CHCH₂OH), 6.31 (br, 1H, NH), 6.75 (dd, J = 2 and 9 Hz, 1H, Ar H), 7.21 (d, J = 2 Hz, 1H, Ar H), 7.24–7.7.23 (m, 3H, Ar Hs), 7.28-7.33 (m, 2H, Ar Hs), 7.40 (m, 2H, Ar Hs), 9.95 (br, 1H, NH). ¹³C NMR (100 MHz, acetone-d₆): δ 26.5, 54.9, 59.2, 63.5, 66.1, 100.8, 110.2, 111.6, 111.7, 123.0, 127.3, 127.9, 128.2, 128.4, 131.9, 141.4, 153.8, 176.2. MS: m/z (+ESI) calcd for C₂₀H₂₄N₃O₃⁺ 354.1818, found 354.1886 [MH⁺].

(*S*,*R*)-**6g** TLC $R_f = 0.4$ (CHCl₃–MeOH, 6:1); IR (KBr): v = 3331, 2931, 1661, 1481, 1216, 756 cm⁻¹. ¹H NMR (400 MHz, acetone-d₆): δ 2.93 (dd, J = 14 and 9 Hz, 1H, CH_A H_B), 3.15 (dd, J = 14 and 5 Hz, 1H, CH_A H_B), 3.28 (dd, J = 9 and 5 Hz, 1H, α-H), 3.45 (dd, J = 11 and 8 Hz, 1H, C H_A H_B OH), 3.59 (dd, J = 11 and 4 Hz, 1H, CH_A H_B OH), 3.70 (s, 3H, OCH₃) 3.75 (dd, J = 9 and 4 Hz, 1H, CHCH₂OH), 6.56 (br, 1H, NH), 6.76 (dd, J = 9 and 2 Hz, 1H, Ar H), 6.95 (m, 2H, Ar Hs), 6.97 (s, 1H, Ar H), 7.03-7.11 (m, 4H, Ar Hs), 7.29 (d, J = 9 Hz, 1H, Ar H), 7.33 (br, 1H, NH), 9.97 (br, 1H, NH). ¹³C NMR (100 MHz, acetone-d₆): δ 30.1, 54.9, 60.1, 63.6, 67.2, 100.3, 110.8, 111.7, 111.9, 124.3, 126.8, 127.3, 127.9, 128.0, 132.0, 141.1, 153.8, 176.8. MS: m/z (+ESI) calcd for C₂₀H₂₄N₃O₃⁺ 354.1818 found 354.1914 [MH⁺].

(S)-3-(4-Methoxy-1*H*-indol-3-yl)-2-((*R*)-2-hydroxy-1-phenylethylamino)propanamide ((S,R)-6h)

The α -aminonitrile **4h** (213 mg, 0.6 mmol) in DMSO (3 mL), K₂CO₃ (113 mg, 0.8 mmol) and 30 % H₂O₂ (0.5 mL, 4.7 mmol followed by a further 0.4 mL, 4.7 mmol) were reacted to give (*R*,*R*)-**5h** as a yellow oil (first eluting diastereoisomer, 16 mg, 7 % yield) and (*S*,*R*)-**6h** as a yellow foam (second eluting diastereoisomer, 25 mg, 11 % yield).

(*R*,*R*)-**5h** TLC $R_f = 0.6$ (CHCl₃–MeOH, 6:1); IR (KBr): v = 3317, 2932, 1665, 1086, 755 cm⁻¹. ¹H NMR (400 MHz, acetone-d₆): δ 2.90 (br, 2H, NH), 3.16 (dd, J = 10 and 6 Hz, 1H, CH_A H_B), 3.46 (m, 4 H, CH_A H_B , α-H, CH_A H_B OH, CH_A H_B OH), 3.69 (dd, J = 8 and 4 Hz, 1H), 3.86 (s, 3H, OCH₃), 6.22 (br, 1H, NH), 6.49 (dd, J = 7 and 2 Hz, 1H, Ar H), 7.00–7.02 (m, 2H, Ar Hs), 7.06 (d, J = 2 Hz, 1H, Ar H), 7.11 (br, 1H, NH), 7.22 (dd, J = 8 and 4 Hz, 1H, Ar H), 7.27 (m, 4H, Ar Hs), 10.07 (br, 1H, NH). ¹³C NMR (100 MHz, acetone-d₆): δ 29.9, 54.34, 61.0, 63.6, 66.4, 98.8, 104.9, 111.6, 117.7, 122.0, 122.5, 127.0, 127.9, 128.0, 138.4, 141.9, 154.7, 176.5. MS: m/z (+ESI) calcd for C₂₀H₂₄N₃O₃⁺ 354.1818, found 354.1598 [MH⁺].

(*S*,*R*)-**6h** TLC $R_f = 0.5$ (CHCl₃–MeOH, 6:1); IR (KBr): v = 3317, 2932, 1665, 1086, 755 cm⁻¹. ¹H NMR (400 MHz, acetone-d₆): δ 2.90 (br, 1H, NH), 3.02 (dd, J = 14 and 8 Hz, 1H, CH_A H_B), 3.32 (dd, J = 14 and 5 Hz, 1H, CH_A H_B), 3.37 (dd, J = 8 and 5 Hz, 1H, α-H), 3.45 (dd, J = 12 and 8 Hz, 1H, CH_A H_B OH), 3.59 (dd, J = 11 and 4 Hz, 1H, CH_A H_B OH), 3.70 (s, 3H, OCH₃), 3.71 (dd, J = 8 and 4 Hz, 1H, CHCH₂OH), 6.40 (dd, J = 6 and 2 Hz, 1H, Ar H), 6.51 (br, 1H, NH), 6.92–6.97 (m, 2H, Ar Hs), 6.99-7.02 (m, 4H, Ar Hs), 7.07-7.13 (m, 1 H, Ar H), 7.22 (br, 1H, NH), 10.10 (br, 1H, NH). ¹³C NMR (100 MHz, acetone-d₆): δ 31.4, 54.2, 61.2, 63.6, 67.2, 99.0, 104.8, 111.5, 117.7, 122.1, 122.6, 126.7, 127.2, 127.8, 138.6, 141.3, 154.6, 177.2. MS: m/z (+ESI) calcd for C₂₀H₂₄N₃O₃⁺ 354.1818, found 354.1441 [MH⁺].

2.4 General procedure for the preparation of (*S*)-2-amino-3-(1*H*-indol-3 yl) propanamide 7

(S)-2-Amino-3-(1H-indol-3-yl)propanamide (7a)

To a stirred solution of **6a** (101 mg, 0.3 mmol), 10 % Pd/C (50 mg, 50 % *w/w*) in MeOH (10 mL) and ammonium formate (98 mg, 1.56 mmol) were added under nitrogen. The resulting mixture was stirred at reflux for 4 h. The catalyst was removed by filtration through Celite and washed with MeOH (5 mL). The filtrate was dried and concentrated. Purification of the residual material by column chromatography (CH₂Cl₂–MeOH, 4:1) yielded the amino amide which was acidified with 1M HCl to give **7a**⁴ hydrochloric salt as a white solid (30 mg, 41 %): m.p. 256–257 °C (Lit⁴ m.p. 254-255 °C); TLC $R_{\rm f}$ = 0.2 (CHCl₃–MeOH, 4:1). IR (KBr): *v* = 3388, 3247, 2914, 1693, 1492, 751 cm⁻¹. ¹H NMR (400 MHz, D₂O): δ 3.23 (dd, *J* = 15 and 7 Hz, 1H, CH_{*A*}H_B), 3.30 (dd, *J* = 15 and 7 Hz, 1H, CH_{*A*}H_{*B*}), 4.20 (t, *J* = 7 Hz, 1H, α -H), 7.08 (t, *J* = 8 Hz, 1H, Ar H), 7.16 (t, *J* = 8 Hz, 1H, Ar H), 7.20 (s, 1H, C2H), 7.41 (d, *J* = 8 Hz, 1H, Ar H), 7.58 (d, *J* = 8 Hz, 1H, Ar H). ¹³C NMR (100 MHz, D₂O): δ 26.8, 53.2, 106.3, 112.0, 118.2, 119.5, 122.2, 125.4, 126.5, 136.2, 171.8. MS: *m/z* (+ESI) calcd for C₁₁H₁₄N₃O⁺ 204.1137, found 204.1016 [MH⁺].

(S)-2-Amino-3-(5-bromo-1H-indol-3-yl)propanamide (7b)

A solution of **13** (510 mg, 1.2 mmol) and iPr_3SiH (252 µL, 1.2 mmol) in trifluoroacetic acid (4 mL) was stirred at 60 °C for 42 h. The mixture was evaporated to dryness *in vacuo*, and then triturated with cold diethyl ether. The crude **7b** was used directly to the next acid hydrolysis step.

(S)-2-Amino-3-(5-chloro-1H-indol-3-yl)propanamide (7c)

A solution of 14 (446 mg, 1.2 mmol) and iPr_3SiH (246 μ L, 1.2 mmol) in trifluoroacetic acid (4 mL) was stirred at 60 °C for 40 h. The reaction mixture was evaporated to dryness *in vacuo* and then triturated with cold diethyl ether. The crude 7c was used directly for the next acid hydrolysis step.

(S)-2-Amino-3-(6-fluoro-1*H*-indol-3-yl)-propanamide (7d)

The compound **6d** (207 mg, 0.6 mmol) was treated with 10 % Pd/C (62 mg, 35 % *w/w*) in MeOH (8 mL) and ammonium formate (190 mg, 3.0 mmol) to afford **7d** hydrochloric as a pale orange solid (102 mg, 65 %): m.p. 232–233 °C; TLC $R_f = 0.2$ (CHCl₃–MeOH, 4:1); IR (KBr): v = 3472, 3271, 2983, 1658, 1451 cm⁻¹. ¹H NMR (400 MHz, D₂O): δ 3.13 (dd, J = 14 and 7 Hz, 1H, CH_AH_B), 3.20 (dd, J = 14 and 7 Hz, 1H, CH_AH_B), 4.17 (t, J = 7 Hz, 1H, α -H), 6.81 (ddd, J = 11, 2 and 1 Hz, 1H, Ar H), 7.04 (dd, J = 10 and 2 Hz, 1H, Ar H), 7.12 (s, 1H, C2H), 7.43 (dd, J = 9 and 4 Hz, 1H, Ar H). ¹³C NMR (100 MHz, D₂O): δ 26.8, 53.1, 97.8 (d, J = 26 Hz), 106.3, 107.9 (d, J = 25 Hz), 119.0 (d, J = 10 Hz), 123.2, 125.5 (d, J = 3 Hz), 136.1 (d, J = 12 Hz), 159.6 (d, J = 233 Hz), 171.8. MS: *m/z* (+ESI) calcd for C₁₁H₁₂FN₃O⁺ 222.1043, found 222.0912 [MH⁺].

(S)-2-Amino-3-(7-ethyl-1H-indol-3-yl)propanamide (7e)

The compound **6e** (275 mg, 0.8 mmol) was treated with 10 % Pd/C (90 mg, 35 % *w/w*) in MeOH (10 mL) and ammonium formate (246 mg, 3.9 mmol) to give **7e** hydrochloric salt as a pale purple solid (102 mg, 65 %): m.p. 160-161 °C; $R_f = 0.2$ (CHCl₃–MeOH, 4:1); IR (KBr): v = 3411, 3154, 3045, 1687, 1413 cm⁻¹. ¹H NMR (400 MHz, D₂O): δ 1.13 (t, J = 8 Hz, 3H, CH₂CH₃), 2.69 (q, J = 8 Hz, 2H, CH₂CH₃), 3.16 (dd, J = 15 and 7 Hz, 1H, CH_AH_B), 3.22 (dd, J = 16 and 7 Hz, 1H, CH_AH_B), 4.18 (t, J = 7 Hz, 1H, α -H), 6.88 (d, J = 6 Hz, 1H, Ar H), 6.98 (t, J = 7 Hz, 1H, Ar H), 7.18 (s, 1H, C2H), 7.40 (d, J = 8 Hz, 1H, Ar.). ¹³C NMR (100 MHz, D₂O): δ 13.5, 23.6, 26.9, 53.2, 106.7, 116.0, 119.9, 120.5, 125.0, 126.5, 128.2, 134.9, 171.8. MS: *m/z* (+ESI) calcd for C₁₃H₁₈N₃O⁺ 232.1450, found 232.1390 [MH⁺].

(S)-2-Amino-3-(5-methyl-1H-indol-3-yl)propanamide (7f)

The compound **6f** (94 mg, 0.3 mmol) was treated with10 % Pd/C (32 mg, 35 % *w/w*) in MeOH (6 mL), and ammonium formate (88 mg, 1.4 mmol) to yield **7f** hydrochloric salt as a colourless solid (26 mg, 37 %): m.p. 82–84 °C; TLC R_f = 0.2 (CHCl₃–MeOH, 4:1); IR (KBr): *v* = 3402, 2916, 1668, 1431 cm⁻¹. ¹H NMR (400 MHz, D₂O): δ 2.33 (s, 3H, CH₃), 3.05 (dd, *J* = 15 and 7 Hz, 1H, CH₄H_B), 3.12 (dd, *J* = 16 and 7 Hz, 1H, CH_AH_B), 3.84 (t, *J* = 6 Hz, 1H, α -H), 7.00 (dd, *J* = 8 and 1 Hz, 1H, Ar H), 7.12 (s, 1H, C-2H), 7.30 (d, *J* = 8 Hz, 1H, Ar H), 7.38 (s, 1H, Ar H). ¹³C NMR (100 MHz, D₂O): δ 20.4, 28.6, 54.1, 107.5, 111.7, 117.7, 123.5, 125.0, 127.0, 129.0, 134.5, 176.4. MS: *m/z* (+ESI) calcd for C₁₂H₁₆N₃O⁺ 218.1293, found 218.1220 [MH⁺].

(S)-2-Amino-3-(5-methoxy-1H-indol-3-yl)propanamide (7g)

The compound **6g** (80 mg, 0.2 mmol) was treated with 10 % Pd/C (30 mg, 35 % *w/w*) in MeOH (8 mL), and ammonium formate (71 mg, 1.1 mmol) to give **7g** hydrochloric salt as a pale purple solid (38 mg, 64 %): m.p. 247–249 °C; TLC R_f = 0.2 (CHCl₃–MeOH, 4:1). IR (KBr): v = 3354, 3167, 2954, 1687, 1462 cm⁻¹. ¹H NMR (400 MHz, D₂O): δ 3.17 (dd, J = 15 and 8 Hz, 1H, CH_AH_B), 3.23 (dd, J = 15 and 7 Hz, 1H, CH_AH_B), 3.75 (s, 3H, OCH₃), 4.18 (t, J = 7 Hz, 1H, α -H), 6.78 (dd, J = 8 and 2 Hz, 1H, C6H), 7.05 (d, J = 2 Hz, 1H, C4H), 7.17 (s, 1H, C2H), 7.29 (d, J = 8 Hz, 1H, C7H). ¹³C NMR (100 MHz, D₂O): δ 26.8, 53.1, 56.0, 100.6, 106.0, 111.7, 112.8, 126.2, 126.9, 131.6, 152.9, 171.9. MS: m/z (+ESI) calcd for C₁₂H₁₆N₃O₂⁺ 234.1243 found 234.1187 [MH⁺].

(S)-2-Amino-3-(4-methoxy-1H-indol-3-yl)propanamide (7h)

Synthesis was carried out according to the procedure described under section 2.4 using **6h** (55 mg, 0.2 mmol), 10 % Pd/C (20 mg, 35 % w/w) in MeOH (8 mL), and ammonium formate (49 mg, 0.8 mmol) to give **7h** hydrochloric salt as a pale yellow solid. The crude **7h** was used directly for the next acid hydrolysis step.

(28 mg, 68 %): m.p. 231–233 °C; TLC R_f = 0.2 (CHCl₃–MeOH, 4:1). IR (KBr): v = 3354, 3168, 2955, 1687, 1463 cm⁻¹. ¹H NMR (400 MHz, D₂O): δ 3.22 (dd, J = 15 and 7 Hz, 1H, CH_AH_B), 3.35 (dd, J = 15 and 7 Hz, 1H, CH_AH_B), 3.84 (s, 3H, OCH₃), 4.24 (t, J = 7 Hz, 1H, α -H), 6.53 (dd, J = 8 and 1 Hz, 1H, Ar H), 7.02 (dd, J = 8, 1 Hz, 1H, Ar H), 7.04 (s, 1H, C2H), 7.06 (d, J = 8 Hz, 1H, Ar H). ¹³C NMR (100 MHz, D₂O): δ 28.2, 54.4, 55.1, 99.7, 105.4, 106.3, 116.2, 123.1, 124.2, 138.0, 153.5, 171.9. MS: m/z (+ESI) calcd for C₁₂H₁₆N₃O₂⁺ 234.1243 found 234.1096 [MH⁺]

2.5 General procedure for the preparation of (S)-tryptophans 8

(S)-Tryptophan•HCl (8a)

To a two-neck round bottom flask containing the α -aminoamide **7a** (86 mg, 0.4 mmol) was added a solution of 1 M aq HCl (6 mL). The reaction mixture was heated under reflux for 5 h and then cooled to room temperature. The residual was lyophilized to give **8a**⁵ as a white solid (100 mg, 83 % yield): m.p. 246–247 °C; IR (KBr): ν = 3386, 2941, 1735 cm⁻¹. ¹H NMR (400 MHz, D₂O): δ 3.23 (dd, J = 16, 7 Hz, 1H, CH_AH_B), 3.37 (dd, J = 15 and 6 Hz, 1H, CH_AH_B), 4.23 (dd, J = 8 and 6 Hz, 1H, α -H), 7.07 (td, J = 8 and 1 Hz, 1H, Ar H), 7.17 (td, J = 8 and 1 Hz, 1H, Ar H), 7.20 (s, 1H, C-2H), 7.42 (d, J = 8 Hz, 1H, Ar H), 7.55 (d, J = 8 Hz, 1H, Ar H). ¹³C NMR (100 MHz, D₂O): δ 25.7, 53.2, 106.2, 112.0, 118.2, 119.5, 122.1, 125.3, 126.4, 136.2, 171.8. MS: m/z (+ESI) calcd for C₁₁H₁₃N₂O₂⁺ 205.0977, found 205.0953 [MH⁺].

(S)-5-Bromotryptophan•HCl (8b)

To a two-neck round bottom flask containing α -aminoamide **7b** (90 mg, 0.2 mmol) was added a solution of 1 M aq HCl (5 mL). The reaction mixture was heated under reflux for 18 h, cooled to room temperature and lyophilized to give **8b**⁶ as a yellow solid (78 mg, 99 % yield): m.p. 220–221 °C; ¹H NMR (400 MHz, D₂O): δ 3.20 (dd, J = 15 and 7 Hz, 1H, CH_AH_B), 3.28 (dd, J = 15 and 5 Hz, 1H, CH_AH_B), 4.18 (dd, J = 7 and 5 Hz, 1H, α -H), 7.16 (dd, J = 8 and 2 Hz, 1H, Ar H), 7.17 (s, 1H, C-2H), 7.25 (d, J = 8 Hz, 1H, Ar H), 7.63 (d, J = 2 Hz, 1H, Ar H). ¹³C NMR (100 MHz, D₂O): δ 25.6, 53.3, 106.0, 112.0, 113.5, 120.5, 124.6, 126.5, 128.2, 134.2, 172.0. MS: m/z (+ESI) calcd for C₁₁H₁₂BrN₂O₂⁺ 283.0082, found 283.0150 [MH⁺].

(S)-5-Chlorotryptophan•HCl (8c)

To a two-neck round bottom flask containing α -aminoamide 7c (62 mg, 0.3 mmol) was added a solution of 1 M aq HCl (5 mL). The reaction mixture was heated under reflux for 18 h, cooled to room temperature and lyophilized to give 8c⁶ as a yellow solid (59 mg, 95 % yield): m.p. 230–233 °C; IR (KBr): v = 3456, 3138, 3037, 1730, 1407 cm⁻¹. ¹H NMR (400 MHz, D₂O): δ 3.16 (dd, J = 15 and 7

Hz, 1H, CH_AH_B), 3.23 (dd, J = 15 and 5 Hz, 1H, CH_AH_B), 4.16 (dd, J = 7 and 5 Hz, 1H, α-H), 7.00 (dd, J = 8 and 2 Hz, 1H, Ar H), 7.16 (s, 1H, C-2H), 7.25 (d, J = 8 Hz, 1H, Ar H), 7.41 (d, J = 2 Hz, 1H, Ar H). ¹³C NMR (100 MHz, D₂O): δ 25.6, 53.2, 106.0, 113.0, 117.3, 122.0, 124.4, 126.6, 127.5, 134.6, 171.9 ppm. MS: m/z (+ESI) calcd for C₁₁H₁₂ClN₂O₂⁺ 239.0587, found 239.0587 [MH⁺].

(S)-6-Fluorotryptophan•HCl (8d)

To a two-neck round bottom flask containing α-aminoamide **7d** (102 mg, 0.4 mmol) was added 1 M aq HCl (6 mL). The reaction mixture was heated under reflux for 5 h, cooled to room temperature and lyophilized to give **8d**⁶ as a white solid (92 mg, 90 % yield): m.p. 218–220 °C; IR (KBr): v = 3458, 3015, 1732, 1412 cm⁻¹. ¹H NMR (400 MHz, D₂O): δ 3.26 (dd, J = 15 and 7 Hz, 1H, CH_AH_B), 3.33 (dd, J = 15 and 5 Hz, 1H, CH_AH_B), 4.22 (dd, J = 7 and 5 Hz, 1H, α-H), 6.84 (ddd, J = 10, 9 and 2 Hz, 1H, Ar H), 7.10 (dd, J = 10 and 2 Hz, 1H, Ar H), 7.15 (s, 1H, C-2H), 7.45 (dd, J = 9 and 5 Hz, 1H, Ar H). ¹³C NMR (100 MHz, D₂O): δ 25.7, 53.2, 97.8 (d, J = 26 Hz), 106.4, 108.0 (d, J = 25 Hz), 119.0 (d, J = 10 Hz), 123.1, 125.5 (d, J = 3 Hz), 136.2 (d, J = 13 Hz), 159.6 (d, J = 234 Hz), 171.9 ppm. MS: m/z (+ESI) calcd for C₁₁H₁₂FN₂O₂⁺ 223.0883, found 223.0752 [MH⁺].

(S)-7-Ethyltryptophan•HCl (8e)

To a two-neck round bottom flask containing α-aminoamide **7e** (151 mg, 0.6 mmol) was added 1 M aq HCl (8 mL). The reaction mixture was heated under reflux for 5 h, cooled to room temperature and lyophilized to give **8e** as a white solid (151 mg, 99 % yield): m.p. 216–218 °C; IR (KBr): v = 3393, 3137, 3041, 1728, 1407 cm⁻¹. ¹H NMR (400 MHz, D₂O): δ 1.14 (t, J = 8 Hz, 3H, CH₂CH₃), 2.71 (q, J = 8 Hz, 2H, CH₂CH₃), 3.22 (dd, J = 15 and 7 Hz, 1H, CH_AH_B), 3.31 (dd, J = 15 and 5 Hz, 1H, CH_AH_B), 4.20 (dd, J = 7 and 5 Hz, 1H, α-H), 6.93 (t, J = 8 Hz, 1H, Ar H), 6.98 (t, J = 8 Hz, 1H, Ar H), 7.17 (s, 1H, C-2H), 7.36 (d, J = 8 Hz, 1H, Ar H). ¹³C NMR (100 MHz, D₂O): δ 13.4, 23.7, 25.8, 53.3, 106.7, 115.9, 119.9, 120.6, 125.0, 126.4, 128.3, 134.9, 171.9. MS: *m/z* (+ESI) calcd for C₁₃H₁₇N₂O₂⁺ 233.1290, found 233.1174 [MH⁺].

(S)-5-Methyltryptophan•HCl (8f)

To a two-neck round bottom flask containing α-aminoamide **7f** (28 mg, 0.1 mmol) was added 1 M aq HCl (5 mL). The reaction mixture was heated under reflux for 16 h, cooled to room temperature and lyophilized to give **8f** as a white solid (27 mg, 96 % yield): m.p. 112–114 °C; IR (KBr): v = 3406, 2918, 1736, 1485 cm⁻¹. ¹H NMR (400 MHz, D₂O): δ 2.32 (s, 3H, CH₃), 3.25 (dd, J = 15 and 7 Hz, 1H, CH_AH_B), 3.35 (dd, J = 15 and 5 Hz, 1H, CH_AH_B), 4.21 (dd, J = 7 and 5 Hz, 1H, α-H), 7.00 (dd, J = 8 and 1 Hz, 1H, Ar H), 7.16 (s, 1H, Ar H), 7.30 (d, J = 8 Hz, 1H, Ar H), 7.36 (s, 1H, Ar H). ¹³C NMR (100 MHz, D₂O): δ 20.4, 25.8, 53.3, 105.7, 111.8, 117.6, 123.7, 125.5, 126.7, 129.2, 134.6, 172.0 ppm. MS: m/z (+ESI) calcd for C₁₂H₁₅N₂O₂⁺ 219.1134, found 219.1036 [MH⁺].

(S)-5-Methoxytryptophan•HCl (8g)

A mixture of α-aminoamide **7g** (38 mg, 0.1 mmol) and 1 M aq HCl (4 mL) was heated under reflux for 5 h, cooled to room temperature and lyophilized to give **8g**⁶ as a white solid (38 mg, 99 % yield): m.p. 224–225 °C; IR (KBr): v = 3358, 2909, 1728, 1478, 1214 cm⁻¹. ¹H NMR (400 MHz, D₂O): δ 3.22 (dd, J = 15 and 7 Hz, 1H, CH_AH_B), 3.30 (dd, J = 15 and 5 Hz, 1H, CH_AH_B), 3.74 (s, 3H, OCH₃), 4.21 (dd, J = 7 and 5 Hz, 1H, α-H), 6.78 (dd, J = 8 and 2 Hz, 1H, Ar H), 7.02 (d, J = 2 Hz, 1H, Ar H), 7.15 (s, 1H, C-2H), 7.28 (d, J = 8 Hz, Ar H). ¹³C NMR (100 MHz, D₂O): δ 25.7, 53.2, 56.0, 100.4, 106.0, 111.8, 112.8, 126.1, 126.8, 131.7, 152.9, 172.0. MS: m/z (+ESI) calcd for C₁₂H₁₅N₂O₃⁺ 235.1083, found 235.1068 [MH⁺]

(S)-4-Methoxytryptophan•HCl (8h)

A mixture of α-aminoamide **7h** (28 mg, 0.1 mmol) and 1 M aq HCl (4 mL) was heated under reflux for 5 h, cooled to room temperature and lyophilized to give **8h** as a white solid (36 mg, 99 % yield): m.p. 220–222 °C; IR (KBr): v = 3358, 2906, 1728, 1480, 1215 cm⁻¹. ¹H NMR (400 MHz, D₂O): δ 3.24 (dd, J = 15 and 7 Hz, 1H, CH_AH_B), 3.37 (dd, J = 15 and 7 Hz, 1H, CH_AH_B), 3.86 (s, 3H, OCH₃), 4.28 (t, J = 7 Hz, 1H, α-H), 6.55 (dd, J = 8 and 1 Hz, 1H, Ar H), 7.04 (dd, J = 8 and 1 Hz, 1H, Ar H), 7.06 (s, 1H, C2H), 7.08 (d, J = 8 Hz, 1H, Ar H). ¹³C NMR (100 MHz, D₂O): δ 28.2, 54.4, 55.1, 99.7, 105.4, 106.3, 116.2, 123.1, 124.2, 138.0, 153.6, 171.8 ppm. MS: m/z (+ESI) calcd for C₁₂H₁₅N₂O₃⁺ 235.1083, found 235.1068 [MH⁺].

2.6 General procedure for the preparation of (*S*)-*N*-(fluoren-9-ylmethoxycarbonyl)tryptophans **9**

(S)-N-(Fluoren-9-ylmethoxycarbonyl)-tryptophan (9a)

Tryptophan hydrochloric salt 8a (100 mg, 0.42 mmol) was added to a 10 mL aqueous solution of sodium carbonate (89 mg, 0.84 mmol) followed by 9-fluorenylmethyl succinimidyl carbonate (141 mg, 0.42 mmol) in THF (3 mL). The mixture was stirred for 2 h at room temperature. THF was removed under vacuo and the crude mixture was poured into water (15 mL) and extracted with Et₂O (2 x 15 mL). The pH of the aqueous layer was adjusted to 2 using 3 M aq HCl and was extracted with CH_2Cl_2 (2 x 20 mL). The organic extracts were combined and washed with brine, dried over MgSO₄ and concentrated *in vacuo* to give **9a**⁷ as a pale yellow solid (114 mg, 44 % yield): m.p. 182–185 °C (Lit.⁶ m.p. 170–172 °C); $[\alpha]_{D}^{24} = -29.0 \ (c = 1, \text{ MeOH}) \ (\text{Lit.}^{8} \ [\alpha]_{D}^{25} = -29.5 \ (c = 1, \text{ DMF})); \ \text{IR} \ (\text{KBr}):$ $v = 3416, 3057, 2950, 1710, 743 \text{ cm}^{-1}$. ¹H NMR (400 MHz, acetone-d₆): $\delta 3.31$ (dd, J = 15 and 8 Hz, 1H, CH_AH_B), 3.46 (dd, J = 15 and 5 Hz, 1H, CH_AH_B), 4.20 (t, J = 8 Hz, 1H, Fmoc CH), 4.31 (m, 2H, Fmoc CH₂), 4.69 (m, 1H, α -H), 6.68 (d, J = 8 Hz, 1H, NH), 7.07 (t, J = 7 Hz, 1H, Ar H), 7.14 (t, J = 7 Hz, 1H, Ar H), 7.28 (s, 1H, C-2H), 7.30 (m, 2H, Ar Hs), 7.41 (m, 3H, Ar H), 7.69 (m, 3H, Ar Hs), 7.84 (d, J = 7 Hz, 2H, Ar Hs), 10.10 (br, 1H, NH). ¹³C NMR (100 MHz, acetone-d₆): δ 27.5, 47.1, 54.8, 66.4, 110.3, 111.4, 118.4, 118.9, 119.9, 121.4, 123.6, 125.3, 125.3, 127.1, 127.6, 127.8, 136.8, 141.2, 144.1, 144.2, 156.1, 173.0 ppm. MS: m/z (+ESI) calcd for C₂₆H₂₃N₂O₄⁺ 427.1658, found 427.1743 [MH⁺].

Compound **8b** (66 mg, 0.21 mmol), Na₂CO₃ (65 mg, 0.62 mmol) and 9-fluorenylmethyl succinimidyl carbonate (71 mg, 0.21 mmol) were reacted to give **9b** as a white solid (23 mg, 20 % yield): m.p. 130–132 °C; $[\alpha]^{24}_{D} = -23.0$ (c = 1, MeOH); IR (KBr): v = 3411, 3060, 2950, 1709, 737 cm⁻¹. ¹H NMR (400 MHz, acetone-d₆): δ 3.25 (dd, J = 16 and 8 Hz, 1H, CH_AH_B), 3.41 (dd, J = 16 and 5 Hz, 1H, CH_AH_B), 4.20 (t, J = 8 Hz, 1H, Fmoc CH), 4.30 (m, 2H, Fmoc CH₂), 4.60 (m, 1H, α -H), 6.70 (d, J = 8 Hz, 1H, NH), 7.23 (dd, J = 8 and 2 Hz, 1H, Ar H), 7.30 (m, 3H, Ar Hs), 7.40 (m, 3H, Ar Hs), 7.66 (dd, J = 8 and 2 Hz, 2H, Ar Hs), 7.86 (m, 3H, Ar Hs), 10.34 (br, 1H, NH). ¹³C NMR (100 MHz, acetone-d₆): δ 27.1, 47.1, 54.7, 66.3, 110.3, 111.8, 113.2, 119.9, 120.9, 123.9, 125.1, 125.3, 125.3, 127.1, 127.6, 129.7, 135.2, 141.2, 141.2, 144.1, 144.2, 155.9, 172.6. MS: m/z (+ESI) calcd for C₂₆H₂₂BrN₂O₄⁺ 505.0763, found 505.0978 [MH⁺].

(S)-N-(Fluoren-9-ylmethoxycarbonyl)-5-chloro-tryptophan (9c)

Compound **8c** (59 mg, 0.25 mmol), Na₂CO₃ (79 mg, 0.75 mmol) and 9-fluorenylmethyl succinimidyl carbonate (84 mg, 0.25 mmol) were reacted to give **9c** as a white solid (23 mg, 20 % yield): m.p. 98–99°C; $[\alpha]^{24}_{D} = -16.0$ (c = 1, MeOH); IR (KBr): v = 3414, 3058, 2953, 1710, 748 cm⁻¹. ¹H NMR (400 MHz, acetone-d₆): δ 3.26 (dd, J = 15 and 8 Hz, 1H, CH_AH_B), 3.41 (m, 1H, CH_AH_B), 4.20 (t, J = 8 Hz, 1H, Fmoc CH), 4.30 (m, 2H, Fmoc CH₂), 4.61 (m, 1H, α -H), 6.71 (d, J = 8 Hz, 1H, NH), 7.11 (dd, J = 8 and 2 Hz, 1H, Ar H), 7.27–7.42 (m, 6H, Ar Hs), 7.66 (dd, J = 8 and 4 Hz, 2H, Ar Hs), 7.70 (m, 1H, Ar H), 7.85 (d, J = 8 Hz, 2H, Ar Hs), 10.31 (br, 1H, NH). ¹³C NMR (100 MHz, acetone-d₆): δ 27.2, 47.1, 54.7, 66.3, 100.3, 112.7, 117.8, 119.9, 119.9, 121.4, 124.2, 125.2, 125.3, 127.1, 127.6, 129.0, 134.9, 141.2, 141.2, 144.1, 156.0, 172.7 MS: m/z (+ESI) calcd for C₂₆H₂₂ClN₂O₄⁺ 461.1268, found 461.1317 [MH⁺].

(S)-N-(Fluoren-9-ylmethoxycarbonyl)-6-fluoro-tryptophan (9d)

Compound **8d** (90 mg, 0.35 mmol), sodium carbonate (74 mg, 0.70 mmol) and 9-fluorenylmethyl succinimidyl carbonate (117 mg, 0.35 mmol) were reacted to afford **9d** as a white solid (77 mg, 50 % yield): m.p. 102–104 °C; $[\alpha]^{24}_{D} = -19.0$ (c = 1, MeOH); IR (KBr): v = 3419, 3064, 2952, 1710, 745 cm⁻¹. ¹H NMR (400 MHz, acetone-d₆): δ 3.26 (dd, J = 14 and 8 Hz, 1H, CH_AH_B), 3.41 (dd, J = 14 and 5 Hz, 1H, CH_AH_B), 4.21 (t, J = 8 Hz, 1H, Fmoc CH), 4.31 (m, 2H, Fmoc CH₂), 4.64 (m, 1H, α -H),

6.68 (d, J = 8 Hz, NH), 6.87 (dt, J = 10 and 2 Hz, 1H, Ar H), 7.15 (dd, J = 10 and 2 Hz, 1H, Ar H), 7.27 (s, 1H, C-2H), 7.30 (m, 2H, Ar Hs), 7.41 (t, J = 7 Hz, 2H, Ar Hs), 7.66 (m, 3H, Ar Hs), 7.85 (d, J = 8 Hz, 2H, Ar Hs), 10.19 (br, 1H, NH). ¹³C NMR (100 MHz, acetone-d₆): δ 27.4, 47.1, 54.7, 66.3, 97.3 (d, J = 26 Hz), 107.2 (d, J = 25 Hz), 110.6, 119.9, 119.4 (d, J = 10 Hz), 124.2 (d, J = 3 Hz), 124.6, 125.3, 125.3, 127.0, 127.6, 136.6 (d, J = 13 Hz), 141.2, 144.1, 144.2, 156.0, 159.7 (d, J = 233 Hz), 172.8. MS: m/z (+ESI) calcd for C₂₆H₂₂FN₂O₄⁺ 445.1564, found 445.1790 [MH⁺].

(S)-N-(Fluoren-9-ylmethoxycarbonyl)-7-ethyl-tryptophan (9e)

Compound **8e** (102 mg, 0.38 mmol), Na₂CO₃ (80 mg, 0.76 mmol) and 9-fluorenylmethyl succinimidyl carbonate (128 mg, 0.38 mmol) were used to yield **9e** as a white solid (83 mg, 50 % yield): m.p. 146–148 °C; $[\alpha]^{24}_{D} = -26.0$ (c = 1, MeOH); IR (KBr): v = 3422, 3057, 2964, 1711, 746 cm⁻¹. ¹H NMR (400 MHz, acetone-d₆): δ 1.31 (t, J = 8 Hz, 3H, CH₂CH₃), 2.91 (q, J = 8 Hz, 2H, CH₂CH₃), 3.27 (dd, J = 15 and 8 Hz, 1H, CH_AH_B), 3.43 (dd, J = 15 and 5 Hz, 1H, CH_AH_B), 4.20 (t, J = 7 Hz, 1H, Fmoc CH), 4.28 (m, 2H, Fmoc CH₂), 4.67 (m, 1H, α -H), 6.65 (d, J = 8 Hz, 1H, NH), 7.01 (m, 2H, Ar Hs), 7.27 (s, 1H, C-2H), 7.30 (m, 2H, Ar Hs), 7.40 (t, J = 7 Hz, 2H, Ar Hs), 7.54 (d, J = 7 Hz, 1H, Ar H), 7.66 (m, 2H, Ar Hs), 7.85 (d, J = 7 Hz, 2H, Ar Hs), 10.08 (br, 1H, NH). ¹³C NMR (100 MHz, acetone-d₆): δ 13.7, 23.8, 27.6, 47.1, 54.8, 66.3, 110.7, 116.2, 119.3, 119.9, 120.1, 123.2, 125.3, 125.3, 126.9, 127.1, 127.6, 135.4, 141.2, 144.1, 156.0, 173.0. MS: m/z (+ESI) calcd for C₂₈H₂₇N₂O₄⁺ 455.1971, found 455.2142 [MH⁺].

(S)-N-(Fluoren-9-ylmethoxycarbonyl)-5-methyl-tryptophan (9f)

Compound **8f** (48 mg, 0.19 mmol), Na₂CO₃ (40 mg, 0.38 mmol) and 9-fluorenylmethyl succinimidyl carbonate (64 mg, 0.19 mmol) were used to yield **9f** as a colourless film (55 mg, 66 % yield): m.p. 178 °C; $[\alpha]^{24}{}_{D} = -15$ (c = 1, MeOH); IR (KBr): v = 3424, 3038, 2920, 1708, 1448 cm⁻¹. ¹H NMR (400 MHz, acetone-d₆): δ 2.42 (s, 3H, CH₃), 3.25 (dd, J = 15 and 8 Hz, 1H, CH_AH_B), 3.42 (dd, J = 15 and 5 Hz, 1H, CH_AH_B), 4.20 (t, J = 7 Hz, 1H, Fmoc CH), 4.29 (m, 2H, Fmoc CH₂), 4.65 (m, 1H, α -H), 6.65 (d, J = 8 Hz, 1H, NH), 6.97 (dd, J = 8 and 1 Hz, 1H, Ar H), 7.23 (d, J = 2 Hz, 1H, Ar H), 7.28 (s, 1H, C-2H), 7.30 (m, 2H, Ar Hs), 7.40 (t, J = 7 Hz, 2H, Ar Hs), 7.48 (s, 1H, Ar H), 7.66 (d, J = 7 Hz, 2H, Ar Hs), 7.85 (d, J = 7 Hz, 2H, Ar Hs), 9.97 (br, 1H, NH). ¹³C NMR (100 MHz, acetone-d₆): δ 20.9, 27.5, 47.1, 54.8, 66.3, 109.8, 111.1, 118.0, 119.9, 123.0, 123.7, 125.3, 127.1, 127.6, 127.6, 128.0, 135.1, 141.2, 144.1, 156.0, 173.0. MS: m/z (+ESI) calcd for C₂₇H₂₅N₂O₄⁺ 441.1814, found 441.2083 [MH⁺].

(S)-N-(Fluoren-9-ylmethoxycarbonyl)-5-methoxy-tryptophan (9g)

Compound **8g** (300 mg, 1.28 mmol), Na₂CO₃ (271 mg, 2.56 mmol) and 9-fluorenylmethyl succinimidyl carbonate (431 mg, 1.28 mmol) were used to yield **9g**⁵ as a white powder (479 mg, 82 % yield): m.p. 198 °C; $[\alpha]^{24}{}_{\rm D} = -23$ (c = 1, MeOH) (Lit⁶ $[\alpha]^{24}{}_{\rm D} = -24.5$ (c = 1, MeOH)); IR (KBr): v = 3415, 2949, 1703, 1493, 1218 cm⁻¹. ¹H NMR (400 MHz, acetone-d₆): δ 3.25 (dd, J = 15 and 8 Hz, 1H, CH_AH_B), 3.39 (dd, J = 15 and 5 Hz, 1H, CH_AH_B), 3.82 (s, 3H, OCH₃), 4.20 (t, J = 7 Hz, 1H, Fmoc CH), 4.29 (m, 2H, Fmoc CH₂), 4.61 (m, 1H, α -H), 6.63 (d, J = 8 Hz, 1H, NH), 6.79 (dd, J = 8 and 1 Hz, 1H, Ar H), 7.21 (m, 1H, Ar H), 7.30 (m, 4H, Ar Hs), 7.40 (t, J = 7 Hz, 2H, Ar Hs), 7.66 (d, J = 7 Hz, 2H, Ar H), 7.85 (d, J = 7 Hz, 2H, Ar H), 9.96 (br, 1H, NH). ¹³C NMR (100 MHz, acetone-d₆): δ 27.5, 47.1, 54.7, 55.0, 66.3, 100.2, 110.0, 111.6, 111.9, 119.9, 124.1, 125.3, 125.3, 127.1, 127.6, 128.1, 131.7, 141.2, 144.1, 144.2, 154.0, 155.9, 172.8. MS: m/z (+ESI) calcd for C₂₇H₂₅N₂O₅⁺ 457.1763, found 457.1913 [MH⁺].

(S)-N-(Fluoren-9-ylmethoxycarbonyl)-4-methoxy-tryptophan (9h)

Compound **8h** (38 mg, 0.14 mmol), Na₂CO₃ (29 mg, 0.28 mmol) and 9-fluorenylmethyl succinimidyl carbonate (47 mg, 0.14 mmol) were used to afford **9h** as a white powder (39 mg, 62 % yield): m.p. 168 °C; $[\alpha]^{24}_{D} = -27$ (c = 1, MeOH); IR (KBr): v = 3415, 2949, 1703, 1494, 1218 cm⁻¹. ¹H NMR (400 MHz, acetone-d₆): δ 3.20 (dd, J = 15 and 9 Hz, 1H, CH_AH_B), 3.34 (dd, J = 15 and 5 Hz, 1H, CH_AH_B), 3.76 (s, 3H, OCH₃), 4.15 (t, J = 7 Hz, 1H, Fmoc CH), 4.24 (m, 2H, Fmoc CH₂), 4.57 (m, 1H, α -H), 6.57 (d, J = 9 Hz, 1H, NH), 6.73 (dd, J = 9 and 1 Hz, 1H, Ar H), 7.16 (m, 2H, Ar Hs), 7.24 (m, 3H, Ar Hs), 7.35 (t, J = 8 Hz, 2H, Ar Hs), 7.61 (d, J = 7 Hz, 2H, Ar Hs), 7.80 (d, J = 8 Hz, 2H, Ar Hs), 9.90 (br, 1H, NH). ¹³C NMR (100 MHz, acetone-d₆): δ 28.4, 48.0, 55.7, 55.9, 67.2, 101.1, 111.0, 112.5, 112.8, 112.84, 120.8, 125.0, 125.1, 126.1, 127.9, 127.93, 128.5, 129.1, 132.7, 142.0, 145.0, 145.05, 154.9, 156.9. MS: m/z (+ESI) calcd for C₂₇H₂₅N₂O₅⁺ 457.1763, found 457.1781 [MH⁺].

2.7 Standard protocol for the preparation of linear argyrin analogues **18** (by Fmoc/tBu solid-phase peptide synthesis)

2-Chlorotrityl chloride polystyrene resin (1.0 g, 1.2 mmol, theoretical loading 1.2 mmol g⁻¹) was swollen in CH_2Cl_2 (6 mL) for 1 h. A solution of Fmoc-sarcosine (373 mg, 1.2 mmol) and DIPEA (418 μ L, 2.4 mmol) in CH_2Cl_2 (2 mL) was added to the resin suspension. The reaction mixture was gently stirred at room temperature for 2 h. MeOH (500 μ L) was added and the suspension was stirred for a further 15 min. The derivatized resin was collected in a Buchner funnel, washed with DMF (10 mL), CH_2Cl_2 (15 mL) and hexane (5 mL), and dried *in vacuo* to give the resin-bound Fmoc-sarcosine (1.363 g, Fmoc substitution 0.84 mmol g⁻¹, 70 %).

The resin-bound Fmoc-sarcosine (1 eq.) was placed in a reaction column, swollen with DMF–CH₂Cl₂ (1 mL) for 12 h, and Fmoc-deprotection was carried out on a continuous flow of 20 % ν/ν piperidine in DMF (2.8 mL min⁻¹, 10 min) using NOVASYN[®] GEM manual peptide synthesiser. The reaction was monitored post-column at 344 nm. The resin was then washed with DMF (2.8 mL min⁻¹, 5 min), and the peptide sequence D-Ala-thiazole-Trp-Trp(R)-Gly-D-Ala-Ph(Se)-Sar (17) was assembled manually using NOVASYN[®] GEM manual peptide synthesiser.

Sequential acylation reactions were carried out at ambient temperature for 4 h using appropriate *N*-Fmoc-protected amino acids (4 eq.) [i.e. Fmoc-Ph(Se)-OH (**15**), Fmoc-D-Ala-OH, Fmoc-Gly-OH, Fmoc-Trp(R)-OH (**9a-h**), Fmoc-Trp-OH, Boc-D-Ala-thiazole-OH (**16**)] and carboxyl-activating reagent, PyOxim (4 eq.) or HATU (3.9 eq.) and DIPEA (8 eq.) in DMF (1.0–1.5 mL). Sequential Fmoc-deprotection was achieved using 20 % v/v piperidine in DMF (2.8 mL min⁻¹, 10 min).

After final acylation reaction, the peptidyl-resin was filtered, washed successively with DMF, CH₂Cl₂ and hexane, and dried *in vacuo*.

The resin product was suspended in a mixture of water (0.25 mL), iPr_3SiH (0.25 mL) and CH_2Cl_2 (5 mL), followed by the addition of TFA (5 mL). The reaction mixture was allowed to stand at ambient temperature for 1 h. The suspension was filtered, washed with CH_2Cl_2 (3 mL), and the filtrate was evaporated to dryness *in vacuo*.

The residual material was triturated with diethyl ether (2 mL) to afford the linear peptides **18a-h** as buff solids, which were dissolved in water (2–5 mL) and lyophilized overnight.

(S)-N-(9-Fluorenylmethoxycarbonyl)-l-β-phenylselenocysteine (15)

(S)-Phenylselenocysteine was obtained from N-Boc-L-serine using established protocols.⁹

9-Fluorenylmethyl succinimidyl carbonate (2.77 g, 8.2 mmol) was dissolved in THF (20 mL) and added to a stirred solution of (*S*)-phenyselenocysteine (2.87 g, 8 mmol) and NaHCO₃ (2.3 g, 28 mmol) in water (25 mL) over 10 min. The reaction mixture was stirred overnight at room temperature. The solvent was removed *in vacuo*. The residue was dissolved in H₂O (40 mL), acidified with saturated aqueous KHSO₄ (30 mL), extracted with ethyl acetate (3 × 40 mL), washed with brine, dried over MgSO₄ and concentrated *in vacuo*. The oily residue was purified by column chromatography (CHCl₃–MeOH, 19:1) to afford Fmoc-phenylselenocysteine **15** as a white solid (3.49 g, 93 % yield); m.p. 98–99°C; TLC $R_f = 0.5$ (CHCl₃–MeOH, 9:1 + 1 % AcOH). IR (KBr): v = 3358, 3063, 1727, 1711, 1682, 1522, 1449, 1248 and 758 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.37 (dd, J = 4 and 16 Hz, 1H, CH_AH_B), 3.45 (dd, J = 4 and 16 Hz, 1H, CH_AH_B), 4.20 (t, J = 8 Hz, 1H, OCH₂CH), 4.36 (m, 2H, OCH₂CH), 4.77 (m, 1H, α-H), 5.58 (d, J = 8 Hz, 1H, NH), 7.26 (m, 4H, Ar Hs), 7.34 (m, 2H, Ar Hs), 7.43 (m, 2H, Ar Hs), 7.59 (m, 4H, Ar Hs), 7.79 (d, J = 8 Hz, 2H, Ar Hs). ¹³C NMR (100MHz, CDCl₃): δ 29.7, 47.1, 53.9, 67.4, 120.0, 125.1, 127.1, 127.8, 127.9, 128.6, 129.3, 133.8, 141.3, 143.7, 143.7, 155.8, 174.9. MS: *m/z* (+ESI) calcd for C₂₄H₂₂NO₄Se⁺ 468.0636 found 468.0135 [MH⁺].

(R)-2-(1-tert-Butoxycarbonylaminoethyl)thiazole-4-carboxylic acid (16)

Boc-D-Ala-thiazole-OEt (1.24 g, 4.1 mmol), obtained from *N*-Boc-D-alanine using established protocols,¹⁰ was dissolved in solution of THF–MeOH–H₂O, 9:6:6 v/v. Lithium hydroxide (118 mg, 4.9 mmol) in water (2 mL) was added at 0 °C. The mixture was warmed to room temperature and stirred overnight. The solvent was removed *in vacuo*. The residue was dissolved in H₂O (40 mL) and extracted with EtOAc (2 x 20 mL). The aqueous layer was acidified with saturated aqueous KHSO₄ to pH 2 and extracted with CH₂Cl₂ (3 x 40 mL). The organic layers were washed with brine, dried and concentrated. The residue was recrystallized with CH₂Cl₂–Hexane to give the carboxylic acid **16** as a pale yellow solid (986 mg, 88 % yield), m.p. 58–61 °C; $[\alpha]^{26}_{D}$ = +31 (*c* =1.0, CHCl₃). IR (Solid): *v* = 3362, 3105, 2979, 1692, 1517, 1366, 1242, 1058 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.47 (s, 9H, C(CH₃)₃), 1.66 (d, *J* = 6 Hz, 3H, CHCH₃), 5.10 (br, s, 1H, α-CH), 5.30 (br, s, 1H, α-NH), 8.23 (s, 1H, C5H). ¹³C NMR (100 MHz, CDCl₃): 21.7, 28.4, 60.5, 80.2, 128.7, 146.6, 155.0, 164.1, 171.4. MS: *m/z* (+ESI) calcd for C₁₁H₁₇N₂O₄SNa⁺ 295.0562, found 295.0352 [MNa⁺].

Cyclo[D-Ala-thiazole-(5-Br-Trp)-Trp-Gly-D-Ala-Ph(Se)-Sar] (19b)

Diisopropylethylamine (92 µL, 0.53 mmol), PyBOP (88 mg, 0.17 mmol) and HOBt (22 mg, 0.1 mmol) were added successively to a solution of the linear peptide **18b** (62 mg, 0.06 mmol) in CH₂Cl₂ (120 mL) at room temperature. The reaction mixture was stirred for 3 days, concentrated and purified by preparative RP-HPLC (Onyx Monolithic C₁₈, 100 x 10 mm) to afford the cyclic peptide **19b** as a white powder (10 mg, 17 % yield): RP-HPLC 10–60 % B in 12 min, t_R 9.9 min. ¹H NMR (400 MHz, DMSO-d₆): δ 0.65 (d, J = 7 Hz, 3H, 5-CH₃), 1.56 (d, J = 7 Hz, 3H, 1-CH₃ (i.e. dipeptide residue 1 CH₃)), 3.13 (dd, J = 14 and 8 Hz, 1H, 3-CH_AH_B), 3.22 (s, 3H. 7-CH₃), 3.24 (m, 1H, 3-CH_AH_B), 3.31 (m, 1H, 4-CH_AH_B), 3.34 (m, 1H, 6-CH_AH_B), 3.45 (m, 1H, 6-CH_AH_B), 3.49 (m, 1H, 7-CH_AH_B), 3.50 (m, 1H, 2-CH_AH_B), 3.67 (m, 1H, 2- CH_AH_B), 3.74 (m, 1H, 4-CH_AH_B), 4.13 (q, J = 7 Hz, 1H, 5- α -CH), 4.18 (t, J = 8 Hz, 1H, 3- α -CH), 4.35 (d, J = 17 Hz, 1H, 7-CH_AH_B), 4.60 (td, J = 7 and 4 Hz, 1H, 6- α -CH), 4.78 (td, J = 12 and 4 Hz, 1H, 2- α -CH), 5.32 (m, 1H, 1- α -CH), 7.01-7.32 (m, 12H, Ar Hs), 7.43 (d, J = 3 Hz, 6-NH), 7.56 (m, 2H, Ar Hs), 7.58 (d, J = 7 Hz, 1H, 2-NH), 8.88 (t, J = 5 Hz, 1H, 4-NH), 10.81 (d, J = 2 Hz, indole-NH), 11.16 (d, J = 2 Hz, indole-NH) ppm. ES-MS *m/z* calcd for C₄₅H₄₈N₁₀O₇SSe⁺ 1031.1777, found 1033.1757 [MH⁺].

Cyclo[D-Ala-thiazole-Trp-(5-Cl-Trp)-Gly-D-Ala-Ph(Se)-Sar] (19c)

Diisopropylethylamine (87 µL, 0.50 mmol), PyBOP (86 mg, 0.17 mmol) and HOBt (22 mg, 0.17 mmol) were added successively to a solution of the linear peptide **18c** (56 mg, 0.05 mmol) in CH₂Cl₂ (120 mL) at room temperature. The reaction mixture was stirred for 3 days, concentrated and purified by preparative RP-HPLC (Onyx Monolithic C₁₈, 100 x 10 mm) to afford the cyclic peptide **19c** as a white powder (11 mg, 20 % yield): RP-HPLC 10–60 % B in 12 min, t_R 9.5 min. ¹H NMR (400 MHz, DMSO-d₆): δ 0.65 (d, J = 7 Hz, 3H, 5-CH₃), 1.56 (d, J = 7 Hz, 3H, 1-CH₃), 3.12 (dd, J = 14 and 8 Hz, 1H, 3-CH_AH_B), 3.22 (s, 3H. 7-CH₃), 3.24 (m, 1H, 3-CH_AH_B), 3.31 (m, 1H, 4-CH_AH_B), 3.34 (m, 1H, 6-CH_AH_B), 3.49 (m, 1H, 7-CH_AH_B), 3.50 (m, 1H, 2- CH_AH_B), 3.67 (m, 1H, 2- CH_AH_B), 3.74 (m, 1H, 4-CH_AH_B), 4.13 (q, J = 7 Hz, 1H, 5- α -CH), 4.18 (t, J = 8 Hz, 1H, 3- α -CH),

4.35 (d, J = 17 Hz, 1H, 7-CH_A H_B), 4.60 (td, J = 7 and 4 Hz, 1H, 6- α -CH), 4.78 (td, J = 12 and 4 Hz, 1H, 2- α -CH), 5.32 (m, 1H, 1- α -CH), 6.97–7.32 (m, 12H, Ar Hs), 7.43 (d, J = 3 Hz, 6-NH), 7.56 (m, 2H, Ar Hs), 7.58 (d, J = 7 Hz, 1H, 1-NH), 7.95 (s, 1H, 1-C⁵H), 8.07 (d, J = 9 Hz, 1H, 5-NH), 8.33 (s, 1H, 3-NH), 8.64 (d, J = 9 Hz, 1H, 2-NH), 8.88 (t, J = 5 Hz, 1H, 4-NH), 10.81 (d, J = 2 Hz, indole-NH). ES-MS m/z calcd for C₄₅H₄₈N₁₀O₇SSe⁺ 987.2282, found 987.2104 [MH⁺].

Cyclo[D-Ala-thiazole-Trp-(7-Et-Trp)-Gly-D-Ala-Ph(Se)-Sar] (19e)

Diisopropylethylamine (80 µL, 0.46 mmol), PyBOP (81 mg, 0.17 mmol) and HOBt (21 mg, 0.16 mmol) were added successively to a solution of the linear peptide **18e** (52 mg, 0.05 mmol) in CH₂Cl₂ (120 mL) at room temperature. The reaction mixture was stirred for 3 days, concentrated and purified by preparative RP-HPLC (Onyx Monolithic C₁₈, 100 x 10 mm) to afford the cyclic peptide **19e** as a white powder (14 mg, 28 % yield): RP-HPLC 10–60 % B in 12 min, t_R 9.9 min. ¹H NMR (400 MHz, DMSO-d₆): δ 0.65 (d, J = 7 Hz, 3H, 5-CH₃), 1.27 (t, J = 7 Hz, 3H, 3-CH₂CH₃), 1.56 (d, J = 7 Hz, 3H, 1-CH₃), 2.86 (q, J = 7 Hz, 2H, 3-CH₂CH₃), 3.12 (dd, J = 14 and 8 Hz, 1H, 3-CH_AH_B), 3.22 (s, 3H, 7-CH₃), 3.26 (m, 1H, 3-CH_AH_B), 3.31 (m, 1H, 4-CH_AH_B), 3.34 (m, 1H, 6-CH_AH_B), 3.47 (m, 1H, 6-CH_AH_B), 3.49 (m, 1H, 7-CH_AH_B), 3.50 (m, 1H, 2- CH_AH_B), 3.67 (m, 1H, 2- CH_AH_B), 3.74 (m, 1H, 4-CH_AH_B), 4.60 (td, J = 7 and 4 Hz, 1H, 6- α -CH), 4.78 (td, J = 12 and 4 Hz, 1H, 2- α -CH), 5.32 (m, 1H, 1- α -CH), 6.97–7.32 (m, 12H, Ar Hs), 7.44 (d, J = 3 Hz, 6-NH), 7.56 (m, 2H, Ar Hs), 7.58 (d, J = 7 Hz, 1H, 1-NH), 7.95 (s, 1H, 1-C⁵H), 8.11 (d, J = 9 Hz, 1H, 5-NH), 8.35 (s, 1H, 3-NH), 8.65 (d, J = 9 Hz, 1H, 2-NH), 8.92 (t, J = 5 Hz, 1H, 4-NH), 10.83 (d, J = 2 Hz, indole-NH). I0.95 (d, J = 2 Hz, indole-NH). ES-MS *m/z* calcd for C₄₇H₅₃N₁₀O₇SSe⁺ 981.2985, found 981.2607 [MH⁺].

Cyclo[D-Ala-thiazole-Trp-(5-Me-Trp)-Gly-D-Ala-Ph(Se)-Sar] (19f)

Diisopropylethylamine (89 µL, 0.51 mmol), PyBOP (90 mg, 0.17 mmol) and HOBt (22 mg, 0.17 mmol) were added successively to a solution of the linear peptide **18f** (57 mg, 0.06 mmol) and in CH₂Cl₂ (120 mL) at room temperature. The reaction mixture was stirred for 3 days, concentrated and purified by preparative RP-HPLC (Onyx Monolithic C₁₈, 100 x 10 mm) to afford the cyclic peptide **19f** as a white powder (15 mg, 27 % yield): RP-HPLC 10–60 % B in 12 min, t_R 9.4 min. ¹H NMR (400 MHz, DMSO-d₆): δ 0.65 (d, J = 7 Hz, 3H, 5-CH₃), 1.56 (d, J = 7 Hz, 3H, 1-CH₃), 2.41 (s, 3H, 3-CH₃), 3.11 (dd, J = 14 and 8 Hz, 1H, 3-CH_AH_B), 3.22 (s, 3H, 7-CH₃), 3.27 (m, 1H, 3-CH_AH_B), 3.31 (m, 1H, 4-CH_AH_B), 3.34 (m, 1H, 6-CH_AH_B), 3.45 (m, 1H, 6-CH_AH_B), 3.49 (m, 1H, 7-CH_AH_B), 3.67 (dd, J = 14 and 4 Hz, 1H, 2-CH_AH_B), 3.75 (dd, J = 17 and 4 Hz, 1H, 2-CH_AH_B), 3.76 (m, 1H, 4-CH_AH_B), 4.13 (q, J = 7 Hz, 1H, 5- α -CH), 4.20 (t, J = 8 Hz, 1H, 3- α -CH), 4.35 (d, J = 17 Hz, 1H, 7-CH_AH_B), 4.60 (td, J = 7 and 4 Hz, 1H, 6- α -CH), 4.78 (td, J = 12 and 4 Hz, 1H, 2- α -CH), 5.32 (m, 1H, 1- α -CH), 6.94–7.56 (m, 12H, Ar Hs), 7.44 (d, J = 3 Hz, 6-NH), 7.56 (m, 2H, Ar Hs), 7.85 (d, J = 7 Hz, 1H, 1-NH), 7.95 (s, 1H, 1-C⁵H), 8.09 (d, J = 9 Hz, 1H, 5-NH), 8.28 (s, 1H, 3-NH), 8.64 (d, J = 9 Hz, 1H, 2-NH), 8.85 (t, J = 5 Hz, 1H, 4-NH), 10.78 (d, J = 2 Hz, indole-NH), 10.81 (d, J = 2 Hz, indole-NH). ES-MS *m/z* calcd for C₄₆H₅₁N₁₀O₇Se⁺ 967.2828, found 967.2723 [MH⁺].

Cyclo[D-Ala-thiazole-Trp-(5-OMe-Trp)-Gly-D-Ala-Ph(Se)-Sar] (19g)

Diisopropylethylamine (186 µL, 1.0 mmol), PyBOP and (185 mg, 0.36 mmol) HOBt (48 mg, 0.36 mmol) were added successively to a solution of the linear peptide **18g** (119 mg, 0.12 mmol) and in CH₂Cl₂ (220 mL) at room temperature. The reaction mixture was stirred for 3 days, concentrated and purified by preparative RP-HPLC (Onyx Monolithic C₁₈, 100 x 10 mm) to afford the cyclic peptide **19g** as a white powder (12 mg, 11 % yield): RP-HPLC 10–60 % B in 12 min, t_R 8.5 min. ¹H NMR (400 MHz, DMSO-d₆): δ 0.65 (d, J = 7 Hz, 3H, 5-CH₃), 1.56 (d, J = 7 Hz, 3H, 1-CH₃), 3.12 (dd, J = 14 and 8 Hz, 1H, 3-CH_AH_B), 3.22 (s, 3H. 7-CH₃), 3.24 (m, 1H, 3-CH_AH_B), 3.31 (m, 1H, 4-CH_AH_B), 3.45 (m, 1H, 6-CH_AH_B), 3.49 (m, 1H, 7-CH_AH_B), 3.50 (m, 1H, 2-CH_AH_B), 3.67 (m, 1H, 2-CH_AH_B), 3.74 (m, 1H, 4-CH_AH_B), 3.80 (s, 3H, 3-OCH₃), 4.13 (q, J = 7 Hz, 1H, 5- α -

CH), 4.20 (t, J = 8 Hz, 1H, 3- α -CH), 4.37 (d, J = 17 Hz, 1H, 7-CH_A H_B), 4.60 (td, J = 7 and 4 Hz, 1H, 6- α -CH), 4.79 (td, J = 12 and 4 Hz, 1H, 2- α -CH), 5.32 (m, 1H, 1- α -CH), 6.75–7.28 (m, 12H, Ar Hs), 7.42 (d, J = 3 Hz, 6-NH), 7.56 (m, 2H, Ar Hs), 7.58 (d, J = 7 Hz, 1H, 1-NH), 7.95 (s, 1H, 1-C⁵H), 8.11 (d, J = 9 Hz, 1H, 5-NH), 8.36 (s, 1H, 3-NH), 8.65 (d, J = 9 Hz, 1H, 2-NH), 8.85 (t, J = 5 Hz, 1H, 4-NH), 10.79 (d, J = 2 Hz, indole-NH), 10.82 (d, J = 2 Hz, indole-NH). ES-MS *m*/*z* calcd for C₄₆H₅₁N₁₀O₈SSe⁺ 983.2777, found 983.2693 [MH⁺].

2.8 Preparation of argyrin analogues **20** (an oxidation–elimination reaction to reveal the dehydroalanine residue)

Cyclo[D-Ala-thiazole¹-Trp²-Trp³-Gly⁴-D-Ala⁵-Dha⁶-Sar⁷], Argyrin E (20a)

Sodium periodate (3.5 mg, 16 µmol) was added to a solution of cyclic peptide **19a** (4 mg, 4 µmol) in water (2 mL) and acetonitrile (2 mL) at room temperature. The solution was stirred for 2 h. The solvent was removed and the residue was partitioned between water (2 mL) and CH₂Cl₂-iPrOH (7:2; 2 x 10 mL). The organic extracts were combined and concentrated to dryness in vacuo. The residue was dissolved in acetonitile (4 mL), and water (2 mL) and saturated aqueous Na₂CO₃ (2 mL) were added successively. The reaction mixture was stirred for 2 days, diluted with water (4 mL) and extracted with CH₂Cl₂-iPrOH (7:2; 2 x 10 mL). The organic extracts were combined, washed with water (5 mL), dried over MgSO₄ and concentrated in vacuo. The residue was purified by preparative RP-HPLC (Onyx Monolithic C₁₈, 100 x 10 mm) to afford the argyrin $20a^{11}$ as a pale yellow powder (2 mg, 66 % yield): RP-HPLC 10– 60 % B in 12 min, $t_{\rm R}$ 6.8 min. ¹H NMR (400 MHz, DMSO-d₆): δ 0.87 $(d, J = 7 Hz, 3H, 5-CH_3), 1.54 (d, J = 7 Hz, 3H, 1-CH_3), 3.08 (s, 3H, 7-NCH_3), 3.15 (m, 2H, 3-CH_2),$ $3.21 (m, 1H, 2-CH_AH_B), 3.22(m, 1H, 7-CH_AH_B), 3.39 (m, 1H, 4-CH_AH_B), 3.44 (m, 1H, 2-CH_AH_B),$ 3.80 (d, J = 16 Hz, 1H, 7-CH_AH_B), 3.88 (dd, J = 16 and 8 Hz, 4-CH_AH_B), 4.24 (m, 1H, 3- α -CH), 4.35 (m, 1H, 5- α -CH), 4.78 (td, J = 12 and 4 Hz, 1H, 2- α -CH), 4.89 (s, 1H, 6-CH_AH_B), 5.20 (s, 1H, 6- CH_AH_B), 5.39 (m, 1H, 1- α -CH), 6.90–7.75 (m, 10H, Ar Hs), 8.03 (s, 1H, 1-C⁵H), 8.12 (d, J = 9 Hz, 1H, 5-NH), 8.29 (d, J = 9 Hz, 1H, 1-NH), 8.52 (d, J = 9 Hz, 1H, 2-NH), 8.57 (s, 1H, 3-NH), 8.79 (t, J = 4 Hz, 1H, 4-NH), 9.39 (s, 1H, 6-NH), 10.84 (d, J = 2 Hz, indole-NH), 11.05 (d, J = 2 Hz, indole-NH). ES-MS m/z calcd for C₃₉H₄₃N₁₀O₇S⁺ 795.3037, found 795.2959 [MH⁺].

Cyclo[D-Ala-thiazole-Trp-(5-Br-Trp)-Gly-D-Ala-Dha-Sar] (20b)

The masked cyclic peptide **19b** (4 mg, 4 µmol) was treated as above to afford argyrin **20b** as a buff solid (2 mg, 58 % yield): RP-HPLC 10–60 % B in 12 min, t_R 8.0 min. ¹H NMR (400 MHz, DMSO-d₆): δ 0.87 (d, J = 7 Hz, 3H, 5-CH₃), 1.54 (d, J = 7 Hz, 3H, 1-CH₃), 3.13 (s, 3H, 7-NCH₃), 3.15 (m, 2H, 3-CH₂), 3.21 (m, 1H, 2-CH_AH_B), 3.22 (m, 1H, 7-CH_AH_B), 3.39 (m, 1H, 4-CH_AH_B), 3.44 (m, 1H, 2-CH_AH_B), 3.80 (d, J = 16 Hz, 1H, 7-CH_AH_B), 3.88 (dd, J = 16 and 8 Hz, 4-CH_AH_B), 4.24 (m, 1H, 3- α -CH), 4.35 (m, 1H, 5- α -CH), 4.78 (td, J = 12 and 4 Hz, 1H, 2- α -CH), 4.92 (s, 1H, 6-CH_AH_B), 5.16 (s, 1H, 6-CH_AH_B), 5.39 (m, 1H, 1- α -CH), 6.95–7.77 (m, 9H, Ar Hs), 8.00 (s, 1H, 1-C⁵H), 8.09 (d, J = 9 Hz, 1H, 5-NH), 8.27 (d, J = 9 Hz, 1H, 1-NH), 8.40 (s, 1H, 3-NH), 8.56 (d, J = 9 Hz, 1H, 2-NH), 8.73 (t, J = 4 Hz, 1H, 4-NH), 9.22 (s, 1H, 6-NH), 10.76 (d, J = 2 Hz, indole-NH), 11.15 (d, J = 2 Hz, indole-NH). ES-MS m/z calcd for C₃₉H₄₂N₁₀BrO₇S⁺ 875.2122, found 875.1877 [MH⁺].

Cyclo[D-Ala-thiazole-Trp-(5-Cl-Trp)-Gly-D-Ala-Dha-Sar] (20c)

The masked cyclic peptide **19c** (5 mg, 5 µmol) was used to afford argyrin **20c** as a buff solid (3 mg, 67 % yield): RP-HPLC 10–60 % B in 12 min, t_R 7.5 min. ¹H NMR (400 MHz, DMSO-d₆): δ 0.87 (d, J = 7 Hz, 3H, 5-CH₃), 1.54 (d, J = 7 Hz, 3H, 1-CH₃), 3.13 (s, 3H, 7-NCH₃), 3.15 (m, 2H, 3-CH₂), 3.21 (m, 1H, 2-CH_AH_B), 3.22 (m, 1H, 7-CH_AH_B), 3.39 (m, 1H, 4-CH_AH_B), 3.44 (m, 1H, 2-CH_AH_B), 3.85 (d, J = 16 Hz, 1H, 7-CH_AH_B), 3.88 (dd, J = 16 and 8 Hz, 4-CH_AH_B), 4.21 (m, 1H, 3- α -CH), 4.34 (m, 1H, 5- α -CH), 4.78 (td, J = 12 and 4 Hz, 1H, 2- α -CH), 4.92 (s, 1H, 6-CH_AH_B), 5.16 (s, 1H, 6-CH_AH_B), 5.39 (m, 1H, 1- α -CH), 6.92–7.77 (m, 9H, Ar Hs), 8.00 (s, 1H, 1-C⁵H), 8.09 (d, J = 9 Hz, 1H, 5-NH), 8.27 (d, J = 9 Hz, 1H, 1-NH), 8.40 (s, 1H, 3-NH), 8.56 (d, J = 9 Hz, 1H, 2-NH), 8.74 (t, J = 4 Hz, 1H, 4-NH), 9.24 (s, 1H, 6-NH), 10.76 (d, J = 2 Hz, indole-NH), 11.15 (d, J = 2 Hz, indole-NH). ES-MS m/z calcd for C₃₉H₄₂ClN₁₀O₇S⁺ 829.2647, found 829.2347 [MH⁺].

Cyclo[D-Ala-thiazole-Trp-(6-F-Trp)-Gly-D-Ala-Dha-Sar] (20d)

The masked cyclic peptide **19d** (5 mg, 5 µmol) was used to afford argyrin **20d** as a buff solid (3 mg): RP-HPLC 10–60 % B in 12 min, t_R 7.0 min. ¹H NMR (400 MHz, DMSO-d₆): δ 0.87 (d, J = 7 Hz, 3H, 5-CH₃), 1.54 (d, J = 7 Hz, 3H, 1-CH₃), 3.12 (s, 3H, 7-NCH₃), 3.15 (m, 2H, 3-CH₂), 3.21 (m, 1H, 2-CH_AH_B), 3.22 (m, 1H, 7-CH_AH_B), 3.39 (m, 1H, 4-CH_AH_B), 3.44 (m, 1H, 2-CH_AH_B), 3.80 (d, J = 16 Hz, 1H, 7-CH_AH_B), 3.88 (dd, J = 16 and 8 Hz, 4-CH_AH_B), 4.21 (m, 1H, 3- α -CH), 4.35 (m, 1H, 5- α -CH), 4.78 (td, J = 12 and 4 Hz, 1H, 2- α -CH), 4.92 (s, 1H, 6-CH_AH_B), 5.16 (s, 1H, 6-CH_AH_B), 5.40 (m, 1H, 1- α -CH), 6.86–7.77 (m, 9H, Ar Hs), 8.00 (s, 1H, 1-C⁵H), 8.09 (d, J = 9 Hz, 1H, 5-NH), 8.27 (d, J = 9 Hz, 1H, 1-NH), 8.40 (s, 1H, 3-NH), 8.56 (d, J = 9 Hz, 1H, 2-NH), 8.69 (t, J = 4 Hz, 1H, 4-NH), 9.21 (s, 1H, 6-NH), 10.74 (d, J = 2 Hz, indole-NH), 10.99 (d, J = 2 Hz, indole-NH). ES-MS *m*/*z* calcd for C₃₉H₄₂FN₁₀O₇S⁺ 813.2943, found 813.3016 [MH⁺].

Cyclo[D-Ala-thiazole-Trp-(7-Et-Trp)-Gly-D-Ala-Dha-Sar] (20e)

The masked cyclic peptide **19e** (4 mg, 4 µmol) was used to afford argyrin **20e** as a buff solid (2 mg, 52 % yield): RP-HPLC 10–60 % B in 12 min, t_R 7.9 min. ¹H NMR (400 MHz, DMSO-d₆): δ 0.87 (d, J = 7 Hz, 3H, 5-CH₃), 1.27 (t, J = 7 Hz, 3H, 3-CH₂CH₃), 1.55 (d, J = 7 Hz, 3H, 1-CH₃), 2.85 (q, J = 7 Hz, 2H, 3-CH₂CH₃), 3.12 (s, 3H, 7-NCH₃), 3.15 (m, 2H, 3-CH₂), 3.21 (m, 1H, 2-CH_AH_B), 3.24 (m, 1H, 7-CH_AH_B), 3.39 (m, 1H, 4-CH_AH_B), 3.44 (m, 1H, 2-CH_AH_B), 3.80 (d, J = 16 Hz, 1H, 7-CH_AH_B), 4.24 (td, J = 12 and 4 Hz, 1H, 3- α -CH), 4.35 (m, 1H, 5- α -CH), 4.78 (td, J = 12 and 4 Hz, 1H, 2- α -CH), 4.92 (s, 1H, 6-CH_AH_B), 5.16 (s, 1H, 6-CH_AH_B), 5.40 (m, 1H, 1- α -CH), 6.93–7.76 (m, 9H, Ar Hs), 8.00 (s, 1H, 1-C⁵H), 8.12 (d, J = 9 Hz, 1H, 5-NH), 8.27 (d, J = 9 Hz, 1H, 1-NH), 8.41 (d, J = 2 Hz, 1H, 3-NH), 8.55 (d, J = 9 Hz, 1H, 2-NH), 8.72 (t, J = 4 Hz, 1H, 4-NH), 9.23 (s, 1H, 6-NH), 10.74 (d, J = 2 Hz, indole-NH), 10.89 (d, J = 2 Hz, indole-NH). ES-MS *m/z* calcd for C₄₁H₄₇N₁₀O₇S⁺ 823.3350, found 823.3311 [MH⁺].

Cyclo[D-Ala-thiazole-Trp-(5-Me-Trp)-Gly-D-Ala-Dha-Sar] (20f)

The masked cyclic peptide **19f** (5 mg, 5 µmol) was used to yield argyrin **20f** as a buff solid (3 mg, 66 % yield): RP-HPLC 10–60 % B in 12 min, t_R 7.3 min. ¹H NMR (400 MHz, DMSO-d₆): δ 0.87 (d, J = 7 Hz, 3H, 5-CH₃), 1.54 (d, J = 7 Hz, 3H, 1-CH₃), 2.40 (s, 3H, 3-CH₃), 3.12 (s, 3H, 7-NCH₃), 3.15 (m, 2H, 3-CH₂), 3.20 (m, 1H, 2-CH_AH_B), 3.24 (m, 1H, 7-CH_AH_B), 3.38 (m, 1H, 4-CH_AH_B), 3.44 (m, 1H, 2-CH_AH_B), 3.80 (d, J = 16 Hz, 1H, 7-CH_AH_B), 3.88 (dd, J = 16 and 8 Hz, 4-CH_AH_B), 4.22 (m, 1H, 3- α -CH), 4.35 (m, 1H, 5- α -CH), 4.78 (td, J = 12 and 4 Hz, 1H, 2- α -CH), 4.92 (s, 1H, 6-CH_AH_B), 5.16 (s, 1H, 6-CH_AH_B), 5.40 (m, 1H, 1- α -CH), 6.91–7.76 (m, 9H, Ar Hs), 8.00 (s, 1H, 1-C⁵H), 8.09 (d, J = 9 Hz, 1H, 5-NH), 8.27 (d, J = 9 Hz, 1H, 1-NH), 8.37 (s, 1H, 3-NH), 8.56 (d, J = 9 Hz, 1H, 2-NH), 8.70 (t, J = 4 Hz, 1H, 4-NH), 9.22 (s, 1H, 6-NH), 10.75 (d, J = 2 Hz, indole-NH), 10.76 (d, J = 2 Hz, indole-NH). ES-MS *m*/*z* calcd for C₄₀H₄₅N₁₀O₈S⁺ 809.3193, found 809.3016 [MH⁺].

Cyclo[D-Ala-thiazole-Trp-(5-OMe-Trp)-Gly-D-Ala-Dha-Sar] (20g)

The masked cyclic peptide **19g** (4 mg, 4 µmol) was used to yield argyrin **20g** as a buff solid (2 mg, 58 % yield): RP-HPLC 10–60 % B in 12 min, t_R 6.5 min. ¹H NMR (400 MHz, DMSO-d₆): δ 0.68 (d, J = 7 Hz, 3H, 5-CH₃), 1.55 (d, J = 7 Hz, 3H, 1-CH₃), 3.13 (s, 3H, 7-NCH₃), 3.15 (m, 2H, 3-CH₂), 3.21 (m, 1H, 2-CH_AH_B), 3.22 (m, 1H, 7-CH_AH_B), 3.40 (m, 1H, 4-CH_AH_B), 3.44 (m, 1H, 2-CH_AH_B), 3.79 (s, 3H, 3-OCH₃), 3.80 (d, J = 16 Hz, 1H, 7-CH_AH_B), 3.86 (dd, J = 16 and 8 Hz, 4-CH_AH_B), 4.22 (m, 1H, 3- α -CH), 4.34 (m, 1H, 5- α -CH), 4.78 (td, J = 12 and 4 Hz, 1H, 2- α -CH), 4.93 (s, 1H, 6-CH_AH_B), 5.16 (s, 1H, 6-CH_AH_B), 5.39 (m, 1H, 1- α -CH), 6.90–7.70 (m, 9H, Ar Hs), 8.00 (s, 1H, 1-C⁵H), 8.12 (d, J = 9 Hz, 1H, 5-NH), 8.27 (d, J = 9 Hz, 1H, 1-NH), 8.42 (s, 1H, 3-NH), 8.56 (d, J = 9 Hz, 1H, 2-NH), 8.70 (t, J = 4 Hz, 1H, 4-NH), 9.24 (s, 1H, 6-NH), 10.75 (d, J = 2 Hz, indole-NH), 10.76 (d, J = 2 Hz, indole-NH). ES-MS m/z calcd for C₄₀H₄₅N₁₀O₈S⁺ 825.3143, found 825.3056 [MH⁺].

Cyclo[D-Ala-thiazole¹-Trp²-(4-OMe-Trp)³-Gly⁴-D-Ala⁵-Dha⁶-Sar⁷], Argyrin A (20h)

The masked cyclic peptide **19h** (4 mg, 4 µmol) was used to afford argyrin **20**¹¹ as a buff solid (2 mg): RP-HPLC 10–60 % B in 12 min, t_R 6.6 min. ES-MS m/z calcd for C₄₀H₄₅N₁₀O₈S⁺ 825.3143, found 825.3092 [MH⁺].
3. Antibacterial activity

The MIC₅₀ of selected compounds against bacterial strains *Pseudomonas aeruginosa* PAO1 and *Proteus mirabilis* Hauser 1885 were determined in Muller–Hinton broth. Bacteria were grown overnight in Muller–Hinton broth with shaking (200 rpm) at 37 °C. The bacterial sample was then diluted with fresh broth to give an OD_{610 nm} of 0.05. To 990 μ L of the freshly prepared bacterial sample was added 10 μ L of a 10 mM solution of the test compound in DMSO. This sample was then serially diluted with freshly prepared OD_{610 nm} 0.05 bacterial broth containing 1% DMSO.

A volume of 200 μ L of the prepared samples, containing bacterial culture and the desired concentration of each compound, were then dispensed into a 96-well microtiter plate and incubated at 37 °C over 15 h. The MIC₅₀ were determined by measurement of OD_{610 nm} at 13 h. Each compound was evaluated in duplicate at concentrations from 0 to 100 μ M, and each experiment was repeated at least three times.

Compound	MIC ₅₀ (μM)	
	P. aeruginosa PAO1	Proteus mirabilis Hauser 1885
Argyrin A (20h)	19.8 ± 1.6	19.2 ± 1.7
Argyrin E (20a)	>100	>100
20c	>100	>100
20f	>100	>100
20g	90.7 ± 3.7	100

 Table S1. MIC₅₀ of selected argyrin analogues evaluated against *Pseudomonas aeruginosa* PAO1 and *Proteus mirabilis* Hauser 1885.

Figure S1. The effects of argyrin A 20h and analogue 20g on the growth of *Pseudomonas aeruginosa* PAO1 in Muller–Hinton broth at 13 h.

Figure S2. Growth curves of (**A**) *P. aeruginosa* PAO1 and (**B**) *Proteus mirabilis* Hauser 1885. Growth of bacteria was measured in the absence (1% DMSO control) and presence of argyrin A (**20h**) at concentration range of 100–3.125 μM. MH Media without bacteria is also used as a control.

Figure S3. Growth curves of (**A**) *P. aeruginosa* PAO1 and (**B**) *Proteus mirabilis* Hauser 1885. Growth of bacteria was measured in the absence (1% DMSO control) and presence of argyrin E (**20a**) at concentration range of 100–3.125 μM. MH Media without bacteria is also used as a control.

Figure S4. Growth curves of (**A**) *P. aeruginosa* PAO1 and (**B**) *Proteus mirabilis* Hauser 1885. Growth of bacteria was measured in the absence (1% DMSO control) and presence of **20c** at concentration range of 100–3.125 μ M. MH Media without bacteria is also used as a control.

Figure S5. Growth curves of (A) *P. aeruginosa* PAO1 and (B) *Proteus mirabilis* Hauser 1885. Growth of bacteria was measured in the absence (1% DMSO control) and presence of **20f** at concentration range of 100–3.125 μ M. MH Media without bacteria is also used as a control.

Figure S6. Growth curves of (**A**) *P. aeruginosa* PAO1 and (**B**) *Proteus mirabilis* Hauser 1885. Growth of bacteria was measured in the absence (1% DMSO control) and presence of **20g** at concentration range of 100–3.125 μ M. MH Media without bacteria is also used as a control.

4. ¹H and ¹³C NMR spectra of (S)-tryptophan analogues

S44

S47

.70

4.21

.OH

H₃CO

NH2.HCI

3.30

chc-358 D20 2012/01/12 AV400

7.28 7.15 7.02 6.78

S48

5. References

- 1. Lee, S.; Jo, A.; Park, S. B. Med. Chem. Commun. 2013, 4, 228–232.
- 2. Li, L. T.; Huang, J.; Li, H. Y.; Wen, L. J.; Wang, P.; Wang, B. Chem. Commun. 2012, 48, 5187–5189.
- 3. Sako, K.; Aoyama, H.; Sato, S.; Hashimoto Y.; Baba, M. Bioorg. Med. Chem., 2008, 16, 3780–3790.
- 4. Huang, N. J. Am. Chem. Soc. 1951, 73, 3223-32247.
- 5. Fischer, H. Hoppe-Selye's Z. Physiol. Chem. 1908, 55, 74.
- Blaser, G.; Sanderson, J. M.; Batsanov, A. S.; Howard, J. A. K. *Tetrahedron Lett.* 2008, 49, 2795–2798.
- 7. Ibrahim, T. S.; Tala, S. R.; El-Feky, S. A.; Abdel-Samii, Z. K.; Katritzky, A. R. Synlett, 2011, 14, 2013–2016.
- 8. Kokinaki, S.; Leondiadis, L.; Ferderigos, N. Org. Lett. 2005, 7, 1723-1724.
- (a) Okeley, N. M.; Zhu, Y. T.; van der Donk, W. A. Org. Lett. 2000, 2, 3603–3606. (b) Sakai, M.; Hashimoto, K.; Shirahama, H. Heterocycles 1997, 44, 319–324.
- 10. Kigoshi, H.; Yamada, S. Tetrahedron 1999, 55, 12301-12308.
- (a) Sasse, F.; Steinmetz, H.; Schupp, T.; Petersen, F.; Memmert, K.; Hofmann, H.; Heusser, C.; Brinkmann, V.; Von Matt, P.; Hofle, G.; Reichenbach, H. *J. Antibiot.* 2002, *55*, 543-551. (b) Buelow, L.; Nickeleit, I.; Girbig, A.-K.; Brodmann, T.; Rentsch, A.; Eggert, U.; Sasse, F.; Steinmetz, H.; Frank, R.; Carlomagno, T.; Malek, N. P.; Kalesse, M. *Chemmedchem* 2010, *5*, 832–836.