Supporting Information

Water-Soluble Aryl-Extended Calix[4]pyrroles with Unperturbed Aromatic Cavities: Synthesis and Binding Studies

D. Hernández-Alonso,^a S. Zankowski^a, L. Adriaenssens^a and P. Ballester^{a,b,*}

^aInstitute of Chemical Research of Catalonia (ICIQ), ICIQ, Avgda. Països Catalans 16, 43007 Tarragona, Spain.

^bCatalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys, 23, 08010 Barcelona, Spain

pballester@iciq.es

Table of contents

¹ H and ¹³ C{ ¹ H}-NMR spectra of compounds	S3
HRMS spectra	
Figure S1 ¹ H-NMR spectra of calix[4]pyrrole 2 with incremental amounts of PNO 13	S10
Figure S2 ROESY ¹ H NMR experiment of complex $13 \subset 2$ in presence of 2.6 eq of PNO 13	S11
ITC titrations in aqueous media	S11

¹H and ¹³C{¹H}-NMR spectra of compounds. All the NMR spectra were measured at 25°C

¹H NMR (500 MHz, CDCl₃) spectrum of compound 8

 1 H NMR (300 MHz, CDCl₃) and 13 C NMR { 1 H} DEPTQ 135 (125 MHz, CDCl₃) spectra of compound **3**

S4

 ^1H NMR (500 MHz, CDCl₃) spectrum of compound 10

¹H NMR (400 MHz, D₂O), ¹³C NMR {¹H} (125 MHz with cryoprobe, D₂O), ¹³C NMR {¹H} DEPTQ 135 (125 MHz with cryoprobe, D₂O) and ¹³C NMR {¹H} HSQC (125 MHz with cryoprobe, D₂O) spectra of compound **2**. (PD \approx 7.2 adjusted with NaOD solution in D₂O)

HRMS spectra

HRMS (ESI-TOF) m/z: $[M + Na]^+$ spectrum of compound **3.** Top measured, bottom calculated)

HRMS (MALDI-TOF) spectrum of compound $2 [M + Na]^+$ (top measured, bottom calculated)

¹HNMR titration of receptor 2 with PNO13 and ROESY ¹HNMR of the complex in presence of an excess of PNO13.

Figure S1: Selected downfield regions of the ¹H-NMR spectra (400 MHz, D₂O adjusted to pD \approx 7.2 with NaOD, 273 K) obtained during the titration of calix[4]pyrrole **2** (1 mM) with incremental amounts of PNO **13**. See figure 3 in the manuscript for proton numbering. Prime letters and numbers represent proton signals corresponding to encapsulation complex PNO13 \sim 2.

Figure S2: Selected region of ROESY ¹H NMR experiment of complex $13 \ge 2$ in presence of 2.6 eq of PNO 13. Prime letters represent proton signals corresponding to PNO 13 in complex $13 \ge 2$. See figure 3 in the manuscript for proton lettering.

ITC Experiments

Titrations were carried out on a Microcal VP-ITC microcalorimeter, at 298 K, in water adjusting the pH by addition of NaOH_(aq.) solution until pH \approx 11 and then adjusting with HCl_(aq.) solution until pH \approx 7.2. The association constants between receptor 2 and pyridine *N*-oxide 11, 12 and 13 were determined by monitoring the heat released by the system as incremental amounts of the *N*-oxide 11, 12 or 13 were added. The values of the association constant K_a and the enthalpy of binding ΔH were calculated using the Origin 7 software package which uses least-squares minimization to obtain globally optimized parameters as described in Wiseman *et al.*¹ In all cases the data fit well to a simple 1:1 binding model.

Specifically, the association constants were determined using solution of **2** in water at 296 K, and adding aliquots of a solution of pyridine *N*-oxide derivatives, approximately 10 times more concentrated, also in the same media. The association constant (K_a), T ΔS and ΔH values for the binding process were determined by averaging the values from the titrations.

Figure S3: Top: Raw data for the ITC titration in water of PNO derivatives into receptor **2**. Bottom: Binding isotherm of calorimetric titration data shown on top. a) PNO**11** over [2] = 0.62mM in H₂O; pH= 7.22. b) PNO **12** over [2] = 0.17mM in H₂O; pH = 7.21. c) PNO **13** over [2] = 0.63mM in H₂O; pH = 7.23. c) = 7.43.

(1) Wiseman, T.; Williston, S.; Brandts, J. F.; Lin, L. N. Anal. Biochem. **1989**, *179*, 131.