Supplementary Material for

Synthesis and evaluation of hybrid molecules targeting the vinca domain of tubulin

O. Gherbovet,^a Pedro A. Sánchez-Murcia,^b M. C. García Alvarez,^a J. Bignon,^a S. Thoret,^a F. Gago^b and F. Roussi,^a,*

^a Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, UPR 2301 du CNRS, Avenue de la Terrasse, 91198, Gifsur-Yvette Cedex, France.
^b Departamento de Farmacología, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain

* Corresponding Author Email Adress: fanny.roussi@cnrs.fr

Additional data of molecular modelling experiments	S2
1H and 13C spectra for all new compounds	S 6

Figure S1. Time evolution of the root-mean-square deviation (RMSd, Å) of **25** (a) and **22** (b) along the unrestrained MD simulation in a box of explicit solvent at 300 K.

Figure S2. Time evolution of the root-mean-square deviation (RMSd, Å) and key distances (Å) corresponding to the main interactions observed for 1 within the vincabinding domain along the unrestrained MD simulation in a box of explicit solvent at 300 K.

Figure S3. Time evolution of the root-mean-square deviation (RMSd, Å) and key distances (Å) corresponding to the main interactions observed for **25** within the vincabinding domain along the unrestrained MD simulation in a box of explicit solvent at 300 K.

Figure S4. View of the inter-dimer interface showing bound 25 (sticks, C atoms in yellow) in a representative conformation and overlaid 4 (sticks, C atoms in pink) for reference after a best-fit superposition of the protein, which appears enveloped within a semitransparent surface. Cartoon representations of β_1 - and α_2 -tubulin are coloured cyan and green, respectively.

