Supporting Information

Efficient Merging of Copper and Photoredox Catalysis for the Asymmetric Cross-Dehydrogenative-Coupling of Alkynes and Tetrahydroisoquinolines

Inna Perepichka, Soumen Kundu, Zoë Hearne and Chao-Jun Li*

Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada. *E-mail*: <u>cj.li@mcgill.ca</u>

Contents

1.	General remarks	S2
2.	General procedure for the synthesis of <i>N</i> -aryl-1,2,3,4-tetrahydroisoquinolines	S2
3.	Characterization of starting materials	S 3
4.	Synthesis of [Ir(ppy) ₂ (dtbbpy)](PF ₆)	S4
5.	General procedure for the photoredox catalyzed reactions	S5
6.	HPLC chromatogram for the chiral 2-Phenyl-1-phenylethynyl-1,2,3,4-	S7
	tetrahydroisoquinoline at different temperatures	
7.	Characterization data and HPLC chromatogram for the Racemic and chiral C ₁ -	S12
	alkynyl-N-aryl-1,2,3,4-tetrahydraisoquinoline derivatives	
8.	Effect of conditions on the enantioselectivity of coupling of N-aryl-1,2,3,4-	S27
	tetrahydroisoquinolines with phenylacetylene	
9.	¹ H and ¹³ C NMR data for C ₁ -alkynyl- <i>N</i> -aryl-1,2,3,4-tetrahydraisoquinoline	S29
	derivatives	

1. General remarks

All commercially available reagents were used as provided without further purification. Solvents were dried and distilled before use according to the standard procedureⁱ and stored over molecular sieves. The glassware was oven-dried for at least 1 h prior to use. All reagents were weighed and handled in air, and backfilled under an inert atmosphere of nitrogen at room temperature. *N*-aryl-tetrahydroisoquinolines **1** (Scheme 3)^{ii,iii,iv} $[Ru(bpy)_3](PF_6)_2^v$ and $Ir(ppy)_2(dtbpy)PF_6^{vi,vii}$ were synthesized according to the published procedures and spectroscopic data were consistent (see text later) with those previously reported for these compounds. A sample of $[Ru(bpy)_3](PF_6)_2$ was provided as a gift from Professor Eli Zysman-Colman (Department of Chemistry, University of St. Andrews, United Kingdom).

¹H NMR and ¹³C NMR were obtained using Varian MERCURY-300, 400, and 500 MHz spectrometer in deuterated NMR solvents (CDCl₃, d_6 -acetone etc.). GC-MS and HR-MS (ESI) spectra were conducted at the Mass Spectroscopy Facility at the Department of Chemistry, McGill University on a Thermo PolarisQ GC System and a JEOL JMS-700 instrument, respectively. Enantiomeric excess was determined with HPLC, Agilent 1260 Infinity Diode Array detector (G 4212B) by using a Chiralcel OD-H column (25cm × 4.6mm, part. size 5µm) and 4:96 isopropanol/hexane as an eluent (flow rate 1.0 mL/min, UV detection at 254 nm). Analytical thin-layer chromatography (TLC) was performed on Merck silica gel aluminium plates with F-254 indicator, visualised by irradiation with UV light.

2. General procedure for the synthesis of *N*-Aryl-tetrahydroisoquinoline, 1ⁱⁱ

Copper(I) iodide (200 mg, 1.0 mmol) and potassium phosphate (4.25 g, 20.0 mmol) were placed into a 50 mL three-neck flask. The flask was evacuated and back filled with argon. 2-Propanol (10.0 mL), ethylene glycol (1.11 mL), 1,2,3,4-tetrahydroisoquinoline (2.0 mL, 15 mmol) and iodobenzene (1.12 mL, 10.0 mmol) were added successively by syringe at room temperature. The reaction mixture was heated at 90 °C for 24 h and then allowed to cool to room temperature.

Diethyl ether (20 mL) and water (20 mL) were then added to the reaction mixture. The organic layer was extracted with diethyl ether (2×20 mL). The combined organic phases were washed with brine and dried over sodium sulfate. The solvent was removed and the residue was purified by column chromatography on silica gel using hexane/ethyl acetate (20:1) as an eluent.

3. Characterization of starting materials:

2-Phenyl-1,2,3,4-tetrahydrolisoquinoline,ii ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.26 (m, 2 H), 7.21-7.15 (m, 4 H), 7.00 (d, J = 8.0 Hz, 2 H), 6.84 (t, J = 8.0 Hz, 1 H), 4.42 (s, 2 H), 3.58 (t, J = 6 Hz, 2 H), 3.00 (t, J = 5.6 Hz, 2 H).

2-(2-Methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline,ⁱⁱ ¹H NMR (300 MHz, CDCl₃): δ 7.18-7.11 (m, 4 H), 7.03-7.0 (m, 2 H), 6.94-6.89 (m, 2 H), 4.31 (s, H), 3.89 (s, 3 H), 3.43 (t, *J*=6.0 Hz, 2 H), 2.99 (t, *J*=6.0 Hz, 2 H).

2-(3-Methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline,^{viii 1}H NMR (400 MHz, CDCl₃): δ 7.25–7.15 (m, 4 H), 6.62–6.59 (m, 1 H), 6.53–6.52 (m, 1 H), 6.41-6.39 (m, 1 H), 4.42 (s, 2 H), 3.81 (s, 3 H), 3.56 (t, *J*=6.4 Hz, 2 H), 2.99 (t, *J*= 5.6 Hz, 2 H).

2-(4-Bromophenyl)-1,2,3,4-tetrahydroisoquinoline,ⁱⁱⁱ ¹H NMR (300 MHz, CDCl₃): δ 7.37-7.34 (d, *J* = 9.0 Hz, 2 H), 7.20-7.15 (m, 4 H), 6.84 (d, *J* = 9.0 Hz, 2 H), 4.38 (s, 2 H), 3.54 (t, *J* = 6.9 Hz, 2 H), 3.00 (t, *J* = 6.0 Hz, 2 H).

4. Synthesis of [Ir(ppy)₂(dtbbpy)](PF₆)^{vi,vii}

Scheme 1S Synthesis of [Ir(ppy)₂(dtbbpy)](PF₆).

Tetrakis(2-phenylpyridine-C2,N') (μ -dichloro)diiridium, (A, Scheme 1S) Iridium trichloride hydrate (0.389 g, 1.31 mmol) was combined with 2- phenylpyridine (0.76 g, 4.9 mmol), dissolved in a mixture of 2-ethoxyethanol (30 mL) and water (10 mL), and refluxed for 24 h. The solution was cooled to room temperature, and the yellow precipitate was collected on a glass filter frit. The precipitate was washed with ethanol (60 mL) and acetone (60 mL) and then dissolved in dichloromethane (75 mL) and filtered. Toluene (25 mL) and hexanes (10 mL) were added to the filtrate, which was then reduced in volume by evaporation to 50 mL, and cooled to give crystals of [Ir(ppy)₂Cl]₂ (0.44 g, 75%) (A, Scheme 1S).

Synthesis of $[Ir(ppy)_2(dtbbpy)](PF_6)$ was adapted from literature proceduresvi^{,vii} for the analogous unsubstituted complex. A stirred suspension of 4,4'-di-*tert*-butyl-2,2'-dipyridyl (0.44 g, 0.88 mmol) and tetrakis(2-phenylpyridine-C,N)(µ-dichloro)-diiridium, **A** (0.428g, 0.400 mmol) in 20 mL of 1,2-ethanediol under nitrogen was heated to 150 °C for 15 h. All the solids

dissolved to yield a clear, yellow solution. After cooling the mixture to room temperature, 200 mL of water was added. The excess of bipyridine ligand was removed through three extractions with diethyl ether (3×50 mL), and the aqueous layer was subsequently heated to 70 °C. NH₄PF₆ (2 g) in 20 mL of water was added, and the PF₆ salt of the iridium complex immediately precipitated. After cooling the suspension to 5 °C, the yellow solid was separated through filtration, dried, and recrystallized through acetonitrile/ether. Yield: 0.50 g (66%). ¹H NMR (acetone-*d*₆, 400 MHz): δ 8.88 (d, *J* =2.0 Hz, dtb-bpy-H3, 2H), 8.24 (ppy-H6, pyridine, 2H, d, *J* = 8), 7.99-7.93 (m, dtb-bpy-H6, 2H, ppy-H5, pyridine, 2H), 7.90 (ppy-H3, phenyl, 2H, dd, *J* = 7.2, 0.8 Hz), 7.79 (ppy-H6, phenyl, 2H, d, *J* = 6 Hz), 7.71 (dtb-bpy-H5, 2H, dd, *J* = 6.0, 2.0 Hz), 7.14 (ppy-H4, pyridine, 2H, dt, *J* = 7.2, 1.6 Hz), 7.04 (ppy-H4, phenyl, 2H, dt, *J* = 8), 1.42 (18H, s).

HRMS (ESI) m/z calculated for C₄₀H₄₀N₄Ir⁺ ([M - PF₆]⁺) 769.2876, found 769.2866.

Figure 1S. UV/Visible Spectra of [Ir(ppy)₂(dtbbpy)](PF₆) in CH₃CN.

5a General procedure for the photoredox catalyzed synthesis of chiral 2-phenyl-1phenylethynyl-1,2,3,4-tetrahydroisoquinoline using (BzO)₂ as a terminal oxidant (Table 1 and 2, entry 1-6):

An oven-dried sample vial (15×45 mm) was equipped with a magnetic stirring bar, *N*-aryl tetrahydroisoquinolines (0.100 mmol), photocatalyst (1 mol %), Cu-Catalyst (10 mol %), chiral ligand (15 mol %), and (BzO)₂ (0.120 mmol). The vial was fitted with a septa and degassed by

quickly alternating vacuum evacuation and argon backfill before anhydrous solvent (THF and MeCN) (1.0 mL) and terminal alkyne (0.150 mmol) were added under an atmosphere of argon. The reaction mixture was stirred under radiation of a 26-W household fluorescent bulb (daylight GE Energy SmartTM with 1600 lumens), at a distance of 10 cm from the reaction vial, at room temperature. After a particular period of time (for details see the footnotes of Table 1 and 2), the resulting mixture was filtered through a short silica gel pad and washed with 5 mL of ethyl acetate. The above solution was evaporated under vacuum, a known quantity of nitromethane (¹H NMR, CDCl₃: δ 4. 2 ppm) was added as an internal standard and product yield was determined by ¹H-NMR. The residue was purified by silica gel PTLC (hexane/DCM/ether, 3:2:0.5) to give the pure product. Enantioselectivity of isolated products were determined by the previously discussed method. Enantiomeric access (*ee* %) was calculated by the following^{ix}:

ee (%) = [(Major Isomer HPLC Area – Minor Isomer HPLC Area)/ (Major Isomer HPLC Area + Minor Isomer HPLC Area)] × 100

5b General procedure for photoredox catalyzed synthesis of the chiral C₁-alkynyl-*N*-aryl-1,2,3,4-tetrahydraisoquinoline derivatives (Table 2, entry 7-9 and Table 3):

An oven-dried sample vial (15×45 mm) was equipped with a magnetic stirring bar, *N*-aryl tetrahydroisoquinolines (0.100 mmol), photocatalyst (1 mol %), Cu-Catalyst (10 mol %) and chiral ligand (15 mol %). The vial was fitted with septa and degassed by quickly alternating vacuum evacuation and argon backfill before anhydrous THF (0.5 mL) was added under an atmosphere of argon. The reaction mixture was stirred for 15-20 min at RT covered by aluminium paper (light-protection). Phenylacetylene (0.150 mmol) was added following by 0.5 mL of CH₃CN. The reaction vial was placed in the cold room (4 °C) or placed into the chiller (-40 to 0 °C) under radiation of a 26-W household fluorescent bulb (daylight GE Energy SmartTM with 1600 lumens), at a distance of 10 cm from the vial. After a particular period of time, the resulting mixture was filtered through a short silica gel pad and washed with ethyl acetate. The above solution was evaporated under vacuum, a known quantity of nitromethane (¹H NMR, CDCl₃: δ 4. 1 ppm) was added as internal standard and product yield was determined by ¹H-NMR. The residue was purified by silica gel PTLC (hexane/DCM/ether, 3:2:0.5) to give the pure product. Enantioselectivity of isolated compounds were determined by the previously discussed method. Enantiomeric access (*ee* %) was calculated by the following^x:

ee (%) = [(Major Isomer HPLC Area – Minor Isomer HPLC Area)/ (Major Isomer HPLC Area + Minor Isomer HPLC Area)] × 100

6. HPLC Chromatogram for the Chiral 2-Phenyl-1-phenylethynyl-1,2,3,4tetrahydroisoquinoline at different temperatures.

Peak	Retention Time / min	Area / %
Major Enantiomer	5.494	90.0896
Minor Enantiomer	6.631	6.8380

Figure 2S. HPLC Chromatogram for the two enantiomers of 2-Phenyl-1-phenylethynyl-1,2,3,4-tetrahydroisoquinoline synthesized according to the procedure described in Table 2, entry 1 (Conditions: THF/ rt).

Major Enantiomer	5.469	68.0955
Minor Enantiomer	6.268	2.8232

Figure 3S. HPLC Chromatogram for the two enantiomers of 2-Phenyl-1-phenylethynyl-1,2,3,4-tetrahydroisoquinoline synthesized according to the procedure described in Table 2, entry 2 (Conditions: THF/ 4 °C).

Peak	Retention Time, min	Area, %
Major Enantiomer	5.581	91.7012
Minor Enantiomer	6.418	4.6804

Figure 4S. HPLC Chromatogram for the two enantiomers of 2-Phenyl-1-phenylethynyl-1,2,3,4-tetrahydroisoquinoline synthesized according to the procedure described in Table 2, entry 3 (Conditions: THF/ -20 °C).

Peak	Retention Time, min	Area, %
Major Enantiomer	5.412	16.806
Minor Enantiomer	6.241	3.1585

Figure 5S. HPLC Chromatogram for the two enantiomers of 2-Phenyl-1-phenylethynyl-1,2,3,4-tetrahydroisoquinoline synthesized according to the procedure described in Table 1, entry 10 and Table 2, entry 4 (conditions: CH_3CN/rt).

Figure 6S. HPLC Chromatogram for the two enantiomers of 2-Phenyl-1-phenylethynyl-1,2,3,4-tetrahydroisoquinoline synthesized according to the procedure described in Table 2, entry 5 (conditions $CH_3CN/4$ °C).

Peak	Retention Time, min	Area, %
Major Enantiomer	5.434	80.0010
Minor Enantiomer	6.247	2.9159

Figure 7S. HPLC Chromatogram for the two enantiomers of 2-Phenyl-1-phenylethynyl-1,2,3,4-tetrahydroisoquinoline synthesized according to the procedure described in Table 2, entry 6 (conditions CH3CN/ -20 $^{\circ}$ C).

Peak	Retention Time, min	Area, %
Major Enantiomer	5.370	78.8269
Minor Enantiomer	6.190	9.4368

Figure 8S. HPLC Chromatogram for the two enantiomers of 2-Phenyl-1-phenylethynyl-1,2,3,4-tetrahydroisoquinoline synthesized according to the procedure described in Table 2, entry 7 (conditions THF and $CH_3CN(1:1)/rt$).

Figure 9S. HPLC Chromatogram for the two enantiomers of 2-Phenyl-1-phenylethynyl-1,2,3,4-tetrahydroisoquinoline synthesized according to the procedure described in Table 2, entry 8 (conditions THF and $CH_3CN(1;1)/$ -20 °C).

Peak	Retention Time, min	Area, %
------	---------------------	---------

Major Enantiomer	5.486	28.4170
Minor Enantiomer	6.345	0.5622

Figure 10S. HPLC Chromatogram for the two enantiomers of 2-Phenyl-1-phenylethynyl-1,2,3,4-tetrahydroisoquinoline synthesized according to the procedure described in Table 2, entry 9 (conditions THF and $CH_3CN(1;1)/-40$ °C).

7. Characterization Data and HPLC Chromatogram for the Racemic- and Chiral C₁-Alkynyl-*N*-Aryl-Tetrahydraisoquinoline Derivatives.

2-Phenyl-1-phenylethynyl-1,2,3,4-tetrahydroisoquinoline, 3a

Isolated by Thin Layer Chromatography (Hexane/Methylene Chloride/Diethyl ether = 100:60:1, $R_f = 0.7$).¹H NMR (400 MHz, ppm) δ 7.35-7.25(m, 5H), 7.22-7.14(m, 6H), 7.09(dd, J = 8.4, 0.8 Hz, 2H), 6.86(dt, J = 7.2, 0.8 Hz, 1H), 5.62(s, 1H), 3.75-3.61(m, 2H), 3.09(ddd, J = 16.8, 10.4, 6.4 Hz, 1H), 2.95(dt, J = 16.0, 4.0 Hz, 1H); ¹³C NMR (100 MHz, ppm) δ ; 149.55 HRMS calcd for C23H19N: 309.1517; found: 309.1511.

Figure 9S. HPLC Chromatogram for the two enantiomers of 2-Phenyl-1-phenylethynyl-1,2,3,4-tetrahydroisoquinoline synthesized according to the procedure described in Table 3, entry 1.

1-(4-Methoxy-phenylethynyl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline, 3b

Isolated by Thin Layer Chromatography (Hexane/Methylene Chloride/Diethyl ether = 100:60:1, $R_f = 0.4$). ¹H NMR (400 MHz, ppm) δ 7.34-7.31(m, 1H), 7.30- 7.26(m, 2H), 7.21-7.16(m, 4H), 7.15-7.12(m, 1H), 7.08(d, J = 8.0 Hz, 2H), 6.84(dd, J = 7.6, 7.6 Hz, 1H), 6.69(dt, J = 8.8, 2.4 Hz, 2H), 5.60(s, 1H), 3.73-3.60(m, 2H), 3.68(s, 3H), 3.09(ddd, J = 16.0, 9.6, 6.0 Hz, 1H), 2.92(dt, J = 16.0, 4.0 Hz, 1H); ¹³C NMR (100 MHz, ppm) δ 159.10, 149.32, 135.40, 134.14, 132.93, 128.92, 128.70, 127.23, 126.94, 126.04, 119.34, 116.46, 114.95, 113.54, 87.03, 84.52, 55.17, 52.25, 43.41, 28.95; MS (EI) m/z (%) 340, 339, 338(100), 324, 223, 220, 219, 208, 191, 189, 118, 104, 77; HRMS calcd for C24H21NO: 339.1623; found: 339.1604.

1-(4-Bromo-phenylethynyl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline, 3c.

Isolated by Thin Layer Chromatography (Hexane/Methylene Chloride/Diethyl ether = 100:60:1, Rf = 0.5). ¹H NMR (300 MHz, ppm) δ 7.35-7.29(m, 4H), 7.24-7.15(m, 4H), 7.14-7.07(m, 4H), 6.87(dt, *J* = 7.2, 1.2 Hz, 1H), 5.61(s, 1H), 3.77-3.58(m, 2H), 3.13(ddd, *J* = 15.6, 9.9, 5.7 Hz, 1H), 2.95(dt, *J* = 15.9, 4.2 Hz, 1H); ¹³C NMR (75 MHz, ppm) δ 149.29, 134.93, 134.26, 133.06, 131.20, 129.04, 128.85, 127.26, 127.20, 126.20, 122.11, 121.81, 119.64, 116.58, 89.78, 83.67, 52.35,

43.47, 28.94; MS (EI) *m/z* (%) 389, 388(100), 387, 386(100), 373, 360, 307, 284, 258, 206, 182, 153, 140, 75, 50; HRMS calcd for 386.0544; C₂₃H₁₈BrN: 387.0631; found: 387.0623.

Peak	Retention Time, min	Area, %
Major Enantiomer	6.120	93.6750
Minor Enantiomer	7.308	3.1405

Figure 11S. HPLC Chromatogram for the two enantiomers of **1-(4-Bromo-phenylethynyl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline 3c** synthesized according to the procedure described in Table 3, entry 3.

1-(hex-1-yn-1-yl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline, 3d

Isolated by Thin Layer Chromatography (Hexane/Methylene Chloride/Diethyl ether = 100:60:1, Rf = 0.8). ¹H NMR (400 MHz, CDCl₃): δ 7.33- 7.29(m, 3H), 7.24-7.16(m, 3H), 7.09-7.07(m, 2H), 6.87(t, *J* = 7.4 Hz, 1H), 5.43(s, 1H), 3.73-3.69(m, 1H), 3.62-3.55(m, 1H), 3.14-3.06(m, 1H), 2.96-2.91(m, 1H), 2.13-2.09(m, 2H), 1.41-1.38(m, 2H), 1.37-1.24(m, 2H), 0.84-0.81(m, 3H).

¹³C NMR (75 MHz, ppm) δ 149.64, 136.21, 134.13, 129.01, 128.81, 127.30, 126.93, 126.11, 119.32, 116.58, 85.22, 79.08, 51.78, 43,15, 30.77, 28.88, 21.78, 18.44, 13.55. HRMS (ESI) m/z calculated for C21H23N⁺ ([M + H]⁺) 290.19033, found 290.19031.

Peak	Retention Time, min	Area, %
Major Enantiomer	4.275	79.1011
Minor Enantiomer	4.596	16.1434

Figure 12S. HPLC Chromatogram for the two enantiomers of **1-(hex-1-yn-1-yl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline 3d** synthesized according to the procedure described in Table 3, entry 4.

1-(dec-1-yn-1-yl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline, 3e

Isolated by Thin Layer Chromatography (Hexane/Methylene Chloride/Diethyl ether = 100:60:1, Rf = 0.85). ¹H NMR (400 MHz, CDCl₃): δ 7.34- 7.26(m, 3H), 7.24-7.18(m, 3H), 7.11-7.09(d, *J* = 8.0 Hz, 2H), 6.90(t, *J* = 8.0 Hz, 1H), 5.45(s, 1H), 3.77-3.71(m, 1H), 3.66-3.59(m, 1H), 3.17-

3.09(m, 1H), 2.99-2.94(m, 1H), 2.15-2.11(m, 2H), 1.43-1.39(m, 2H), 1.33-1.20(m, 2H), 0.925 (t, J = 7.0 Hz, 3H). ¹³C NMR (75 MHz, ppm) δ 149.62, 136.24, 134.14, 129.03, 128.82, 127.32, 126.96, 126.14, 119.37, 116.60, 85.38, 79.13, 51.80, 43. 22, 31.83, 29.20, 29.05, 28.90, 28.71, 22.69, 18.77, 14.14. HRMS (ESI) *m*/*z* calculated for C25H32N⁺ ([M + H]⁺) 346.25293, found 346.25241.

Peak	Retention Time, min	Area, %
Major Enantiomer	4.009	90.0230
Minor Enantiomer	4.314	8.9096

Figure 13S. HPLC Chromatogram for the two enantiomers of **1-(dec-1-yn-1-yl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline, 3e** synthesized according to the procedure described in Table 3, entry 5.

2-Phenyl-1-trimethylsilanylethynyl-1,2,3,4-tetrahydroisoquinoline, 3f

Isolated by Thin Layer Chromatography (Hexane/Methylene Chloride/Diethyl ether = 100:60:1, Rf = 0.8). ¹H NMR (400 MHz, ppm) δ 7.29-7.25(m, 3H), 7.21-7.13(m, 3H), 7.04(d, *J* = 6.0 Hz, 2H), 6.86(t, *J* = 5.4 Hz, 1H), 5.40(s, 1H), 3.69-3.64(m, 1H), 3.60-3.54(m, 1H), 3.09(ddd, *J* = 16.2, 10.2, 6.0 Hz, 1H), 2.91(dt, *J* = 16.0, 3.6 Hz, 1H), 0.05(s, 9H); ¹³C NMR (100 MHz, ppm) δ 149.37, 135.04, 134.17, 128.85, 128.73, 127.29, 126.97, 126.04, 119.52, 116.80, 104.61, 88.98, 52.72, 43.38, 28.87, 0.13; HRMS calcd for C20H23NSi: 305.1600; found: 305.1611.

Peak	Retention Time, min	Area, %		
Major Enantiomer	7.286	72.5227		
Minor Enantiomer	7.669	18.4973		

Figure 14S. HPLC Chromatogram for the two enantiomers of 2-Phenyl-1trimethylsilanylethynyl-1,2,3,4-tetrahydroisoquinoline 3f synthesized according to the procedure described in Table 3, entry 6.

1-([1,1'-biphenyl]-4-yl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline, 3g

Isolated by Thin Layer Chromatography (Hexane/Ethyl Acetate = 10:1, Rf = 0.4).¹H NMR (400 MHz, ppm) δ 7.56-7.54(m, 2H), 7.49-7.32(m, 10H), 7.28-7.22(m, 3H), 7.17-7.15(m, 2H), 6.91(t, J = 7.4, 1H), 5.68(s, 1H), 3.78-3.70(m, 2H), 3.17-3.14(m, 1H), 3.04-2.90(m, 1H); ¹³C NMR (75 MHz, ppm) δ 149.55, 140.75, 140.36, 135.37, 134.39, 132.16, 129.15, 128.95, 128.81, 127.55, 127.44, 127.24, 126.98, 126.76, 126.29, 121.91, 119.68, 118.15, 116.74, 89.28, 84.65, 52.40, 43.47, 28.92.

Peak	Retention Time, min	Area, %		
Major Enantiomer	7.286	80.002		
Minor Enantiomer	8.380	7.212		

Figure 15S. HPLC Chromatogram for the two enantiomers of **1-([1,1'-biphenyl]-4-yl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline**, **3g** synthesized according to the procedure described in Table 3, entry 7.

2-(3-methoxyphenyl)-1-(phenylethynyl)-1,2,3,4-tetrahydroisoquinoline, 3h

Isolated by Thin Layer Chromatography Hexane/Methylene Chloride/Diethyl ether = 100:60:1, Rf = 0.5). ¹H NMR (400 MHz, ppm) δ 7.39-7.36(m, 1H), 7.34-7.31(m, 2H), 7.27-7.19(7H), 6.75-6.73(m, 1H), 6.70-6.69(m, 1H), 6.48-6.45(m, 1H), 5.65(s, 1H), 3.83(s, 3H), 3.79-3.71(m, 2H), 3.19-3.11(m, 1H), 3.03-2.96(m, 1H). ¹³C NMR (75 MHz, ppm) 160.63, 150.79, 135.36, 134.42, 131.75, 129.81, 128.88, 128.07, 128.03, 127.38, 127.24, 126.31, 122.98, 109.23, 104.48, 102.84, 88.52, 84.72, 55.24, 52.17, 43.52, 28.84.

Peak	Retention Time, min	Area, %		
Major Enantiomer	10.187	95.7409		
Minor Enantiomer	12.301	2.9895		

Figure 16S. HPLC Chromatogram for the two enantiomers of **2-(3-methoxyphenyl)-1-(phenylethynyl)-1,2,3,4-tetrahydroisoquinoline, 3h** synthesized according to the procedure described in Table 3, entry 8.

1-(hex-1-yn-1-yl)-2-(3-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline, 3i

Isolated by Thin Layer Chromatography Hexane/Methylene Chloride/Diethyl ether = 100:60:1, Rf = 0.6). ¹H NMR (300 MHz, ppm) δ 7.31-7.14(m, 5H), 6.69-6.62(m, 2H), 6.45-6.41(m, 1H), 5.41(s, 1H), 3.82(s, 3H), 3.72-3.67(m, 1H), 3.61-3.14(m, 1H), 3.12-3.04(m, 1H), 2.97-2.89(m, 1H), 2.14-2.08(m, 2H), 1.41-1.24(m, 4H), 0.83(t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, ppm) 160.57, 150.92, 136.15, 134.17, 129.66, 128.76, 127.26, 126.96, 126.14, 109.21, 104.21, 102.75, 85.18, 79.05, 55.18, 51.69, 43.24, 30.78, 28.81, 21.81, 18.46, 13.55.

Peak	Retention Time, min	Area, %		
Major Enantiomer	6.291	93.2168		
Minor Enantiomer	8.178	5.0439		

Figure 17S. HPLC Chromatogram for the two enantiomers of **1-(hex-1-yn-1-yl)-2-(3-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline, 3i** synthesized according to the procedure described in Table 3, entry 9.

1-((4-methoxyphenyl)ethynyl)-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline, 3j

Isolated by Thin Layer Chromatography Hexane/Methylene Chloride/Diethyl ether = 100:60:1, Rf = 0.7). ¹H NMR (400 MHz, ppm) δ 7.37-7.34(m, 1H), 7.24-7.17(m, 5H), 7.14-7.11(m, 2H), 7.06-7.04(m, 2H), 6.75-6.72(m, 2H), 5.57(s, 1H), 3.76(s, 1H), 3.71-3.62(m, 2H), 319-3.11(m, 1H), 2.98-2.92(m, 1H), 2.33(s, 3H). ¹³C NMR (75 MHz, ppm) 159.34, 154.36, 135.58, 134.17, 133.13, 129.61, 128.95, 127.46, 127.11, 126.16, 117.54, 115.18, 113.66, 86.94, 85.03, 55.22, 53.06, 43.80, 28.83, 20.52.

Peak	Retention Time, min	Area, %		
Major Enantiomer	6.170	83.4949		
Minor Enantiomer	7.816	2.4972		

Figure 18S. HPLC Chromatogram for the two enantiomers of **1**-((**4-methoxyphenyl)ethynyl)-2**-(**p-tolyl)-1,2,3,4-tetrahydroisoquinoline, 3j** synthesized according to the procedure described in Table 3, entry 10.

2-(4-bromophenyl)-1-(hex-1-yn-1-yl)-1,2,3,4-tetrahydroisoquinoline, 3k

Isolated by Thin Layer Chromatography Hexane/Methylene Chloride/Diethyl ether = 100:60:1, Rf = 0.7). ¹H NMR (500 MHz, ppm) δ 7.40-7.38(m, 2H), 7.31-7.28(m, 1H), 7.24-7.23(m, 2H), 7.22-7.18(m,1H), 6.97-6.95(m, 2H), 5.38(s, 1H), 3.66-3.59(m, 1H), 3.58-3.54(m, 1H), 3.11-3.08(m, 1H), 2.99-2.95(m, 1H), 2.13-2.11(m, 2H), 1.41-1.36(m, 2H), 1.31-1.26(m, 2H), 0.85(t, , J = 10 Hz, 3H). ¹³C NMR (125 MHz, ppm) δ 148.49, 135.69, 133.86, 131.79, 128.79, 127.29, 127.14, 126.28, 118.21, 111.65, 85.63, 78.54, 51.74, 43.34, 30.73, 28.73, 21.80, 18.41, 13.55.

Figure 19S. HPLC Chromatogram for the two enantiomers of 2-(4-bromophenyl)-1-(hex-1-yn-1-yl)-1,2,3,4-tetrahydroisoquinoline, 3k synthesized according to the procedure described in Table 3, entry 11.

2-(4-bromophenyl)-1-((4methoxyphenyl)ethynyl)-1,2,3,4-tetrahydroisoquinoline, 31

Isolated by Thin Layer Chromatography (Hexane/Methylene Chloride/Diethyl ether = 100:60:1, Rf = 0.6). 1H NMR (400 MHz, ppm) δ 7.44-7.33(m, 3H), 7.25-7.18(m, 5), 7.01-6.98(m, 2H), 6.77-5.56(m, 2H), 5.56(s, 1H), 3.77(s, 3H), 3.73-3.69(m, 2H), 3.17-3.01(m, 1H), 3.00-2.96(m, 1H). ¹³C NMR (100 MHz, ppm) δ 159.53, 148.41, 135.16, 134.09, 133.60, 133.17, 131.88, 128.86, 127.40, 127.33, 126.39, 118.22, 114.84, 113.76, 86.43, 84.91, 55.26, 52.19, 43.59, 28.76.

Figure 20S. HPLC Chromatogram for the two enantiomers of **2-(4-bromophenyl)-1-**((**4methoxyphenyl)ethynyl)-1,2,3,4-tetrahydroisoquinoline, 3l** synthesized according to the procedure described in Table 3, entry 12.

2-(2-Methoxy-phenyl)-1-phenylethynyl-1,2,3,4-tetrahydroisoquinoline, (3m).

Isolated by Thin Layer Chromatography (Hexane/Methylene Chloride/Diethyl ether = 100:60:1, Rf = 0.3). ¹H NMR (400 MHz, ppm) δ 7.32-7.30(m, 1H), 7.22-7.15(m, 9H), 7.05(dt, J = 7.6, 1.6 Hz, 1H), 6.96(dt, J = 7.6, 1.6 Hz, 1H), 6.89(dd, J = 8.0, 0.8 Hz, 1H), 5.74(s, 1H), 3.87(s, 3H), 3.68(dt, J = 11.6, 4.0 Hz, 1H), 3.43(dd, J = 11.6, 11.6 Hz, 1H), 3.24(ddd, J = 16.8, 11.2, 5.6 Hz, 1H), 2.90(dt, J = 16.4, 2.4 Hz, 1H); ¹³C NMR (100 MHz, ppm) δ 159.10, 149.32, 135.40, 134.14, 132.93, 128.92, 128.70, 127.23, 126.94, 126.04, 119.34, 116.46, 114.95, 113.54, 87.03, 84.52, 55.17, 52.25, 43.41, 28.95; MS (EI) m/z (%) 339, 338, 322, 308(100), 293, 262, 246, 232, 217, 203, 202, 189, 165, 152, 115, 92, 91, 77, 64; HRMS calcd for C24H20NO: 339.1623; found: 339.1627.

Figure 21S. HPLC Chromatogram for the two enantiomers of **2-(2-methoxyphenyl)-1-(phenylethynyl)-1,2,3,4-tetrahydroisoquinoline, 3m** synthesized according to the procedure described in Table 3, entry 13.

8. Effect of conditions on the enantioselectivity of coupling of *N*-aryl-1,2,3,4-tetrahydroisoquinolines with phenylacetylene

Table S1. Photoredox catalyzed synthesis of chiral 2-(2-methoxyphenyl)-1-(phenylethynyl)-1,2,3,4-tetrahydroisoquinoline, 3m.

^a Conditions: 0.1 mmol *N*-(2-methoxyphenyl)-tetrahydroisoquinoline, 0.15 mmol phenylacetylene, 1 mol % [Ir(ppy)₂(d/bbpy)PF₆, 10 mol % Copper Salt, 15 mol % chiral ligand (**L**) and 0.12 mmol (BzO)₂ or ballon with O₂, CH₃CN/THF (1:1), 48 h, 4° C. The yield was calculated by ¹H NMR integration method using CH₃NO₂ as an internal standard. ^b The desired product was not detected. ^c Detected by GCMS (dominant peak in the chromatogram) calculated for C₁₆H₁₅NO [M] 253, found 253. Molecular weight of **4** was confirmed by HRMS (ESI): *m/z* calculated for C₁₆H₁₅NNaO₂⁺ ([M + Na]⁺) 276.0995, found 276.1001.

Table S2. Effect of conditions on the enantioselectivity of coupling of N-benzene tetrahydroisoquinoline with phenylacetylene.

Entry ^a	PhotoCat	CuCat,	Ligand	Solvent	ee (%)	
	(1 mol %)		_			
1	$Ru(bpy)_3(PF6)_2$	none	PyBox	CH ₃ CN	ND^{b}	
2	$Ru(bpy)_3(PF6)_2$	CuBr	none	CH ₃ CN	5.0	
3	none	CuBr	R-Quinap	THF	80(24)	

^a Conditions: 0.1 mmol *N*-phenyl-tetrahydroisoquinoline, 0.1 mmol phenylacetylene, 10 mol % Copper Salt, 15 mol % chiral ligand (**L**) and 0.12 mmol (BzO)₂, 20 h. The *ee* values were determined with HPLC by using a Chiral cel OD-H column and 4:96 hexane/isopropanol as an eluent. The yield in parenthesis was calculated by ¹H NMR integration method using CH₃NO₂ as an internal standard. ^b The desired product was not detected. ^c The reaction was done in dark at 4 [°]C.

Table S3. Effect of conditions on the enantioselectivity of coupling of N-benzene tetrahydroisoquinoline with phenylacetylene.

Entry ^a	PhCCH,	Ligand,	Time, h	Yield, %	ee, %	
	equiv.	mol %				
1	1	15	46	53	92	
2	1	20	91	51	93	
3	1.5	15	91	64	93	
4	3	15	46	47	94	

^a Conditions: 0.1 mmol *N*-phenyl-tetrahydroisoquinoline, 10 mol % Copper Salt, 1 mol % $[Ir(ppy)_2(dtbpy)PF_6]$, and 0.12 mmol (BzO)₂. ^d The *ee* values were determined with HPLC by using a Chiral cel OD-H column and 4:96 hexane/isopropanol as an eluent. The yields were calculated by ¹H NMR integration method using CH₃NO₂ as an internal standard.

- ^{iv} Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Org. Lett. 2002, 4, 581–584.
- ^v Palmer, R.A.; Piper T. S. Inorg. Chem. **1966**, 5 (5), 864-878.
- ^{vi} Slinker, J. D.; Gorodetsky, A. A.; Lowry, M. S.; Wang, J.; Parker, S.; Rohl, R.; Bernhard, S.; Malliaras, G. G. J. *Am. Chem. Soc.* **2004**, *126*, 2763.
- ^{vii} Sprouse, S.; K. A. King, K. A.; P. J. Spellane, P. J.; Watts, R. J. J. Am. Chem. SOC. 1984, 106, 6647-665.
- ^{viii} Zeng, T.; Song, G.; Moores, A.; Li, C.-J. *Synlett.* **2010**, *13*, pp 2002–2008
- ^{ix} Morrison, J. D.; Mosher, H. S. Asymmetric Organic Reactions; Prentice Hall: Englewood Cliffs, NJ, 1971.

ⁱ Perrin, D.D.; Armarego, W. L. F. in *Purification of laboratory Chemicals*. Pergamon Press plc. Great Britain by BPCC Wheatons Ltd, 3rd ed. **1989**.

ⁱⁱ Zhiping Li, Z.; MacLeod, P. D.; Li, C.-J. *Tetrahedron Lett.* **2002**, *43*, 5731.

^{III} Rueping, M.; Koenigs, R. M.; Poscharny, K.; Fabry, D. C.; Leonori, D.; Carlos Vila, C. *Chem. Eur. J.* **2012,** 18, 5170.

с С

 3 С

ppm

	Current Data Parameters NAME 435-C EXPNO 2 PROCNO 1	F2 - Acquisition Parameters Date20140828 17.44 INSTRUM AVII400HD PROBHD 5 mm PABBO BB/ PULPROG zgpg30 T DFNT CDO(3 SOU VENT CDO(3)	NS 1024 DS 1024 SWH 24038.451 Hz SWH 24038.451 Hz AQ 1365798 Hz AQ 13651488 sec FIDRES 0.366798 Hz 202.76 DW 202.800 usec DE 202.57 usec DE 22.57 usec DE 22.57 usec DI 2.0000000 sec	TD0 1 ECHANNEL f1 EFC1 100.6781539 MHz NUC1 13C P1 10.00 usec P1 10.00 usec P1 67.00000000 W	CPUC2 400.3516014 MHz SFO2 400.3516014 MHz CPDPRG[2 valiz16 PCPD2 90.00 usec PLW2 18.0799992 W PLW13 0.15738000 W PLW13 0.15738000 W	F2 - Processing parameters SI 32768 SF 100.6680880 MHz WDW SSB 0 SSB 0	LB 1.00 Hz GB 0 1.40 PC 1.40		
١		4171							bpm
36		88.16 05.05 20.05							30
									40
		08.13							50
									60
									20
									80
		82'38							06
									100
									110
		09'911 28'611							120
		41.461 41.60 4							130
		136.24							140
	430-C	29.641							150

n Jo

ω ••

