Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Supporting information

1-Trifluoromethylated Isoquinolines *via* Radical Trifluoromethylation of Isonitriles

Bo Zhang and Armido Studer*

Institute of Organic Chemistry, Westfälische Wilhelms-University Münster, Corrensstrasse 40, 48149 Münster, Germany

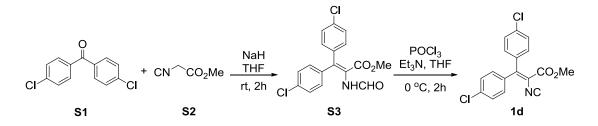
Fax: +49 (0)251 8336523; E-mail: studer@uni-muenster.de

Table of contents

General	S2
Synthesis of β -aryl- α -isocyano-acrylates	S 3
General procedure for the preparation of 1-trifluoromethylated isoquinolines	S 7
Physical data of the compounds	S 7
Lager scale experiment	S19
The reduction of 1a	S20
Mechanistic study	S21
References	S22
NMR spectra	S23

General

All manipulations were conducted with a standard *Schlenk* tube under Ar. All solvents and chemicals were used as received from the suppliers (*Alfa, Acros, Aldrich, ABCR, Fluka*).

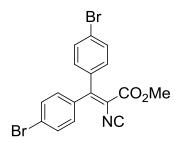

Solvents for flash column chromatography (FC) and extractions have been distilled once. FC was performed using silica gel 60 (40-63 μ m, *Merck*). Thin layer chromatography (TLC) was performed using silica gel 60 F₂₅₄ plates from *Merck*.

¹H NMR spectra were recorded on a *Bruker DPX-300* spectrometer or *AV-400* spectrometer at room temperature. Chemical shifts (in ppm) were referenced to tetramethylsilane ($\delta = 0$ ppm) in CDCl₃ as an internal standard. ¹³C NMR spectra were obtained by the same NMR spectrometer and were calibrated with CDCl₃ ($\delta = 77.00$ ppm). ¹⁹F NMR spectra were obtained by the same NMR spectrometer and using CFCl₃ as external standard. Data for ¹H NMR are reported as follows: chemical shifts (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant (Hz), integration and assignment. Data for ¹³C NMR are reported in terms of chemical shift and multiplicity where appropriate. IR-spectra were recorded on a *Digilab Excalibur FTS 4000* device equipped with a *MKII Golden Gate Single Reflection ATR System*. Mass spectra were performed on a *Bruker Daltronics MicroTof*, a *Waters-Micromass Quatro LCZ* or an *Orbitrap LTQ XL* for ESI-MS and HRMS.

Synthesis of vinyl isonitriles:

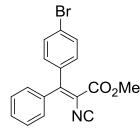
All β -aryl- α -isocyano-acrylates were prepared according to reported methods.^{1,2}

A typical procedure (synthesis of 1d) is shown below:

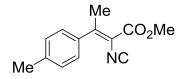

Methyl 3,3-bis(4-chlorophenyl)-2-isocyanoacrylate (1d)

A mixture of bis(4-chlorophenyl)methanone **S1** (2.51 g, 10.0 mmol) and methyl isocyanoacetate **S2** (0.99 g, 10.0 mmol) in THF (10.0 mL) was added dropwise to a suspension of NaH (60% in oil) (0.48 g, 12.0 mmol) in THF (10.0 mL) at room temperature and the mixture was stirred for 2 h at room temperature. 10% AcOH was added to the mixture at 0 °C until there is no hydrogen release. The solvent was removed under reduced pressure and the residue was extracted with CH_2Cl_2 three times. The combined organic layer was dried over anhydrous MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by flash column chromatography on silica gel by using a 1:1 mixture of pentane/EtOAc as an eluent to provide analytical pure product **S3** as a white solid (2.44 g, 70%);

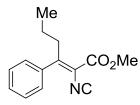
A THF solution (10.0 mL) of **S3** (1.75 g, 5.0 mmol) and NEt₃ (5.6 mL, 40 mmol) was cooled to 0 °C. Then, POCl₃ (0.93 mL, 10.0 mmol) was added dropwise and the mixture was stirred at 0 °C for 2 h. After the reaction was completed, the mixture was quenched by aqueous saturated Na₂CO₃ solution and stirred for 1 h. The mixture was extracted with CH₂Cl₂ three times. The combined organic layer was dried over anhydrous MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by flash column chromatography on silica gel by using a 10:1 mixture of pentane/EtO₂ as an eluent to provide analytical pure product **1d** as yellow solid (1.49 g, 90% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.46 (m, 2H, Ar-*H*), 7.44-7.41 (m, 2H, Ar-*H*), 7.15-7.12 (m, 2H, Ar-*H*), 6.93-6.90 (m, 2H, Ar-*H*), 3.64 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 171.0 (*C*), 161.2 (*C*), 152.1 (*C*), 136.0 (*C*), 135.7 (*C*), 131.9 (2×CH), 131.6 (2×CH), 131.4 (2×CH), 130.6 (2×CH), 125.2 (*C*), 124.4 (*C*), 114.0 (*C*), 53.1 (*C*H₃); **IR** (neat): 2952, 2113, 1731, 1585, 1468, 1435, 1396, 1324, 1255, 1117, 1072, 1011, 914, 823, 731; **HRMS** (ESI) calculated for


 $C_{17}H_{11}Cl_2NO_2Na [M+Na]^+ m/z 354.0059$, found 354.0060.

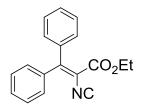
Methyl 3,3-bis(4-bromophenyl)-2-isocyanoacrylate (1e)


This compound was prepared via the same procedure described for **1d**, except that bis(4-bromophenyl)methanone was used in place of bis(4-chlorophenyl)methanone. **1e** was obtained in 60% yield over two steps as yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.30 (m, 2H, Ar-*H*), 7.29-7.25 (m, 2H, Ar-*H*), 7.22-7.19 (m, 2H, Ar-*H*), 7.00-6.97 (m, 2H, Ar-*H*), 3.64 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 170.9 (*C*), 161.7 (*C*), 152.0 (*C*), 136.7 (*C*), 136.1 (*C*), 135.6 (*C*), 135.3 (*C*), 131.2 (2×CH), 130.5 (2×CH), 128.9 (2×CH), 128.7 (2×CH), 114.1 (*C*), 53.1 (CH₃); **IR** (neat): 2952, 2113, 1730, 1589, 1489, 1435, 1400, 1324, 1253, 1116, 1090, 1014, 913, 826, 731; **HRMS** (ESI) calculated for C₁₇H₁₁Br₂NO₂Na [M+Na]⁺ m/z 441.9049, found 441.9037.

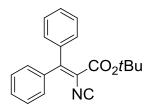
(E)-Methyl 3-(4-bromophenyl)-2-isocyano-3-phenylacrylate (1g)


This compound was prepared via the same procedure described for **1d**, except that (4-bromophenyl)(phenyl)methanone was used in place of bis(4-chlorophenyl)methanone. **1g** was obtained in 43% yield over two steps as yellow solid. ¹**H NMR** (300 MHz, CDCl₃) δ 7.43-7.39 (m, 2H, Ar-*H*), 7.34-7.30 (m, 3H, Ar-*H*), 7.26-7.23 (m, 2H, Ar-*H*), 6.95-6.90 (m, 2H, Ar-*H*), 3.63 (s, 3H, CH₃); ¹³**C NMR** (75 MHz, CDCl₃) δ 170.6 (*C*), 161.8 (*C*), 153.4 (*C*), 136.9 (*C*), 136.6 (*C*), 131.5 (2×CH), 130.6 (2×CH), 130.4 (CH), 129.7 (2×CH), 128.5 (2×CH), 124.0 (*C*), 114.0 (*C*), 52.9 (*C*H₃); **IR** (neat): 2952, 2112, 1729, 1585, 1484, 1435, 1327, 1252, 1115, 1071, 1010, 909, 822, 731, 698; **HRMS** (ESI) calculated for C₁₇H₁₂NO₂BrNa [M+Na]⁺ m/z 363.9944, found 363.9951.

(Z)-Methyl 2-isocyano-3-(p-tolyl)but-2-enoate (1i)


This compound was prepared via the same procedure described for **1d**, except that 1-(p-tolyl)ethanone was used in place of bis(4-chlorophenyl)methanone. **1i** was obtained in 47% yield over two steps as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, *J* = 8.2 Hz, 2H, Ar-*H*), 7.15 (d, *J* = 8.2 Hz, 2H, Ar-*H*), 3.79 (s, 3H, CH₃), 2.46 (s, 3H, CH₃), 2.29 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 167.9 (*C*), 161.8 (*C*), 156.1 (*C*), 139.6 (*C*), 136.3 (*C*), 129.1 (2×*C*H), 127.0 (2×*C*H), 114.0 (*C*), 52.7 (*C*H₃), 21.5 (*C*H₃), 21.2 (*C*H₃); **IR** (neat): 2954, 2114, 1727, 1602, 1511, 1435, 1254, 1122, 1072, 1052, 817; **HRMS** (ESI) calculated for C₁₃H₁₃NO₂Na [M+Na]⁺ m/z 238.0838, found 238.0853.

(Z)-Methyl 2-isocyano-3-phenylhex-2-enoate (1j)


This compound was prepared via the same procedure described for **1d**, except that 1-phenylbutan-1-one was used in place of bis(4-chlorophenyl)methanone. **1j** was obtained in 45% yield over two steps as yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.38-7.30 (m, 3H, Ar-*H*), 7.23-7.17 (m, 2H, Ar-*H*), 3.79 (s, 3H, C*H*₃), 2.89-2.84 (m, 2H, C*H*₂), 1.38-1.26 (m, 2H, C*H*₂), 0.82 (t, *J* = 7.4 Hz, 3H, C*H*₃); ¹³C NMR (75 MHz, CDCl₃) δ 168.1 (*C*), 161.5 (*C*), 160.5 (*C*), 138.2 (*C*), 129.1 (*C*H), 128.5 (2×CH), 127.0 (2×CH), 114.7 (*C*), 52.7 (*C*H₃), 35.9 (*C*H₂), 21.4 (*C*H₂), 13.7 (*C*H₃); **IR** (neat): 2960, 2115, 1729, 1597, 1436, 1255, 1130, 1090, 770, 701; **HRMS** (ESI) calculated for C₁₄H₁₅NO₂Na [M+Na]⁺ m/z 252.0995, found 252.0991.

Ethyl 2-isocyano-3,3-diphenylacrylate (1n)

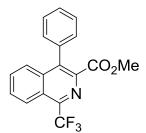
This compound was prepared via the same procedure described for **1d**, except that ethyl 2-cyanoacetate was used in place of isocyanoacetate. **1n** was obtained in 68% yield over two steps as yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.21-7.11 (m, 8H, Ar-*H*), 6.95-6.91 (m, 2H, Ar-*H*), 3.90 (q, *J* = 7.1 Hz, 2H, Ar-*H*), 0.85 (t, *J* = 7.1 Hz, 3H, Ar-*H*); ¹³C NMR (75 MHz, CDCl₃) δ 169.7 (*C*), 161.9 (*C*), 153.7 (*C*), 138.0 (*C*), 137.3 (*C*), 130.1 (*C*H), 129.8 (2×*C*H), 129.4 (*C*H), 129.0 (2×*C*H), 128.4 (2×*C*H), 128.1 (2×*C*H), 114.3 (*C*), 62.1 (*C*H₂), 13.5 (*C*H₃); **IR** (neat): 3058, 2983, 2111, 1724, 1590, 1491, 1445, 1368, 1251, 1111, 1016, 763, 698; **HRMS** (ESI) calculated for C₁₈H₁₅NO₂Na [M+Na]⁺ m/z 300.0995, found 300.0991.

tert-Butyl 2-isocyano-3,3-diphenylacrylate (10)

This compound was prepared via the same procedure described for **1d**, except that *tert*-butyl 2-cyanoacetate was used in place of isocyanoacetate. **1o** was obtained in 70% yield over two steps as yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 7.42-7.32 (m, 8H, Ar-*H*), 7.16-7.13 (m, 2H, Ar-*H*), 1.28 (s, 9H, 3×CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 169.3 (*C*), 160.9 (*C*), 152.0 (*C*), 138.4 (*C*), 137.5 (*C*), 129.9 (CH), 129.8 (2×CH), 129.2 (3×CH), 128.3 (2×CH), 128.2 (2×CH), 116.0 (*C*), 83.4 (*C*), 27.4 (3×CH₃); **IR** (neat): 3059, 2981, 2112, 1721, 1590, 1491, 1332, 1277, 1163, 1118, 842, 753, 698; **HRMS** (ESI) calculated for C₂₀H₁₉NO₂Na [M+Na]⁺ m/z 328.1308, found 328.1305.

General procedure for the preparation of 1-trifluoromethylated isoquinolines:

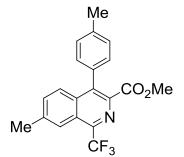
Method A:


 β -Aryl- α -isocyano-acrylate **1** (0.2 mmol, 1.0 equiv), *Togni*-reagent **2**³ (0.3 mmol, 1.5 equiv), and Bu₄NI (0.01 mmol, 0.05 equiv) were placed in a dry *Schlenk* tube under argon. Dry 1,4-dioxane (1.0 mL) was added and the reaction mixture was stirred at 80 °C for 3 h and the reaction was monitored by TLC. The crude reaction mixture was purified by flash column chromatography on silica gel to afford the product.

Method B:

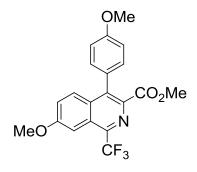
 β -Aryl- α -isocyano-acrylate **1** (0.2 mmol, 1.0 equiv), *Togni*-reagent **2** (0.4 mmol, 2.0 equiv), and Bu₄NI (0.01 mmol, 0.05 equiv) were placed in a dry *Schlenk* tube under argon. Dry 1,4-dioxane (1.0 mL) was added and the reaction mixture was stirred at 80 °C for 6 h and the reaction was monitored by TLC. The crude reaction mixture was purified by flash column chromatography on silica gel to afford the product.

Physical data of the compounds


Methyl 4-phenyl-1-(trifluoromethyl)isoquinoline-3-carboxylate (3a)

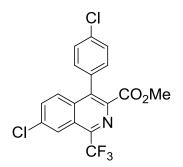
According to **method A** with methyl 2-isocyano-3,3-diphenylacrylate **1a** (53.4 mg, 0.20 mmol, 1.0 equiv), *Togni*-reagent **2** (95.6 mg, 0.30 mmol, 1.5 equiv) and Bu₄NI (3.8 mg, 10 µmol, 0.05 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (pentane/diethyl ether = 10/1) to afford the desired product **3a** as white solid (52.5 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 8.34-8.31 (m, 1H, Ar-*H*), 7.75-7.70 (m, 1H, Ar-*H*), 7.67-7.66 (m, 2H, Ar-*H*), 7.46-7.42 (m, 3H, Ar-*H*), 7.27-7.25 (m, 2H, Ar-*H*), 3.63 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 166.4 (*C*), 145.6 (q, *J* = 33.8 Hz, *C*), 140.0 (*C*), 137.5 (*C*), 137.1 (*C*), 134.9 (*C*), 131.4

(CH), 129.9 (CH), 129.4 (CH), 128.5 (CH), 128.4 (CH), 127.4 (CH), 125.0 (C), 124.7 (q, J = 3.1 Hz, CH), 121.8 (q, J = 275.0 Hz, CF₃), 52.6 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ -62.77 (s, 3F, CF₃); **IR** (neat): 2953, 1738, 1440, 1401, 1240, 1179, 1126, 1003, 771, 701 cm⁻¹; **HRMS** (ESI) calculated for C₁₈H₁₂NO₂F₃Na [M+Na]⁺ m/z 354.0712, found 354.0708.


Methyl 7-methyl-4-(p-tolyl)-1-(trifluoromethyl)isoquinoline-3-carboxylate (3b)

According to **method A** with methyl 2-isocyano-3,3-di-*p*-tolylacrylate **1b** (58.9 mg, 0.20 mmol, 1.0 equiv), *Togni*-reagent **2** (95.7 mg, 0.30 mmol, 1.5 equiv) and Bu₄NI (3.7 mg, 10 µmol, 0.05 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (pentane/diethyl ether = 10/1) to afford the desired product **3b** as pale yellow solid (52.1 mg, 73%). ¹**H NMR** (300 MHz, CDCl₃) δ 8.05 (s, 1H, Ar-*H*), 7.58 (d, *J* = 9.0 Hz, 1H, Ar-*H*), 7.47 (dd, *J* = 8.9, 1.4 Hz, 1H, Ar-*H*), 7.24 (d, *J* = 7.8 Hz, 2H, Ar-*H*), 7.13 (d, *J* = 8.1 Hz, 2H, Ar-*H*), 3.66 (s, 3H, CH₃), 2.53 (s, 3H, CH₃), 2.38 (s, 3H, CH₃); ¹³**C NMR** (75 MHz, CDCl₃) δ 166.6 (*C*), 144.6 (q, *J* = 33.7 Hz, *C*), 140.5 (*C*), 139.2 (*C*), 138.2 (*C*), 137.7 (*C*), 135.5 (*C*), 133.6 (*C*H), 121.9 (q, *J* = 274.9 Hz, CF₃), 52.6 (CH₃), 22.2 (CH₃), 21.4 (CH₃); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.83 (s, 3F, CF₃); **IR** (neat): 2952, 1737, 1439, 1397, 1236, 1176, 1118, 1010, 976, 818, 757, 696 cm⁻¹; **HRMS** (ESI) calculated for C₂₀H₁₆NO₂F₃Na [M+Na]⁺ m/z 382.1025, found 382.1029.

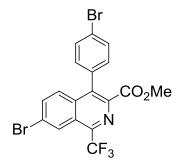
Methyl 7-methoxy-4-(4-methoxyphenyl)-1-(trifluoromethyl)isoquinoline-3-


carboxylate (3c)

According to **method A** with methyl 2-isocyano-3,3-bis(4-methoxyphenyl)acrylate **1c** (65.5 mg, 0.20 mmol, 1.0 equiv), *Togni*-reagent **2** (95.5 mg, 0.30 mmol, 1.5 equiv) and Bu₄NI (3.8 mg, 10 µmol, 0.05 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (pentane/diethyl ether = 5/1) to afford the desired product **3c** as white solid (52.1 mg, 67%). ¹**H** NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 9.6 Hz, 1H, Ar-*H*), 7.52-7.48 (m, 1H, Ar-*H*), 7.29 (dd, *J* = 9.6, 2.4 Hz, 1H, Ar-*H*), 7.19-7.15 (m, 2H, Ar-*H*), 6.98-6.95 (m, 2H, Ar-*H*), 3.93 (s, 3H, CH₃), 3.82 (s, 3H, CH₃), 3.67 (s, 3H, CH₃); ¹³**C** NMR (100 MHz, CDCl₃) δ 166.7 (*C*), 160.2 (*C*), 159.7 (*C*), 143.4 (q, *J* = 33.5 Hz, *C*), 138.4 (*C*), 137.6 (*C*), 132.9 (*C*), 130.6 (*C*H), 129.1 (*C*H), 127.2 (*C*), 126.9 (*C*), 124.3 (*C*H), 122.0 (q, *J* = 274.7 Hz, CF₃), 113.8 (*C*H), 102.3 (q, *J* = 3.1 Hz, CH), 55.6 (CH₃), 55.3 (CH₃), 52.6 (CH₃); ¹⁹**F** NMR (282 MHz, CDCl₃) δ -63.59 (s, 3F, CF₃); **IR** (neat): 2952, 1734, 1613, 1517, 1418, 1290, 1229, 1173, 1119, 1030, 837 cm⁻¹; **HRMS** (ESI) calculated for C₂₀H₁₆NO₄F₃Na [M+Na]⁺ m/z 414.0924, found 414.0918.

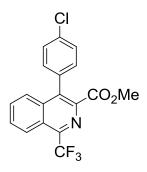
Methyl 7-chloro-4-(4-chlorophenyl)-1-(trifluoromethyl)isoquinoline-3-

carboxylate (3d)

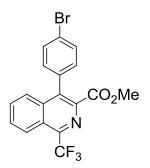


According to **method A** with methyl 3,3-bis(4-chlorophenyl)-2-isocyanoacrylate **1d** (66.9 mg, 0.20 mmol, 1.0 equiv), *Togni*-reagent **2** (95.6 mg, 0.30 mmol, 1.5 equiv)

and Bu₄NI (3.8 mg, 10 μmol, 0.05 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (pentane/diethyl ether = 10/1) to afford the desired product **3d** as pale yellow solid (57.5 mg, 72%). ¹**H NMR** (300 MHz, CDCl₃) δ 8.29-8.28 (m, 1H, Ar-*H*), 7.63 (dd, J = 9.2, 2.0 Hz, 1H, Ar-*H*), 7.57 (d, J = 9.0 Hz, 1H, Ar-*H*), 7.46-7.42 (m, 2H, Ar-*H*), 7.21-7.17 (m, 2H, Ar-*H*), 3.69 (s, 3H, C*H*₃); ¹³**C NMR** (75 MHz, CDCl₃) δ 165.8 (*C*), 145.0 (q, J = 34.3 Hz, *C*), 140.1 (*C*), 136.7 (*C*), 136.4 (*C*), 135.4 (*C*), 135.0 (*C*), 132.9 (*C*), 132.8 (*C*H), 130.7 (*C*H), 128.9 (*C*H), 128.8 (*C*H), 125.5 (*C*), 123.8 (q, J = 3.4 Hz, *C*H), 121.4 (q, J = 275.0 Hz, *C*F₃), 52.8 (*C*H₃); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -63.00 (s, 3F, C*F*₃); **IR** (neat): 2954, 1737, 1497, 1440, 1393, 1238, 1178, 1127, 1009, 978, 838 cm⁻¹; **HRMS** (ESI) calculated for C₁₈H₁₀NO₂Cl₂F₃Na [M+Na]⁺ m/z 421.9933, found 421.9935.

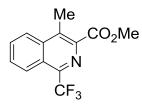

Methyl 7-bromo-4-(4-bromophenyl)-1-(trifluoromethyl)isoquinoline-3-

carboxylate (3e)

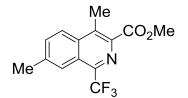

According to **method A** with methyl 3,3-bis(4-bromophenyl)-2-isocyanoacrylate **1e** (84.8 mg, 0.20 mmol, 1.0 equiv), *Togni*-reagent **2** (95.5 mg, 0.30 mmol, 1.5 equiv) and Bu₄NI (3.7 mg, 10 µmol, 0.05 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (pentane/diethyl ether = 10/1) to afford the desired product **3e** as pale yellow solid (72.1 mg, 74%). ¹**H NMR** (300 MHz, CDCl₃) δ 8.47-8.46 (m, 1H, Ar-*H*), 7.76 (dd, *J* = 9.0, 1.8 Hz, 1H, Ar-*H*), 7.62-7.58 (m, 2H, Ar-*H*), 7.49 (d, *J* = 9.3 Hz, 1H, Ar-*H*), 7.15-7.10 (m, 2H, Ar-*H*), 3.70 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 165.8 (*C*), 144.9 (q, *J* = 34.3 Hz, *C*), 140.0 (*C*), 136.5 (*C*), 135.5 (*C*), 135.3 (*C*H), 133.3 (*C*), 131.8 (*C*H), 130.9 (*C*H), 128.7 (*C*H), 127.1 (q, *J* = 3.3 Hz, CH), 125.8 (*C*), 125.2 (*C*), 123.2 (*C*), 121.4 (q, *J* = 275.3 Hz, CF₃), 52.9 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ -62.90 (s, 3F, CF₃); **IR** (neat): 2952, 1735, 1492, 1440, 1389, 1236, 1177, 1123, 1079, 1006, 976, 826 cm⁻¹; **HRMS** (ESI) calculated for C₁₈H₁₀NO₂Br₂F₃Na [M+Na]⁺ m/z 511.8903, found 511.8904.

Methyl 4-(4-chlorophenyl)-1-(trifluoromethyl)isoquinoline-3-carboxylate (3f)

According method with (*E*)-methyl to Α 3-(4-chlorophenyl)-2-isocyano-3-phenylacrylate 1f (60.1 mg, 0.20 mmol, 1.0 equiv), Togni-reagent 2 (95.4 mg, 0.30 mmol, 1.5 equiv) and Bu_4NI (3.8 mg, 10 µmol, 0.05 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (pentane/diethyl ether = 10/1) to afford the desired product **3f** as white solid (47.3 mg, 65%). ¹H NMR (300 MHz, CDCl₃) δ 8.36-8.33 (m, 1H, Ar-H), 7.78-7.60 (m, 3H, Ar-*H*), 7.44 (dt, *J* = 8.9, 2.2 Hz, 2H, Ar-*H*), 7.21 (dt, *J* = 8.9, 2.2 Hz, 2H, Ar-H), 3.69 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 166.2 (C), 146.0 (q, J = 34.2 Hz, C), 139.9 (C), 137.0 (C), 136.4 (C), 134.8 (C), 133.5 (C), 131.7 (CH), 130.8 (CH), 130.1 (CH), 128.7 (CH), 127.1 (CH), 125.0 (C), 124.8 (q, J = 3.2 Hz, CH), 121.7 (q, J = 275.0 Hz, CF_3), 52.7 (CH_3); ¹⁹F NMR (282 MHz, $CDCl_3$) δ -62.83 (s, 3F, CF₃); **IR** (neat): 2954, 1734, 1491, 1438, 1400, 1239, 1178, 1125, 1002, 830, 772, 681 cm⁻¹; **HRMS** (ESI) calculated for $C_{18}H_{11}NO_2ClF_3Na [M+Na]^+ m/z$ 388.0323, found 388.0329.

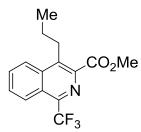

Methyl 4-(4-bromophenyl)-1-(trifluoromethyl)isoquinoline-3-carboxylate (3g)

According to **method A** with (*E*)-methyl 3-(4-bromophenyl)-2-isocyano-3-phenylacrylate **1g** (68.9 mg, 0.20 mmol, 1.0 equiv), *Togni*-reagent **2** (95.6 mg, 0.30 mmol, 1.5 equiv) and Bu₄NI (3.9 mg, 11 μ mol, 0.05 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (pentane/diethyl ether = 10/1) to afford the desired product **3g** as

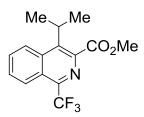

white solid (62.9 mg, 77%). ¹**H NMR** (300 MHz, CDCl₃) δ 8.33 (d, J = 8.1 Hz, 1H, Ar-H), 7.77-7.63 (m, 3H, Ar-H), 7.58 (dt, J = 8.3 Hz, 2H, Ar-H), 7.14 (d, J = 8.3 Hz, 2H, Ar-H), 3.68 (s, 3H, C H_3); ¹³**C NMR** (75 MHz, CDCl₃) δ 166.1 (*C*), 146.0 (q, J = 33.8 Hz, *C*), 139.8 (*C*), 136.9 (*C*), 136.4 (*C*), 134.0 (*C*), 131.7 (*C*H), 131.1 (*C*H), 130.1 (*C*H), 127.1 (*C*H), 125.0 (*C*), 124.8 (q, J = 3.1 Hz, CH), 122.9 (*C*), 121.7 (q, J = 275.0 Hz, CF₃), 52.7 (CH₃); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.82 (s, 3F, CF₃); **IR** (neat): 2954, 1731, 1487, 1439, 1389, 1240, 1179, 1130, 1071, 1002, 733 cm⁻¹; **HRMS** (ESI) calculated for C₁₈H₁₁NO₂BrF₃Na [M+Na]⁺ m/z 431.9817, found 431.9811.

Methyl 4-methyl-1-(trifluoromethyl)isoquinoline-3-carboxylate (3h)

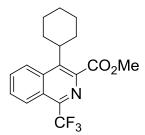
According to **method A** with (*Z*)-methyl 2-isocyano-3-phenylbut-2-enoate **1h** (40.7 mg, 0.20 mmol, 1.0 equiv), *Togni*-reagent **2** (95.3 mg, 0.30 mmol, 1.5 equiv) and Bu₄NI (3.8 mg, 10 µmol, 0.05 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (pentane/diethyl ether = 10/1) to afford the desired product **3h** as white solid (37.6 mg, 70%). ¹**H NMR** (300 MHz, CDCl₃) δ 8.28-8.25 (m, 1H, Ar-*H*), 8.17 (d, *J* = 8.4 Hz, 1H, Ar-*H*), 7.83-7.77 (m, 1H, Ar-*H*), 7.75-7.70 (m, 1H, Ar-*H*), 3.97 (s, 3H, CH₃), 2.85 (s, 3H, CH₃); ¹³**C NMR** (75 MHz, CDCl₃) δ 166.9 (*C*), 144.2 (q, *J* = 33.6 Hz, *C*), 139.7 (*C*), 137.2 (*C*), 133.9 (*C*), 131.3 (CH), 129.7 (CH), 125.1 (q, *J* = 3.1 Hz, CH), 125.0 (CH), 124.6 (*C*), 121.8 (q, *J* = 274.8 Hz, CF₃), 52.9 (CH₃), 14.7 (CH₃); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.69 (s, 3F, CF₃); **IR** (neat): 2956, 1726, 1440, 1376, 1297, 1231, 1194, 1122, 1062, 969, 764 cm⁻¹; **HRMS** (ESI) calculated for C₁₃H₁₀NO₂F₃Na [M+Na]⁺ m/z 292.0556, found 292.0557.


Methyl 4,7-dimethyl-1-(trifluoromethyl)isoquinoline-3-carboxylate (3i)

According to method A with (Z)-methyl 2-isocyano-3-(p-tolyl)but-2-enoate 1i (43.8

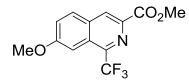

mg, 0.20 mmol, 1.0 equiv), *Togni*-reagent **2** (95.2 mg, 0.30 mmol, 1.5 equiv) and Bu₄NI (3.8 mg, 10 μmol, 0.05 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (pentane/diethyl ether = 10/1) to afford the desired product **3i** as white solid (39.6 mg, 70%). ¹**H** NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.8 Hz, 1H, Ar-*H*), 8.00 (brs, 1H, Ar-*H*), 7.62 (dd, J = 8.8, 1.6 Hz, 1H, Ar-*H*), 3.96 (s, 3H, CH₃), 2.84 (s, 3H, CH₃), 2.54 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 167.0 (*C*), 143.4 (q, J = 33.4 Hz, *C*), 140.4 (*C*), 138.8 (*C*), 135.5 (*C*), 134.0 (*C*), 133.5 (*C*H), 124.9 (*C*), 124.8 (*C*H), 124.0 (q, J = 3.0 Hz, *C*H), 121.9 (q, J = 274.7 Hz, *C*F₃), 52.8 (CH₃), 22.1 (CH₃), 14.7 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ -62.75 (s, 3F, CF₃); **IR** (neat): 2956, 1715, 1443, 1371, 1300, 1232, 1171, 1111, 1076, 980, 819 cm⁻¹; **HRMS** (ESI) calculated for C₁₄H₁₂NO₂F₃Na [M+Na]⁺ m/z 306.0712, found 306.0720.

Methyl 4-propyl-1-(trifluoromethyl)isoquinoline-3-carboxylate (3j)

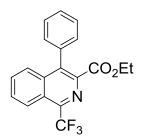

According to **method A** with (*Z*)-methyl 2-isocyano-3-phenylhex-2-enoate **1j** (49.1 mg, 0.20 mmol, 1.0 equiv), *Togni*-reagent **2** (95.3 mg, 0.30 mmol, 1.5 equiv) and Bu₄NI (3.9 mg, 11 µmol, 0.05 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (pentane/diethyl ether = 10/1) to afford the desired product **3j** as white solid (45.8 mg, 77%). ¹**H** NMR (300 MHz, CDCl₃) δ 8.28 (d, *J* = 8.7 Hz, 1H, Ar-*H*), 8.18 (d, *J* = 8.7 Hz, 1H, Ar-*H*), 7.74-7.69 (m, 1H, Ar-*H*), 3.96 (s, 3H, CH₃), 3.28-3.22 (m, 2H, CH₂), 1.75-1.67 (m, 2H, CH₂), 1.03 (d, *J* = 7.4 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 166.9 (*C*), 144.3 (q, *J* = 33.4 Hz, *C*), 139.7 (*C*), 138.1 (*C*), 136.7 (*C*), 131.2 (CH), 129.6 (CH), 125.3 (q, *J* = 3.2 Hz, CH), 125.1 (*C*), 125.0 (CH), 121.9 (q, *J* = 274.8 Hz, CF₃), 52.8 (CH₃), 30.3 (CH₂), 24.5 (CH₂), 14.4 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ -62.72 (s, 3F, CF₃); **IR** (neat): 2960, 2874, 1733 1440, 1401, 1303, 1239, 1215, 1165, 1121, 1072, 968, 774, 685 cm⁻¹; **HRMS** (ESI) calculated for C₁₅H₁₄NO₂F₃Na [M+Na]⁺ m/z 320.0869, found 320.0864.

Methyl 4-isopropyl-1-(trifluoromethyl)isoquinoline-3-carboxylate (3k)

According to **method A** with (*Z*)-methyl 2-isocyano-4-methyl-3-phenylpent-2-enoate **1k** (46.6 mg, 0.20 mmol, 1.0 equiv), *Togni*-reagent **2** (95.4 mg, 0.30 mmol, 1.5 equiv) and Bu₄NI (4.0 mg, 11 µmol, 0.05 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (pentane/diethyl ether = 10/1) to afford the desired product **3k** as white solid (35.8 mg, 60%). ¹**H NMR** (300 MHz, CDCl₃) δ 8.34 (d, *J* = 8.4 Hz, 1H, Ar-*H*), 8.28 (d, *J* = 8.4 Hz, 1H, Ar-*H*), 7.78-7.73 (m, 1H, Ar-*H*), 7.70-7.65 (m, 1H, Ar-*H*), 3.96 (s, 3H, CH₃), 3.81-3.67 (m, 1H, CH), 1.51 (d, *J* = 7.5 Hz, 6H, 2×CH₃); ¹³**C NMR** (75 MHz , CDCl₃) δ 168.3 (*C*), 144.5 (q, *J* = 33.1 Hz, *C*), 141.6 (*C*), 139.7 (*C*), 136.1 (*C*), 130.6 (*C*H), 128.9 (*C*H), 125.6 (q, *J* = 3.2 Hz, CH), 125.4 (CH), 125.2 (*C*), 121.9 (q, *J* = 274.8 Hz, CF₃), 52.9 (CH₃), 29.7 (CH), 21.9 (2×CH₃); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.61 (s, 3F, CF₃); **IR** (neat): 2968, 1737, 1450, 1402, 1355, 1290, 1227, 1176 1127, 1031, 970, 770, 687 cm⁻¹; **HRMS** (ESI) calculated for C₁₅H₁₄NO₂F₃Na [M+Na]⁺ m/z 320.0869, found 320.0867.

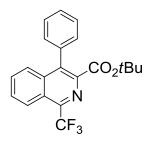

Methyl 4-cyclohexyl-1-(trifluoromethyl)isoquinoline-3-carboxylate (3l)

According to **method B** with (*Z*)-methyl 3-cyclohexyl-2-isocyano-3-phenylacrylate **11** (54.6 mg, 0.20 mmol, 1.0 equiv), *Togni*-reagent **2** (95.7 mg, 0.30 mmol, 1.5 equiv) and Bu₄NI (3.9 mg, 11 µmol, 0.05 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (pentane/diethyl ether = 10/1) to afford the desired product **31** as white solid (37.1 mg, 55%). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (brs, 1H, Ar-*H*), 8.25 (d, *J* = 8.8 Hz, 1H, Ar-*H*), 7.76-7.72 (m, 1H, Ar-*H*), 7.68-7.63 (m, 1H, Ar-*H*), 3.95 (s, 3H, CH₃), 3.31-3.26 (m, 1H, CH), 1.97-1.75 (m, 7H, CH₂), 1.44-1.28 (m, 3H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 168.5 (*C*), 144.3 (q, *J* = 33.6

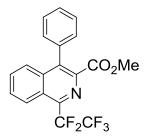

Hz, *C*), 141.8 (*C*), 138.4 (*C*), 136.3 (*C*), 130.6 (*C*H), 128.8 (*C*H), 125.4 (q, J = 3.1 Hz, *C*H), 125.1 (*C*H), 125.0 (*C*), 121.8 (q, J = 274.8 Hz, *C*F₃), 52.8 (*C*H₃), 41.2 (*C*), 31.5 (2×*C*H₂), 27.3 (2×*C*H₂), 25.9 (*C*H₂); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.60 (s, 3F, *CF*₃); **IR** (neat): 2931, 2856, 1736, 1449, 1401, 1370, 1218, 1121, 1078, 999, 972, 768, 685 cm⁻¹; **HRMS** (ESI) calculated for C₁₈H₁₈NO₂F₃Na [M+Na]⁺ m/z 360.1182, found 360.1181.

Methyl 7-methoxy-1-(trifluoromethyl)isoquinoline-3-carboxylate (3m)

According to **method A** with (*Z*)-methyl 2-isocyano-3-(4-methoxyphenyl)acrylate **1m** (44.0 mg, 0.20 mmol, 1.0 equiv), *Togni*-reagent **2** (95.6 mg, 0.30 mmol, 1.5 equiv) and Bu₄NI (3.9 mg, 11 µmol, 0.05 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (pentane/DCM = 3/1-DCM) to afford the desired product **3m** as white solid (31.4 mg, 55%). ¹**H** NMR (300 MHz, CDCl₃) δ 8.59 (s, 1H, Ar-*H*), 7.89 (d, *J* = 9.0 Hz, 1H, Ar-*H*), 7.48 (s, 1H, Ar-*H*), 7.42 (dd, *J* = 9.0, 2.4 Hz, 1H, Ar-*H*), 3.98 (s, 3H, CH₃), 3.93 (s, 3H, CH₃); ¹³C NMR (75 MHz , CDCl₃) δ 165.4 (*C*), 161.3 (*C*), 144.7 (q, *J* = 33.7 Hz, *C*), 138.0 (*C*), 132.7 (*C*), 130.5 (CH), 127.8 (C), 127.2 (CH), 124.9 (CH), 122.0 (q, *J* = 274.8 Hz, CF₃), 102.7 (q, *J* = 3.3 Hz, CH), 55.7 (CH₃), 52.9 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ -63.82 (s, 3F, CF₃); **IR** (neat): 3008, 2957, 1710, 1623, 1502, 1454, 1416, 1320, 1262, 1226, 1179, 1120, 1019, 825 cm⁻¹; **HRMS** (ESI) calculated for C₁₃H₁₀NO₃F₃Na [M+Na]⁺ m/z 308.0505, found 308.0499.


Ethyl 4-phenyl-1-(trifluoromethyl)isoquinoline-3-carboxylate (3n)

According to **method A** with ethyl 2-isocyano-3,3-diphenylacrylate **1n** (56.1 mg, 0.20 mmol, 1.0 equiv), *Togni*-reagent **2** (95.5 mg, 0.30 mmol, 1.5 equiv) and Bu₄NI (3.9 mg, 11 μ mol, 0.05 equiv). The crude reaction mixture was purified by flash silica gel

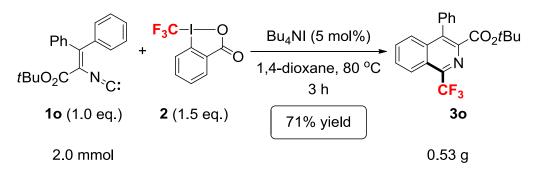

column chromatography (pentane/diethyl ether = 10/1) to afford the desired product **3n** as white solid (48.1 mg, 70%). ¹**H NMR** (300 MHz, CDCl₃) δ 8.32 (d, *J* = 7.8 Hz, 1H, Ar-*H*), 7.74-7.66 (m, 3H, Ar-*H*), 7.44-7.42 (m, 3H, Ar-*H*), 7.29-7.26 (m, 2H, Ar-*H*), 4.06 (q, *J* = 7.1 Hz, 2H, C*H*₂), 0.91 (t, *J* = 7.1 Hz, 3H, C*H*₃); ¹³**C NMR** (75 MHz, CDCl₃) δ 166.3 (*C*), 145.7 (q, *J* = 33.7 Hz, *C*), 140.9 (*C*), 137.0 (*C*), 136.7 (*C*), 135.1 (*C*), 131.4 (*C*H), 129.7 (*C*H), 129.6 (*C*H), 128.5 (*C*H), 128.3 (*C*H), 127.3 (*C*H), 124.9 (*C*), 124.7 (q, *J* = 3.1 Hz, CH), 121.9 (q, *J* = 275.0 Hz, CF₃), 61.6 (*C*H₂), 13.6 (*C*H₃); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.74 (s, 3F, C*F*₃); **IR** (neat): 2983, 1733, 1406, 1236, 1179, 1123, 995, 771, 700 cm⁻¹; **HRMS** (ESI) calculated for C₁₉H₁₄NO₂F₃Na [M+Na]⁺ m/z 368.0869, found 368.0866.

tert-Butyl 4-phenyl-1-(trifluoromethyl)isoquinoline-3-carboxylate (30)

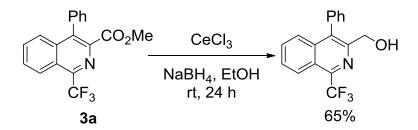
According to **method A** with *tert*-butyl 2-isocyano-3,3-diphenylacrylate **1o** (61.7 mg, 0.20 mmol, 1.0 equiv), *Togni*-reagent **2** (95.6 mg, 0.30 mmol, 1.5 equiv) and Bu₄NI (3.9 mg, 11 µmol, 0.05 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (pentane/diethyl ether = 10/1) to afford the desired product **3o** as white solid (59.6 mg, 80%). ¹**H NMR** (300 MHz, CDCl₃) δ 8.31-8.28 (m, 1H, Ar-*H*), 7.70-7.61 (m, 3H, Ar-*H*), 7.46-7.41 (m, 3H, Ar-*H*), 7.31-7.26 (m, 2H, Ar-*H*), 1.14 (s, 9H, 3×CH₃); ¹³**C NMR** (75 MHz, CDCl₃) δ 165.5 (*C*), 145.7 (q, *J* = 33.7 Hz, *C*), 142.1 (*C*), 137.0 (*C*), 135.6 (*C*), 135.4 (*C*), 131.2 (*C*H), 129.9 (*C*H), 129.4 (*C*H), 128.39 (*C*H), 128.36 (*C*H), 127.1 (*C*H), 124.7 (*C*), 124.6 (q, *J* = 3.2 Hz, *C*H), 121.9 (q, *J* = 275.0 Hz, *C*F₃), 82.5 (*C*), 27.5 (*C*H₃); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.63 (s, 3F, CF₃); **IR** (neat): 3056, 2987, 1723, 1407, 1249, 1119, 996, 935, 848, 767, 699 cm⁻¹; **HRMS** (ESI) calculated for C₂₁H₁₈NO₂F₃Na [M+Na]⁺ m/z 396.1182, found 396.1180.

Methyl 1-(perfluoroethyl)-4-phenylisoquinoline-3-carboxylate (5a)

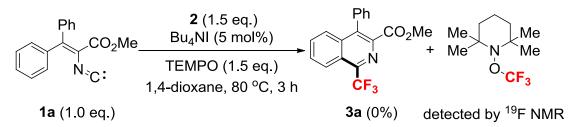
According to **method A** with methyl 2-isocyano-3,3-diphenylacrylate **1a** (53.3 mg, 0.20 mmol, 1.0 equiv), *Togni*-reagent **4a**⁵ (111.6 mg, 0.30 mmol, 1.5 equiv) and Bu₄NI (3.9 mg, 11 µmol, 0.05 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (pentane/diethyl ether = 10/1) to afford the desired product **5a** as pale yellow solid (40.2 mg, 53%). ¹H NMR (300 MHz, CDCl₃) δ 8.41 (d, *J* = 8.1 Hz, 1H, Ar-*H*), 7.74-7.65 (m, 3H, Ar-*H*), 7.47-7.43 (m, 3H, Ar-*H*), 7.28-7.25 (m, 2H, Ar-*H*), 3.62 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 166.5 (*C*), 145.5 (t, *J* = 26.2 Hz, *C*), 140.4 (*C*), 137.1 (*C*), 137.0 (*C*), 134.9 (*C*), 131.2 (*C*H), 129.7 (*C*H), 129.5 (*C*H), 128.6 (*C*H), 128.4 (*C*H), 127.5 (*C*H), 126.1 (*C*), 124.8 (t, *J* = 6.0 Hz, *C*H), 120-100 (m, *C*), 52.5 (*C*H₃); ¹⁹F NMR (282 MHz, CDCl₃) δ -80.76 (t, *J* = 1.4, 3F, CF₂CF₃), -107.22 (brs, 2F, CF₂CF₃); **IR** (neat): 2954, 1737, 1445, 1403, 1326, 1227, 1170, 1104, 1069, 1049, 993, 959, 877, 770, 701 cm⁻¹; **HRMS** (ESI) calculated for C₁₉H₁₂NO₂F₅Na [M+Na]⁺ m/z 404.0680, found 404.0680.


Methyl 1-(perfluoropropyl)-4-phenylisoquinoline-3-carboxylate (5b)

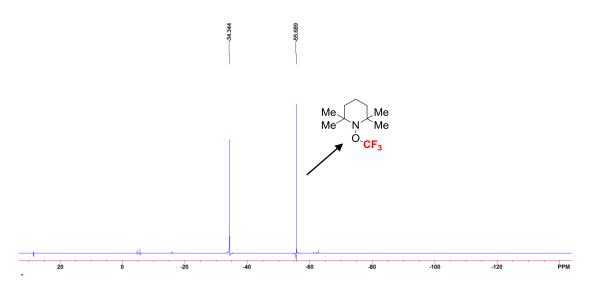
According to **method A** with methyl 2-isocyano-3,3-diphenylacrylate **1a** (53.5 mg, 0.20 mmol, 1.0 equiv), *Togni*-reagent **4b**⁶ (126.3 mg, 0.30 mmol, 1.5 equiv) and Bu₄NI (4.0 mg, 11 µmol, 0.05 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (pentane/diethyl ether = 10/1) to afford the desired product **5b** as pale yellow solid (46.4 mg, 54%). ¹H NMR (300 MHz, CDCl₃) δ 8.40-8.37 (m, 1H, Ar-*H*), 7.72-7.61 (m, 3H, Ar-*H*), 7.46-7.43 (m, 3H, Ar-*H*), 7.29-7.26 (m, 2H, Ar-*H*), 3.62 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 166.5 (*C*),


145.3 (t, J = 24.5 Hz, C), 140.7 (C), 137.2 (C), 136.9 (C), 134.9 (C), 131.1 (CH), 129.7 (CH), 129.5 (CH), 128.6 (CH), 128.4 (CH), 127.5 (CH), 126.5 (C), 125.1-124.9 (m, C), 120-100 (m, C), 52.5 (CH₃); ¹⁹**F** NMR (282 MHz, CDCl₃) δ -79.41 (t, J = 9.6 Hz, 3F, CF₂CF₂CF₃), -106.15 – -106.25 (m, 2F, CF₂CF₂CF₃), -124.03 (t, J = 9.6 Hz, 2F, CF₂CF₂CF₃); **IR** (neat): 2955, 1738, 1445, 1341, 1203, 1114, 987, 946, 854, 769, 700 cm⁻¹; **HRMS** (ESI) calculated for C₂₀H₁₂NO₂F₇Na [M+Na]⁺ m/z 454.0648, found 454.0651.

Lager scale experiment

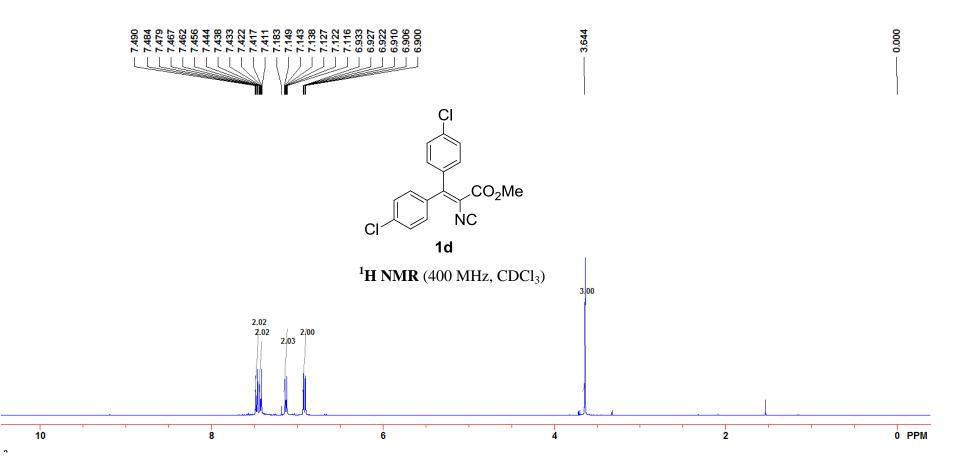

tert-Butyl 2-isocyano-3,3-diphenylacrylate **10** (0.556 g, 0.002 mol, 1.0 equiv), *Togni*-reagent **2** (0.953 g, 0.003 mol, 1.5 equiv) and Bu₄NI (37.6 mg, 0.10 mmol, 0.05 equiv) were placed in a dry *Schlenk* tube under argon. Dry 1,4-dioxane (10.0 mL) was added and the reaction mixture was stirred at 80 °C for 3 h as monitored by TLC. The solvent was removed and the crude reaction mixture was purified by flash silica gel column chromatography (pentane/diethyl ether = 10/1) to afford the desired product **30** (0.530 g, 71%).

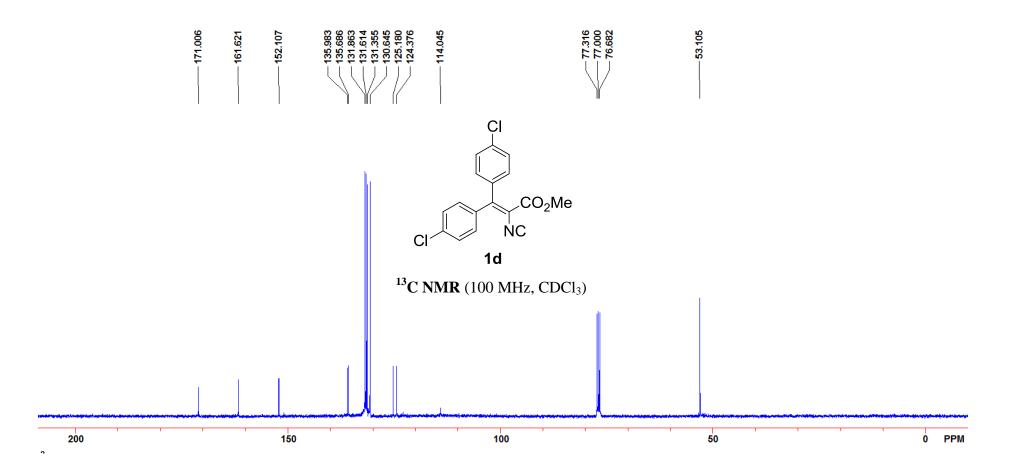
The reduction of 3a

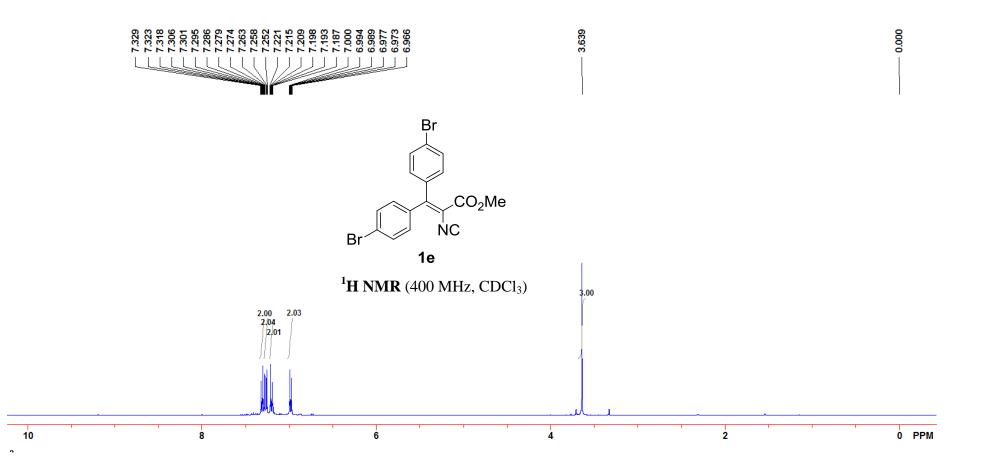


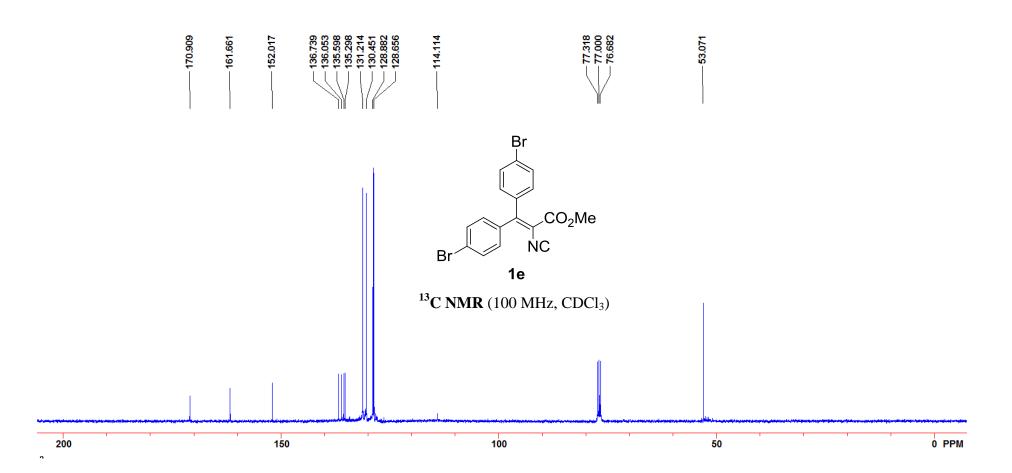
NaBH₄ (39.7 mg, 1.00 mmol, 5.0 equiv) was added to a stirred solution of methyl 4-phenyl-1-(trifluoromethyl)isoquinoline-3-carboxylate **3a** (66.8 mg, 0.20 mmol, 1.0 equiv) and CeCl₃·7H₂O (4.2 mg, 10 µmol, 0.05 equiv) in EtOH (2.0 mL) at room temperature. The resulting suspension was stirred for 24 h. The solvent was removed in vacuo and the residue was purified by silica gel column chromatography (PE/Et₂O = 3/1) to afford 39.3 mg (65%) of product as pale yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 8.29-8.26 (m, 1H, Ar-*H*), 7.64-7.56 (m, 2H, Ar-*H*), 7.53-7.43 (m, 4H, Ar-*H*), 7.22-7.19 (m, 2H, Ar-*H*), 4.53 (s, 2H, CH₂), 3.59 (brs, 1H, OH); ¹³C NMR (75 MHz, CDCl₃) δ 147.4 (*C*), 144.8 (q, *J* = 33.4 Hz, *C*), 137.2 (*C*), 134.3 (*C*), 133.7 (*C*), 131.0 (*C*H), 129.5 (*C*H), 129.0 (*C*H), 128.7 (*C*H), 128.3 (*C*H), 126.1 (*C*H), 124.6 (q, *J* = 3.0 Hz, *C*H), 123.8 (*C*), 122.1 (q, *J* = 274.5 Hz, *C*F₃), 62.0 (*C*H₂); ¹⁹F NMR (282 MHz, CDCl₃) δ -62.69 (s, 3F, CF₃); **IR** (neat): 3443, 3062, 2924, 2884, 1573, 1407, 1348, 1291, 1174, 1126, 1070, 997, 771, 702 cm⁻¹; **HRMS** (ESI) calculated for C₁₇H₁₂NOF₃Na [M+Na]⁺ m/z 326.0763, found 326.0756.

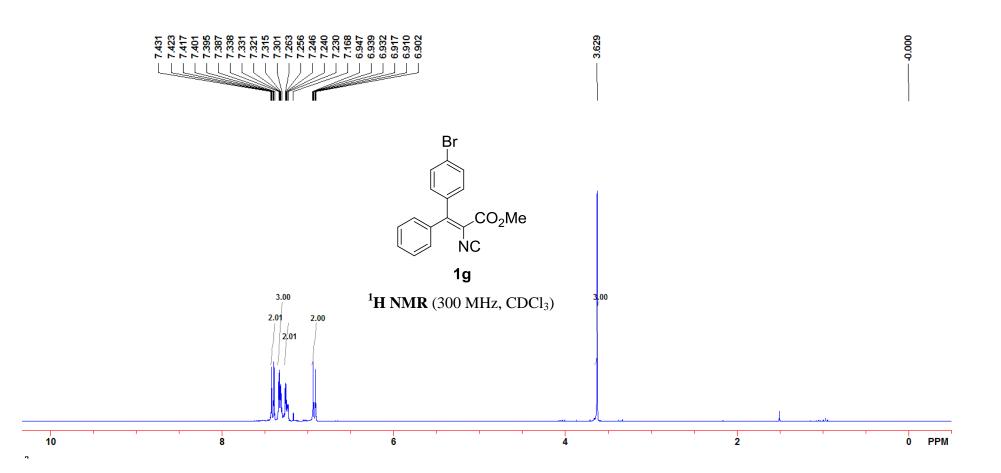
Mechanistic study




β-Aryl-α-isocyano-acrylates **1a** (53.2 mg, 0.20 mmol, 1.0 equiv), *Togni*-reagent **2** (95.8 mg, 0.30 mmol, 1.5 equiv), Bu₄NI (3.9 mg, 11 µmol, 0.05 equiv) and TEMPO (47.5 mg, 0.30 mmol, 1.5 equiv) were placed in a dry *Schlenk* tube under argon. Dry 1,4-dioxane (1.0 mL) was added and the reaction mixture was stirred at 80 °C for 3 h. ¹⁹F NMR analysis of this reaction mixture showed that TEMPO-CF₃ was formed. ¹⁹F NMR (282 MHz, CDCl₃) δ -55.7. ¹⁹F NMR spectrum was matching with literature data.⁴




References:


- (1) Jiang, H.; Cheng, Y.; Wang, R.; Zhang, Y.; Yu, S. Chem. Commun. 2014, 50, 6164.
- (2) Suzuki, M.; Nunami, K.-I.; Matsumoto, K.; Yoneda, N.; Kasuga, O.; Yoshida, H.; Yamaguchi, T. *Chem. Pharm. Bull.* **1980**, *28*, 2374.
- (3) Eisenberger, P.; Gischig, S.; Togni, A. Chem.-Eur. J. 2006, 12, 2579.
- (4) Wang, X.; Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. **2011**, *133*, 16410.
- (5) Li, Y.; Studer, A. Angew. Chem. Int. Ed. 2012, 51, 8221.
- (6) Zhang, B.; Mück-Lichtenfeld, C.; Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed. 2013, 52, 10792.

