Synthesis, and QSAR analysis of anti-oncological active spiro-alkaloids

Adel S. Girgis,^a Siva S. Panda,^b I. S. Ahmed Farag,^c A. M. El-Shabiny,^c A. M. Moustafa,^c Nasser S. M. Ismail,^d Girinath G. Pillai,^{b,e} Chandramukhi S. Panda,^b C. Dennis Hall,^{*,b} and Alan R. Katritzky^{‡,b,f}

^aPesticide Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt

^bCenter for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA

^cSolid State Department, Physics Division, National Research Centre, Dokki, Cairo 12622, Egypt

^dPharmaceutical Chemistry Department, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt

^eDepartment of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia

^fChemistry Department, Faculty of Science, King Adbulaziz University, P. O. Box 80203, Jeddah, 21589.

*Corresponding authors: C. Dennis Hall, Fax: 352-392-9199; Tel: 352-392-0554, e-mail: <u>charlesdennishall@gmail.com</u>

Supporting Information

Table titles

Table 1. Observed and predicted property (μM) for respective cell lines usingCODESSA-III QSAR models.

Figure captions

Figure 1. Dose-response curve for the synthesized compounds 24-48 against HELA (cervical cancer) cell line.

Figure 2. Dose-response curve for the synthesized compounds **24-48** against HEPG2 (liver cancer) cell line.

Figure 3. Dose-response curve for the synthesized compounds **24-48** against T-47D (breast cancer) cell line.

Figure 4. Dose-response curve for the synthesized compounds **24-48** against MCF7 (breast cancer) cell line.

Figure 5. Dose-response curve for the synthesized compounds 24-48 against HCT116 (colon cancer) cell line.

Figure 6. Scatter plots of BMLR for HELA (A), HEPG2 (B), T47D (C), MCF7 (D), HCT116 (E) QSAR models.

Figures 7–25. IR Spectra of the synthesized compounds.

Figures 26–44. ¹H-NMR spectra of the synthesized compounds.

Figures 45–75. ¹³C-NMR spectra of the synthesized compounds.

Figures 76–95. HRMS spectra of the synthesized compounds.

Comnd	IC ₅₀	IC ₅₀	Error	IC ₅₀ HEPC2	IC ₅₀ HEDC2	Error	IC_{50}	IC_{50}	Error	IC ₅₀ MCE7	IC_{50} MCE7	Error	IC_{50}	IC ₅₀ HCT116	Error
Compu.	obs	pred	LIIOI	obs	pred	LIIOI	obs	pred	LIIOI	obs	pred	LIIOI	obs	pred	LIIOI
24	6.210	6.120	0.090	7.460	6.169	1.291	16.440	19.242	2.802	7.010	6.168	0.842	1.335	1.204	0.131
25	5.920	5.865	0.055	5.660	6.890	-1.230	7.930	6.740	1.190	6.020	7.261	1.241	1.272	1.259	0.013
26	6.740	6.203	0.537	6.030	7.304	-1.274	13.410	19.402	5.992	5.630	7.002	1.372	1.110	1.126	0.017
27	5.080	5.976	0.896	6.260	7.253	-0.993	21.330	18.579	2.751	6.610	6.850	0.240	1.061	1.100	0.039
28	4.960	5.143	0.183	5.730	6.236	-0.506	9.810	11.252	1.442	5.390	5.657	0.267	1.133	1.180	0.047
29	5.780	5.573	0.207	8.890	7.452	1.438	22.130	18.234	3.896	7.110	6.231	0.879	1.363	1.264	0.099
30	5.200	4.666	0.534	5.430	5.156	0.274	14.450	15.051	0.601	6.730	6.409	0.321	1.328	1.447	0.119
31	6.510	6.165	0.345	8.730	6.739	1.991	16.750	9.265	7.485	9.770	6.866	2.904	1.567	1.416	0.150
32	5.150	5.996	0.846	5.770	6.711	-0.941	5.810	8.884	3.074	5.580	6.669	1.089	1.532	1.516	0.016
33	5.440	6.241	0.801	5.820	6.476	-0.656	5.630	5.566	0.064	5.850	7.190	1.340	1.279	1.261	0.018
34	8.640	7.374	1.266	14.18	12.72	1.460	22.760	17.950	4.810	17.04	17.092	0.052	1.066	1.174	0.108
35	6.650	6.329	0.321	7.320	7.112	0.208	10.640	10.518	0.122	7.600	6.433	1.167	1.417	1.308	0.109
36	5.550	5.502	0.048	5.460	6.663	-1.203	17.020	16.371	0.649	5.550	7.125	1.575	1.090	1.094	0.004
37	6.960	6.513	0.447	6.150	6.755	-0.605	13.230	13.661	0.431	6.710	6.245	0.465	1.061	1.027	0.033
38	6.450	8.847	2.397	6.680	7.720	-1.040	7.770	9.358	1.588	6.210	6.259	0.049	1.092	1.169	0.077
39	7.220	6.891	0.329	6.680	7.099	-0.419	12.760	11.608	1.152	7.220	5.673	1.547	1.122	1.117	0.005
40	11.20	10.235	0.965	13.67	8.846	4.824	21.250	19.269	1.981	8.300	6.878	1.422	1.223	1.207	0.015
41	8.740	7.924	0.816	5.910	6.838	-0.928	13.000	15.015	2.015	7.660	7.079	0.581	1.215	1.088	0.127
42	6.100	7.500	1.400	6.950	7.749	-0.799	9.030	11.701	2.671	5.200	6.806	1.606	1.052	1.200	0.147
43	5.510	5.892	0.382	7.490	6.283	1.207	19.080	17.223	1.857	6.610	6.947	0.337	1.139	1.119	0.020
44	24.36	22.006	2.354	23.71	25.344	-1.634	28.470	29.284	0.814	29.96	27.57	2.390	1.155	1.185	0.030
45	8.940	10.751	1.811	14.020	15.441	-1.421	19.530	19.209	0.321	10.26	9.241	1.019	1.315	1.326	0.011
46	6.860	6.493	0.367	9.290	7.952	1.338	20.080	22.197	2.117	7.840	9.027	1.187	1.294	1.250	0.044
47	9.650	7.134	2.516	8.400	7.565	0.835	26.600	22.463	4.137	8.900	8.941	-0.041	1.187	1.305	0.118
48	9.880	10.085	0.205	9.370	8.410	0.960	24.700	24.384	0.316	15.810	15.751	0.059	1.335	1.204	-0.131

Table 1. Observed and predicted property (μ M) for respective cell lines using CODESSA-III QSAR models.

Figure 1. Dose-response curve for the synthesized compounds 24-48 against HELA (cervical cancer) cell line.

Figure 2. Dose-response curve for the synthesized compounds 24-48 against HEPG2 (liver cancer) cell line.

Figure 3. Dose-response curve for the synthesized compounds 24-48 against T-47D (breast cancer) cell line.

Figure 4. Dose-response curve for the synthesized compounds 24-48 against MCF7 (breast cancer) cell line.

Figure 5. Dose-response curve for the synthesized compounds 24-48 against HCT116 (colon cancer) cell line.

Scatter Plot – BMLR

Residual Plot

Figure 6. Scatter plots of BMLR for HELA (A), HEPG2 (B), T47D (C), MCF7 (D), HCT116 (E) QSAR models.

Figure 7. IR spectrum of compound 25.

Figure 8. IR spectrum of compound 27.

Figure 9. IR spectrum of compound 28.

Figure 10. IR spectrum of compound 29.

Figure 12. IR spectrum of compound 32.

Figure 13. IR spectrum of compound 33.

Figure 14. IR spectrum of compound 35.

Figure 15. IR spectrum of compound 36.

Figure 16. IR spectrum of compound 37.

Figure 17. IR spectrum of compound 39.

Figure 18. IR spectrum of compound 40.

Figure 19. IR spectrum of compound 41.

Figure 22. IR spectrum of compound 44.

Figure 23. IR spectrum of compound 46.

Figure 24. IR spectrum of compound 47.

Figure 25. IR spectrum of compound 48.

Figure 26. ¹H-NMR spectrum of compound 25.

Figure 27. ¹H-NMR spectrum of compound 27.

Figure 28. ¹H-NMR spectrum of compound 28.

Figure 29. ¹H-NMR spectrum of compound 29.

Figure 30. ¹H-NMR spectrum of compound 30.

Figure 31. ¹H-NMR spectrum of compound 32.

Figure 32. ¹H-NMR spectrum of compound 33.

Figure 33. ¹H-NMR spectrum of compound 35.

Figure 34. ¹H-NMR spectrum of compound 36.

Figure 35. ¹H-NMR spectrum of compound 37.

Figure 36. ¹H-NMR spectrum of compound 39.

Figure 37. ¹H-NMR spectrum of compound 40.

Figure 38. ¹H-NMR spectrum of compound 41.

Figure 39. ¹H-NMR spectrum of compound 42.

Figure 40. ¹H-NMR spectrum of compound 43.

Figure 41. ¹H-NMR spectrum of compound 44.

Figure 42. ¹H-NMR spectrum of compound 46.

Figure 44. ¹H-NMR spectrum of compound 48.

Figure 45. ¹³C-NMR spectrum (on-resonance) of compound 25.

Figure 46. ¹³C-NMR spectrum (DEPT) of compound 25.

Figure 47. ¹³C-NMR spectrum (on-resonance) of compound 27.

Figure 48. ¹³C-NMR spectrum (DEPT) of compound 27.

Figure 49. ¹³C-NMR spectrum (on-resonance) of compound 28.

Figure 50. ¹³C-NMR spectrum (DEPT) of compound 28.

Figure 51. ¹³C-NMR spectrum (on-resonance) of compound 29.

Figure 52. ¹³C-NMR spectrum (DEPT) of compound 29.

Figure 53. ¹³C-NMR spectrum (on-resonance) of compound 30.

Figure 54. ¹³C-NMR spectrum (DEPT) of compound 30.

Figure 55. ¹³C-NMR spectrum (on-resonance) of compound 32.

Figure 56. ¹³C-NMR spectrum (on-resonance) of compound 33.

Figure 57. ¹³C-NMR spectrum (DEPT) of compound 33.

Figure 58. ¹³C-NMR spectrum (on-resonance) of compound 35.

Figure 59. ¹³C-NMR spectrum (on-resonance) of compound 36.

Figure 60. ¹³C-NMR spectrum (on-resonance) of compound 37.

Figure 61. ¹³C-NMR spectrum (DEPT) of compound 37.

Figure 62. ¹³C-NMR spectrum (on-resonance) of compound 39.

Figure 63. ¹³C-NMR spectrum (DEPT) of compound 39.

Figure 64. ¹³C-NMR spectrum (on-resonance) of compound 40.

Figure 65. ¹³C-NMR spectrum (DEPT) of compound 40.

Figure 66. ¹³C-NMR spectrum (on-resonance) of compound 41.

Figure 67. ¹³C-NMR spectrum (DEPT) of compound 41.

Figure 68. ¹³C-NMR spectrum (on-resonance) of compound 42.

Figure 69. ¹³C-NMR spectrum (DEPT) of compound 42.

Figure 70. ¹³C-NMR spectrum (on-resonance) of compound 43.

Figure 71. ¹³C-NMR spectrum (on-resonance) of compound 44.

Figure 72. ¹³C-NMR spectrum (on-resonance) of compound 46.

Figure 73. ¹³C-NMR spectrum (on-resonance) of compound 47.

Figure 74. ¹³C-NMR spectrum (on-resonance) of compound 48.

Figure 75. ¹³C-NMR spectrum (DEPT) of compound 48.

Figure 76. HRMS spectra of compound 25.

Figure 78. HRMS spectra of compound 28.

Page 2

11/24/2014 LS

Figure 82. HRMS spectra of compound 33.

Figure 86. HRMS spectra of compound 39.

Figure 87. HRMS spectra of compound 40.

Figure 88. HRMS spectra of compound 41.

Figure 90. HRMS spectra of compound 43.

Figure 92. HRMS spectra of compound 45.

Figure 94. HRMS spectra of compound 47.

Figure 95. HRMS spectra of compound 48.