# Supporting Information

Palladium catalyzed dual C-H functionalization of indoles with cyclic diaryliodoniums, an approach to ring fused carbazole derivatives

Yongcheng Wu,<sup>§a</sup> Xiaopeng Peng,<sup>§a</sup> Bingling Luo,<sup>b</sup> Fuhai Wu,<sup>a,\*</sup> Bo Liu,<sup>c</sup> Fenyun Song,<sup>a</sup> Peng Huang<sup>b</sup>, Shijun Wen<sup>b,\*</sup>

# Contents

| Scheme S1s1                                                           |  |
|-----------------------------------------------------------------------|--|
| General information                                                   |  |
| The preparation and characterization of dibenzocarbazoles             |  |
| Characterization of compound 4                                        |  |
| The preparation and characterization of <i>N</i> -substituted indoles |  |
| The preparation and characterization of cyclic diaryliodoniums        |  |
| References                                                            |  |
| Copies of NMR spectra                                                 |  |



Scheme S1. Arylation with linear and cyclic diaryl iodoniums

# **General information**

All reaction under standard conditions were carried out under air and monitored by thin-layer chromatography. All the reagents, catalysts, and solvents purchased from the vendors were used without further purification unless stated otherwise. All products were purified through silica gel (200-300 mesh) column chromatography with petroleum ether (60-90°C), dichloromethane as eluent. <sup>1</sup>H and <sup>13</sup>C spectra were recorded in CDCl<sub>3</sub> on Bruker Avance 400 spectrometer. Chemical shifts are given in ppm ( $\delta$ ) referenced to CDCl<sub>3</sub> with 7.26 for <sup>1</sup>H and 77.16 for <sup>13</sup>C, and to DMSO-*d*<sub>6</sub> with 2.50 for <sup>1</sup>H and 39.5 for <sup>13</sup>C. Signals are abbreviated as follows: s, singlet; dd, doublet of doublets; d, doublet; t, triplet; q, quartet; m, multiplet. High resolution mass spectra were recorded in LTQ Orbitrap XL spectrometer (Thermo Fisher)

General procedure to synthesize dibenzocarbazoles from indoles and cyclic diaryliodoniums: The synthesis of **3a** was exemplified herein.



**9-Ethyl-9H-dibenzo[a,c]carbazole (3a):** To a stirred solution of **1a** (30 mg, 206.6 umol) in DCE was added **2a** (106.6 mg, 248 umol), Pd(OAc)<sub>2</sub> (4.64 mg, 20.6 umol) and Na<sub>2</sub>CO<sub>3</sub>(43.8 mg, 413.2 umol). The reaction proceeded at 100 °C for 17h before the mixture which was diluted with dichloromethane was filtered with celite. The filtrate was then concentrated by rotary evaporation and the crude product was purified by column chromatography on silica gel (PE/DCM=15/1) to afford **3a** (41 mg, 67% yield) as a white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.95 – 8.85 (m, 2H), 8.78 (d, *J* = 8.4 Hz, 1H), 8.67 (d, *J* = 8.0 Hz, 1H), 8.53 (m, 1H), 7.78 (t, *J* = 8.0 Hz, 1H), 7.74 – 7.65 (m, 2H), 7.61 (m, 2H), 7.53 (t, *J* = 7.5 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 1H), 4.82 (q, *J* = 7.2 Hz, 2H), 1.71 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  140.2, 133.7, 131.0, 130.1, 127.3, 126.9, 126.5, 125.6, 124.2, 123.8, 123.7, 123.7, 123.6, 123.6, 123.50, 122.6, 122.0, 120.5, 113.7, 109.5, 40.9, 15.3; HRMS (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>22</sub>H<sub>18</sub>N, 296.1439; found, 296.1426. IR (KBr) v: 1606, 1515, 1438, 1340, 1224, 1155, 737. MP: 143.5-144.6°C.



**9-Ethyl-13-methyl-9H-dibenzo[a,c]carbazole (3b):** Obtained from **1b** and **2a** as a yellow solid following a procedure for the synthesis of **3a**. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.90 – 8.84 (m, 1H), 8.76 (d, *J* = 8.4 Hz, 1H), 8.67 (d, *J* = 7.2 Hz, 1H), 8.51 (m, 1H), 7.75 – 7.63 (m, 3H), 7.57 (ddd, *J* = 8.4, 7.2, 1.3 Hz, 1H), 7.52 – 7.42 (m, 2H), 7.23 (d, *J* = 7.2 Hz, 1H), 4.84 (q, *J* = 7.2 Hz, 2H), 3.09 (s, 3H), 1.76 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  141.1, 134.4, 131.7, 131.3, 129.2, 127.4, 127.2, 126.6, 126.0, 125.6, 124.2, 124.2, 123.7, 123.6, 123.6, 123.5, 123.3, 122.68, 115.3, 107.1, 41.4, 25.2, 15.4.HRMS (ESI) m/z: [M]<sup>+</sup> calcd for C<sub>23</sub>H<sub>19</sub>N, 309.1517; found, 309.1507. IR (KBr) v: 3760, 3612, 3345, 2879, 1332, 1150, 952, 755. MP: 156.4-157.8°C.



**9-Ethyl-12-methoxy-9H-dibenzo[a,c]carbazole (3c):** Obtained from **1c** and **2a** as a white solid following a procedure for the synthesis of **3a**. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.87 (m, 1H), 8.78 (t, J = 8.4 Hz, 2H), 8.51 (m, 1H), 8.08 (d, J = 2.4 Hz, 1H), 7.78 – 7.73 (m, 1H), 7.73 – 7.65 (m, 2H), 7.57 (t, J = 7.2 Hz, 1H), 7.53 (d, J = 8.8 Hz, 1H), 7.17 (dd, J = 8.8, 2.4 Hz, 1H), 4.82 (q, J = 7.2 Hz, 2H), 4.05 (s, 3H), 1.70 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.7, 135.6, 134.4, 131.1, 130.3, 127.5, 126.9, 126.6, 125.7, 124.4, 124.0, 123.9, 123.6, 123.4, 122.7, 113.5, 113.3, 110.2, 105.2, 56.5, 41.3, 15.5. HRMS (ESI) m/z: [M]<sup>+</sup> calcd for C<sub>23</sub>H<sub>19</sub>NO, 325.1467; found, 325.1458. IR (KBr) v: 3477, 2924, 1606, 1473, 1245, 1033, 728. MP: 140.0-141.7 °C.



**12-Chloro-9-ethyl-9H-dibenzo[a,c]carbazole (3d):** Obtained from **1d** and **2a** as a white solid following a procedure for the synthesis of **3a**. <sup>11</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.94 – 8.82 (m, 1H), 8.77 (m, 2H), 8.59 (d, J = 2.0 Hz, 1H), 8.56 – 8.50 (m, 1H), 7.77 (t, J = 7.2Hz, 1H), 7.74 – 7.67 (m, 2H), 7.60 (t, J = 8.4 Hz, 1H), 7.55 (d, J = 8.8 Hz, 1H), 7.46 (dd, J = 8.8, 2.0 Hz, 1H), 4.86 (q, J = 7.2 Hz, 2H), 1.72 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  138.5, 134.5, 131.3, 129.7, 127.6, 127.0, 126.7, 126.1, 126.0, 124.6, 124.3, 124.0, 123.9, 123.6, 123.4, 122.6, 121.5, 113.1, 110.4, 41.2,

15.3.HRMS (ESI) m/z:  $[M]^+$  calcd for  $C_{22}H_{16}CIN$ , 329.0971; found, 329.0963. IR (KBr) v: 1606, 1515, 1464, 1427, 1300, 749. MP: 169.4-170.7°C.



**9-Ethyl-9H-dibenzo[a,c]carbazole-12-carbonitrile (3e):** Obtained from **1e** and **2a** as a white solid following a procedure for the synthesis of **3a**. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.87 (s, 2H), 8.75 (d, J = 8.0 Hz, 1H), 8.69 (d, J = 8.0 Hz, 1H), 8.47 (s, 1H), 7.81 – 7.66 (m, 4H), 7.62 (m, 2H), 4.82 (q, J = 6.8Hz, 2H), 1.71 (t, J = 6.8 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  141.6, 131.6, 129.2, 128.0, 127.4, 127.1, 127.0, 126.7, 124.7, 124.5, 123.8, 123.6, 123.5, 123.1, 122.7, 120.9, 110.2, 103.4, 100.1, 41.4, 15.3. HRMS (ESI) m/z: [M]<sup>+</sup> calcd for C<sub>23</sub>H<sub>16</sub>N<sub>2</sub>, 320.1313; found, 320.1306. IR (KBr) v: 2370, 2217, 1607, 1471, 1422, 755. MP: 223.1-224.6°C.



**9-Ethyl-9H-dibenzo[a,c]carbazole-13-carbonitrile (3f):** Obtained from **1f** and **2a** as a white solid following a procedure for the synthesis of **3a**. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.42 (d, *J* = 7.6 Hz, 1H), 8.87 (m, 1H), 8.75 (d, *J* = 8.4 Hz, 1H), 8.51 (m, 1H), 7.89 (d, *J* = 8.4 Hz, 1H), 7.85 – 7.79 (m, 2H), 7.78 – 7.69 (m, 2H), 7.63 (t, *J* = 7.2 Hz, 1H), 7.58 – 7.49 (t, *J* = 8.0 Hz, 1H), 4.90 (q, *J* = 7.2 Hz, 2H), 1.78 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  140.5, 135.9, 133.3, 132.1, 129.2, 128.3, 127.2, 127.0, 126.9, 126.8, 126.8, 124.6, 124.4, 123.3, 123.1, 123.0, 121.5, 114.3, 100.0, 99.3, 41.5, 29.7, 15.3. HRMS (ESI) m/z: [M]<sup>+</sup> calcd for C<sub>23</sub>H<sub>16</sub>N<sub>2</sub>, 320.1313; found, 320.1306. IR (KBr) v: 2362, 1607, 1444, 752. MP: 220.0-221.3 °C.



**9-Ethyl-12-fluoro-9H-dibenzo[a,c]carbazole (3g):** Obtained from **1g** and **2a** as a white solid following a procedure for the synthesis of **3a**. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.92 – 8.85 (m, 1H), 8.77 (d, *J* = 8.0 Hz, 1H), 8.72 (d, *J* = 8.0 Hz, 1H), 8.57 – 8.48 (m, 1H), 8.27 (dd, *J* = 10.4, 2.4 Hz, 1H), 7.78 – 7.73 (t, *J* = 8.0 Hz, 1H), 7.73 – 7.69 (m, 2H), 7.59 (t, *J* = 7.2 Hz, 1H), 7.55 (q, *J* = 4.0 Hz, 1H), 4.86 (q, *J* = 7.2 Hz, 2H), 1.72 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  158.3 (d, *J* = 234.9 Hz), 136.7, 134.9, 131.3, 129.9, 127.6, 126.9, 126.7, 126.1, 124.4, 124.0, 123.8, 123.7, 123.6, 123.3, 122.7,

111.8 (d, J = 25.6 Hz), 110.0 (d, J = 9.6 Hz), 107.4 (d, J = 24.6 Hz), 41.3, 15.4. HRMS (ESI) m/z: [M]<sup>+</sup> calcd for C<sub>22</sub>H<sub>16</sub>FN, 313.1267; found, 313.1254. IR (KBr) v: 2923, 2856, 1612, 1468, 1139, 737. MP: 146.4-147-6°C.



**Methyl 9-ethyl-9H-dibenzo[a,c]carbazole-11-carboxylate (3h):** Obtained from **1h** and **2a** as a white solid following a procedure for the synthesis of **3a**. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.88 – 8.79 (m, 2H), 8.75 (d, *J* = 8.0 Hz, 1H), 8.60 (d, *J* = 8.4 Hz, 1H), 8.53 (m, 1H), 8.35 (s, 1H), 8.06 (d, *J* = 7.2 Hz, 1H), 7.73 (m, 2H), 7.59 (t, *J* = 7.2 Hz, 1H), 4.90 (q, *J* = 7.2 Hz, 2H), 4.03 (s, 3H), 1.73 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.1, 139.5, 136.0, 131.7, 129.8, 127.7, 127.2, 127.1, 126.8, 126.5, 125.1, 124.4, 124.2, 123.7, 123.6, 123.4, 123.1, 121.5, 111.5, 52.3, 41.2, 15.5. HRMS (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>24</sub>H<sub>20</sub>NO<sub>2</sub>, 354.1494, ; found, 354.1484. IR (KBr) v: 1701, 1606, 1449, 1240, 738. MP: 206.2-207.3 °C.



**9-Methyl-9H-dibenzo[a,c]carbazole** (**3i**):<sup>[1]</sup> Obtained from **1i** and **2a** as a white solid following a procedure for the synthesis of **3a**. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.90 – 8.82 (m, 2H), 8.77 (d, *J* = 8.4 Hz, 1H), 8.69 – 8.65 (m, 1H), 8.62 (d, *J* = 8.0 Hz, 1H), 7.76 (t, *J* = 7.2 Hz, 1H), 7.69 – 7.63 (m, 2H), 7.59 (m, 1H), 7.51 (t, *J* = 7.2 Hz, 1H), 7.41 (t, *J* = 7.2 Hz, 1H), 4.36 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 141.0, 134.8, 131.1, 130.1, 127.4, 127.1, 126.3, 125.7, 124.3, 124.1, 123.9, 123.8, 123.7, 123.6, 123.0, 122.0, 120.5, 113.6, 109.7, 34.7. IR (KBr) υ: 1604, 1511, 1463, 742. MP: 132.9-134.1°C.



**9-Propyl-9H-dibenzo[a,c]carbazole (3j):** Obtained from **1j** and **2a** as a white solid following a procedure for the synthesis of **3a**. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.94 – 8.86 (m, 2H), 8.79 (d, J = 8.4 Hz, 1H), 8.65 (d, J = 8.0 Hz, 1H), 8.52 (m, 1H), 7.76 (t, J = 7.2 Hz, 1H), 7.72 – 7.67 (m, 2H), 7.65 (d, J = 8.4 Hz, 1H), 7.59 (t, J = 7.2 Hz, 1H), 7.51 (t, J = 7.2 Hz, 1H), 7.42 (t, J = 7.2 Hz, 1H), 4.79 – 4.74 (t, J = 8.0 Hz, 1H), 2.17 (m, 2H), 1.14 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  140.8, 133.9, 131.2, 130.2, 127.5, 127.1, 126.6, 125.7, 124.4, 123.9, 123.8, 123.8, 123.7, 123.6, 122.7, 122.1, 120.5,

113.9, 109.9, 48.0, 23.6, 11.5. HRMS (ESI) m/z:  $[M]^+$  calcd for  $C_{23}H_{19}N$ , 309.1517; found, 309.1506. IR (KBr) v: 2957, 1604, 1465, 1352, 1097, 1030, 731. MP: 111.1-112.5 °C.



**9-(Cyclopropylmethyl)-9H-dibenzo[a,c]carbazole (3k):** Obtained from **1k** and **2a** as a white solid following a procedure for the synthesis of **3a**. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.94 – 8.86 (m, 2H), 8.81 (t, *J* = 8.4 Hz, 2H), 8.64 (d, *J* = 8.0 Hz, 1H), 7.73 (m, 3H), 7.65 – 7.56 (m, 2H), 7.49 (t, *J* = 7.2 Hz, 1H), 7.41 (t, *J* = 7.2 Hz, 1H), 4.87 (d, *J* = 5.2 Hz, 2H), 1.63 – 1.43 (m, 1H), 0.68 – 0.58 (m, 2H), 0.52 (t, *J* = 5.2 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  141.0, 134.2, 131.1, 130.0, 127.4, 127.0, 126.4, 126.0, 125.6, 125.2, 124.2, 123.7, 123.6, 123.5, 123.1, 121.9, 120.4, 113.9, 110.1, 48.9, 11.4, 3.6. HRMS (ESI) m/z: [M]<sup>+</sup> calcd for C<sub>24</sub>H<sub>19</sub>N, 321.1517; found, 321.1509. IR (KBr) v: 1467, 1345, 1016, 742. MP: 132.6-133.9°C.



**Methyl 2-(9H-dibenzo[a,c]carbazol-9-yl)acetate (3l):** Obtained from **11** and **2a** as a white solid following a procedure for the synthesis of **3a.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.88 (t, J = 8.4 Hz, 2H), 8.78 (d, J = 8.4 Hz, 1H), 8.63 (d, J = 8.0 Hz, 1H), 8.32 – 8.27 (m, 1H), 7.77 (t, J = 7.2 Hz, 1H), 7.69 – 7.65 (m, 2H), 7.61 (t, J = 7.2 Hz, 1H), 7.53 – 7.51 (m, 2H), 7.45 (m, 1H), 5.47 (s, 1H), 4.32 (q, J = 7.2 Hz, 2H), 1.25 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.3, 141.4, 134.5, 131.2, 129.9, 127.6, 127.4, 126.6, 126.0, 124.5, 124.4, 124.2, 124.2, 123.9, 123.6, 123.5, 122.2, 122.3, 121.3, 114.61, 109.5, 62.1, 49.1, 14.3. HRMS (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>244</sub>H<sub>20</sub>NO<sub>2</sub>, 354.1494; found, 354.1486. IR (KBr)  $\upsilon$ : 1737, 1459, 1370, 1207, 731. MP: 172.2-173.4°C.



**2-(9H-dibenzo[a,c]carbazol-9-yl)acetonitrile (3m):** Obtained from **1m** and **2a** as a white solid following a procedure for the synthesis of **3a.** <sup>1</sup>H NMR (400 MHz, DMSO-*d6*)  $\delta$  9.05 (d, *J* = 8.0 Hz, 1H), 8.94 (t, *J* = 8.4 Hz, 2H), 8.74 (q, *J* = 8.0 Hz, 2H), 8.05 (d, *J* = 8.4 Hz, 1H), 7.90 – 7.77 (m, 3H), 7.67 (t, *J* = 7.2 Hz, 1H), 7.60 (t, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 6.25 (s, 2H). <sup>13</sup>C NMR (101

MHz, DMSO- $d_6$ )  $\delta$  140.1, 132.9, 130.3, 128.6, 128.0, 127.3, 126.9, 126.6, 124.8, 124.7, 124.5, 123.9, 123.6, 123.2, 122.7, 122.3, 121.9, 116.9, 114.2, 110.5, 35.5. HRMS (ESI) m/z: [M]<sup>+</sup> calcd for C<sub>22</sub>H<sub>14</sub>N<sub>2</sub>, 306.1157; found, 306.1148. IR (KBr) v: 2363, 1466, 1369, 738. MP: 216.3-217.5 °C.



**9-Phenyl-9H-dibenzo[a,c]carbazole (3n):**<sup>[2]</sup> Obtained from **1n** and **2a** as a white solid following a procedure for the synthesis of **3a.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.95 (d, *J* = 8.0 Hz, 1H), 8.81 (dd, *J* = 8.0, 3.2 Hz, 2H), 8.66 (d, *J* = 7.6 Hz, 1H), 7.80 (t, *J* = 7.2 Hz, 1H), 7.70 – 7.60 (m, 4H), 7.55 (m, 3H), 7.50 – 7.35 (m, 4H), 7.29 (d, *J* = 7.2 Hz, 1H), 7.22 (d, *J* = 7.2 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 142.3, 140.5, 134.8, 134.7, 131.1, 131.0, 130.4, 130.1, 129.3, 129.3, 129.1, 127.5, 127.5, 126.1, 125.9, 124.2, 124.1, 124.0, 123.7, 123.4, 121.8, 121.2, 117.9, 114.4, 114.2, 111.1. IR (KBr) υ: 3157, 2357, 1088, 828, 757. MP: 192.1-194.2°C.



Methyl 9H-dibenzo[a,c]carbazole-11-carboxylate (3o): Obtained from methyl indole-6- carboxylate and 2a as a white solid following a procedure for the synthesis of 3a. <sup>1</sup>H NMR (400 MHz, DMSO-*d6*) δ 12.73 (s, 1H), 8.93 (dd, J = 12.0, 8.4 Hz, 2H), 8.83 (d, J = 8.0 Hz, 1H), 8.68 (d, J = 8.4 Hz, 1H), 8.59 (d, J = 8.0 Hz, 1H), 8.32 (s, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.86 – 7.73 (m, 3H), 7.63 (t, J = 7.6 Hz, 1H), 3.94 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO-*d6*) δ 166.9, 137.8, 136.6, 129.9, 129.2, 127.9, 127.4, 127.3, 127.0, 126.4, 124.3, 124.2, 124.1, 123.5, 122.6, 122.2, 121.2, 120.6, 113.2, 111.1, 52.1. HRMS (ESI) m/z: [M-H]<sup>-</sup> calcd for C<sub>22</sub>H<sub>14</sub>NO<sub>2</sub>, 324.1025; found, 324.1032. IR (KBr) υ: 3353, 2923, 2853, 2360, 1697, 1618, 1456, 1292, 1218, 757. MP: 223.2-224.8 °C.



**12-Methoxy-9H-dibenzo[a,c]carbazole** (**3p**):<sup>[2]</sup> Obtained from 5-methoxy-indole and **2a** as a white solid following a procedure for the synthesis of **3a.** <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  12.25 (s, 1H), 8.88 (t, J = 8.0 Hz, 2H), 8.77 (d, J = 7.6 Hz, 1H), 8.55 (d, J = 6.8 Hz, 1H), 7.99 (d, J = 2.4 Hz, 1H), 7.77 (q, J = 8.0 Hz, 2H), 7.70 (t, J = 6.8 Hz, 1H), 7.63 (d, J = 8.8 Hz, 1H), 7.57 (t, J = 7.2 Hz, 1H),

7.10 (dd, J = 8.8, 2.4 Hz, 1H), 3.97 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*6)  $\delta$  154.1, 134.7, 133.5, 129.7, 129.2, 127.6, 126.9, 126.4, 126.1, 124.0, 123.9, 123.4, 123.3, 122.8, 122.2, 122.1, 113.2, 112.4, 111.1, 103.9, 55.8. IR (KBr) v: 3343, 2923, 2362, 1612, 1447, 1308, 1218, 806, 753. MP: 158.6-159.8°C.



**9H-dibenzo[a,c]carbazole (3q):** Obtained from 1-H-indole and **2a** as a yellow solid following a procedure for the synthesis of **3a.** <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  12.40 (s, 1H), 8.91 (t, *J* = 8.4 Hz, 2H), 8.81 (d, *J* = 7.6 Hz, 1H), 8.58 (t, *J* = 8.4 Hz, 2H), 7.78 (t, *J* = 7.6 Hz, 2H), 7.75 – 7.69 (m, 2H), 7.59 (t, *J* = 7.2 Hz, 1H), 7.43 (t, *J* = 7.2 Hz, 1H), 7.33 (t, *J* = 7.2 Hz, 1H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  138.5, 138.4, 134.9, 134.1, 129.6, 129.3, 127.6, 127.0, 126.5, 126.2, 123.9, 123.6, 123.5, 123.4, 122.6, 122.2, 121.3, 120.0, 111.8, 111.2, 40.2. IR (KBr) v: 3417, 2922, 2364, 1457, 745. MP: 170.6-171.9°C.



**9-Ethyl-2,7-dimethyl-9H-dibenzo[a,c]carbazole (3r):** Obtained from **1a** and **2b** as a white solid following a procedure for the synthesis of **3a.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.72 (d, J = 8.4 Hz, 1H), 8.66 (d, J = 7.2 Hz, 2H), 8.62 (d, J = 8.4 Hz, 1H), 8.31 (s, 1H), 7.63 (d, J = 8.4 Hz, 1H), 7.54 – 7.46 (m, 2H), 7.41 (q, J = 7.6 Hz, 2H), 4.86 (q, J = 7.2 Hz, 2H), 2.69 (s, 3H), 2.65 (s, 3H), 1.74 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  140.3, 136.7, 135.6, 133.9, 129.9, 129.0, 127.2, 125.4, 125.0, 124.0, 123.9, 123.7, 123.5, 123.5, 123.3, 122.6, 122.1, 120.3, 113.6, 109.5, 41.1, 22.2, 22.1, 15.4. HRMS (ESI) m/z: [M]<sup>+</sup> calcd for C<sub>24</sub>H<sub>21</sub>N, 323.1674; found, 323.1668. IR (KBr) v: 2879, 1332, 1150, 755. MP: 157.2-158.9°C.



**9-Ethyl-2,7-difluoro-9H-dibenzo[a,c]carbazole (3s):** Obtained from **1a** and **2c** as a white solid following a procedure for the synthesis of **3a.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.68 (dd, J = 9.2, 6.0 Hz, 1H), 8.57 (dd, J = 9.2, 6.0 Hz, 1H), 8.49 (d, J = 8.0 Hz, 1H), 8.39 (dd, J = 10.8, 2.8 Hz, 1H), 8.08 (dd, J = 10.8, 2.8 Hz, 1H), 7.61 (d, J = 8.4 Hz, 1H), 7.53 (t, J = 7.2 Hz, 1H), 7.46 – 7.40 (m, 1H), 7.40 – 7.35

(m, 1H), 7.30 – 7.23 (m, 1H), 4.76 (q, J = 7.2 Hz, 2H), 1.69 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 162.9 (d, *J* = 87.8 Hz), 160.50 (d, *J* = 85.8 Hz), 140.2, 130.9, 127.4, 127.3, 126.3 (d, *J* = 8.0 Hz), 125.5 (d, *J* = 9.0 Hz), 124.6, 124.0 (d, *J* = 8.0 Hz), 123.2 (d, *J* = 2.0 Hz), 121.8, 121.0, 114.4 (d, *J* = 23.2 Hz), 112.5 (d, *J* = 23.2 Hz), 109.7, 108.6 (d, *J* = 22.2 Hz), 108.0 (d, *J* = 24.2 Hz), 40.8, 15.4. HRMS (ESI) m/z: [M]<sup>+</sup> calcd for C<sub>22</sub>H<sub>15</sub>F<sub>2</sub>N, 331.1173; found, 331.1161. IR (KBr) v: 2970, 1618, 1465, 1185, 734. MP: 162.7-164.1 °C.



**9-Ethyl-2,7-dimethoxy-9H-dibenzo[a,c]carbazole (3t):** Obtained from **1a** and **2d** as a white solid following a procedure for the synthesis of **3a.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.69 (d, *J* = 9.2 Hz, 1H), 8.58 (m, 2H), 8.25 (d, *J* = 2.4 Hz, 1H), 7.97 (d, *J* = 2.4 Hz, 1H), 7.64 (d, *J* = 8.4 Hz, 1H), 7.50 (d, *J* = 7.2 Hz, 1H), 7.41 (t, *J* = 7.2 Hz, 1H), 7.31 (dd, *J* = 9.2, 2.4 Hz, 1H), 7.20 (dd, *J* = 9.2, 2.4 Hz, 1H), 4.88 (q, *J* = 7.2 Hz, 2H), 4.10 (s, 3H), 4.03 (s, 3H), 1.77 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  158.6, 157.6, 140.4, 130.4, 129.0, 125.4, 124.6, 123.9, 123.8, 123.6, 121.8, 121.5, 120.6, 114.5, 113.2, 112.6, 109.6, 105.5, 55.7, 55.6, 41.1, 15.6. HRMS (ESI) m/z: [M]<sup>+</sup> calcd for C<sub>24</sub>H<sub>21</sub>NO<sub>2</sub>, 355.1572; found, 355.1562. IR (KBr)  $\upsilon$ : 2924, 2857, 1613, 1464, 1397, 1226, 816, 734. MP: 148.1-149.5°C.



**2-(2'-Iodo-[1,1'-biphenyl]-2-yl)-3-methyl-1H-indole (4)**: Obtained from 3-methy-1-H-lindole and **2a** as a yellow oil following a procedure for the synthesis of **3a.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.61 – 7.57 (m, 1H), 7.57 – 7.53 (m, 3H), 7.52 – 7.48 (m, 2H), 7.30 (s, 1H), 7.22 – 7.16 (m, 3H), 7.16 – 7.10 (m, 2H), 2.15 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  141.5, 141.1, 135.8, 133.8, 131.7, 131.4, 130.8, 129.3, 129.2, 129.0, 128.5, 128.4, 127.4, 127.4, 127.1, 121.9, 119.2, 118.9, 110.6, 109.67, 9.3. IR (KBr) v: 2879, 1382, 1150, 752, 731. HRMS (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>21</sub>H<sub>17</sub>IN, 410.0406; found, 410.0397.

#### General procedure for the preparation of N-substituted indole

These *N*-substituted indoles were synthesized according to Zhang's work <sup>[4]</sup>. The synthesis of 1a was examplified herein.



**1-Ethyl-indole (1a):** To a stirred solution of indole (1g, 8.54mmol) and KOH (1.44g, 25.61mmol) in DMF(8mL) was injected ethyl bromide(1.27mL, 17.07mmol) at room temperature. The mixture was stirred for 3h before the mixture was extracted with EtOAc. The combined organic layers were washed with H<sub>2</sub>O and brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, concentrated by rotary evaporation. The crude product was purified by column chromatography on a silica gel (PE) to afford **1a** (1.15g, 100% yield) as a yellow liquid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.53 – 8.36 (m, 1H), 7.95 (m, 3H), 7.59 (d, *J* = 3.2 Hz, 1H), 7.26 (d, *J* = 3.2 Hz, 1H), 4.48 (q, *J* = 7.2 Hz, 2H), 1.90 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  135.6, 128.7, 126.8, 121.2, 120.8, 119.1, 109.2, 100.8, 40.4, 15.0.



1b

**1-Ethyl-4-methyl-indole (1b):** Obtained from 4-methyl-indole and ethyl bromide as a yellow liquid following a procedure for the synthesis of **1a**. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.08 (d, *J* = 8.0 Hz, 1H), 7.05 – 6.99 (m, 1H), 6.98 (d, *J* = 3.2 Hz, 1H), 6.81 (d, *J* = 6.8 Hz, 1H), 6.40 (d, *J* = 3.2, 1H), 4.02 (q, *J* = 7.2 Hz, 2H), 2.46 (s, 3H), 1.33 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  135.5, 130.5, 128.6, 126.4, 121.6, 119.5, 107.0, 99.6, 41.15, 18.9, 15.6.



1c

**1-Ethyl-5-methoxy-indole (1c):** Obtained from 5-methoxy-indole and ethyl bromide as a yellow liquid following a procedure for the synthesis of **1a**. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 (d, *J* = 8.8 Hz, 1H), 7.31 (d, *J* = 2.4 Hz, 1H), 7.23 (d, *J* = 3.2 Hz, 1H), 7.10 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.62 (dd, *J* = 2.8, 0.4 Hz, 1H), 4.22 (q, *J* = 7.2 Hz, 2H), 4.02 (s, 3H), 1.57 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.0, 131.1, 129.0, 127.5, 111.7, 110.0, 102.6, 100.5, 55. 8, 41.0, 15.4.



**5-Chloro-1-ethyl-indole (1d):** Obtained from 5-chloro-indole and ethyl bromide as a yellow liquid following a procedure for the synthesis of **1a**. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.50 (d, *J* = 1.6 Hz, 1H), 7.20 – 7.12 (m, 1H), 7.10 – 7.02 (m, 2H), 6.34 (d, *J* = 3.2 Hz, 1H), 4.06 (q, *J* = 7.2 Hz, 2H), 1.37 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  134.3, 129.8, 128.4, 125.1, 121.8, 120.4, 110.4, 100.9, 41.3, 15.5.



**5-Cynao-1-ethyl-indole** (1e): Obtained from 5-cynao-indole and ethyl bromide as a yellow liquid following a procedure for the synthesis of 1a. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.84 (s, 1H), 7.32 – 7.23 (m, 2H), 7.13 (d, *J* = 3.2 Hz, 1H), 6.46 (d, *J* = 2.8 Hz, 1H), 4.08 (q, *J* = 7.2 Hz, 2H), 1.36 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  137.2, 129.4, 128.3, 126.5, 124.2, 120.9, 110.1, 102.3, 102.2, 41.3, 15.6.



**4-Cynao-1-ethyl-indole** (**1f**): Obtained from 4-cynao-indole and ethyl bromide as a white solid following a procedure for the synthesis of **1a**. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.41 (d, *J* = 8.4 Hz, 1H), 7.29 (d, *J* = 6.8 Hz, 1H), 7.14 (d, *J* = 3.2 Hz, 1H), 7.10 – 7.04 (t, *J* = 8.0 Hz, 1H), 6.54 (d, *J* = 2.4 Hz, 1H), 4.04 (q, *J* = 7.2 Hz, 2H), 1.32 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  135.3, 129.7, 124.6, 120.9, 118.8, 114.1, 102.9, 100.0, 99.9, 41.2, 15.4.



**5-Fluro-1-ethyl-indole (1g):** Obtained from 5-fluro-indole and ethyl bromide as a yellow liquid following a procedure for the synthesis of **1a**. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.14 (m, 2H), 7.02 (d, J = 2.8 Hz, 1H), 6.85 (t, J = 8.0 Hz, 1H), 6.33 (s, 1H), 6.33 (s, 1H), 4.01 (q, J = 7.2 Hz, 2H), 1.33 (t, J = 7.2 Hz, 2H)

Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 157.9 (d, *J* = 233.5 Hz), 132.5, 128.6, 109.9 (d, *J* = 10.1 Hz) 109.7 (d, *J* = 27.3 Hz), 105.8 (d, *J* = 23.2 Hz), 101.1, 41.3, 15.5.



**Methyl 1-ethyl-indole-6-carboxylate (1h):** Obtained from methyl indole-6-carboxylate and ethyl bromide as a yellow liquid following a procedure for the synthesis of **1a**. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.00 (s, 1H), 7.68 (dd, J = 8.4, 1.2 Hz, 1H), 7.49 (d, J = 8.4 Hz, 1H), 7.08 (d, J = 3.2 Hz, 1H), 6.37 (d, J = 3.2 Hz, 1H), 4.02 (q, J = 7.2 Hz, 2H), 3.80 (s, 3H), 1.29 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.2, 135.0, 132.3, 130.3, 123.0, 120.4, 120.3, 111.7, 101.5, 51.8, 41.0, 15.5.



1i

**1-Methyl-indole (1i):** Obtained from indole and methyl iodide as a yellow liquid following a procedure for the synthesis of **1a**. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.63 (m, 1H), 8.18 – 8.08 (m, 2H), 8.02 – 7.91 (m, 1H), 7.56 (d, J = 3.2 Hz, 1H), 7.40 (d, J = 3.2 Hz, 1H), 4.04 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  136.5, 128.5, 128.4, 121.2, 120.6, 119.1, 109.1, 100.6, 31.7.



**1-Propyl-indole (1j):** Obtained from indole and propyl bromide as a yellow liquid following a procedure for the synthesis of **1a**. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (d, *J* = 8.0 Hz, 1H), 7.40 (d, *J* = 7.6 Hz, 1H), 7.26 (t, *J* = 7.2 Hz, 1H), 7.16 (m, 2H), 6.55 (d, *J* = 2.4 Hz, 1H), 4.12 (t, *J* = 7.2 Hz, 2H), 2.01 – 1.80 (m, 2H), 0.98 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  136.1, 128.7, 128.0, 121.4, 121.0, 119.3, 109.5, 100.9, 48.2, 23.7, 11.7.



**1-(Cyclopropylmethyl)-indole (1k):** Obtained from indole and (bromomethyl)cyclopropane as a yellow liquid following a procedure for the synthesis of **1a**. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.81 (d, *J* = 7.6 Hz, 1H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.40 – 7.32 (m, 1H), 7.27 (m, 2H), 6.66 (s, 1H), 3.95 (d, *J* = 5.6 Hz, 2H), 1.38 – 1.20 (m, 1H), 0.67 (d, *J* = 7.2 Hz, 2H), 0.41 (d, *J* = 4.8 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  136.1, 128.6, 127.4, 121.3, 120.9, 119.2, 109.4, 100.9, 50.4, 11.2, 4.0.



Ethyl 2-(1H-indol-1-yl)-acetate (11): Obtained from indole and methyl 2-bromoacetate as a yellow liquid following a procedure for the synthesis of 1a. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.53 (d, *J* = 8.0 Hz, 1H), 7.14 – 7.07 (m, 2H), 7.02 (m, 1H), 6.95 (d, *J* = 3.2 Hz, 1H), 6.45 (d, *J* = 3.2 Hz, 1H), 4.67 (s, 2H), 4.07 (q, *J* = 7.2 Hz, 2H), 1.12 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.6, 136.6, 128.6, 122.1, 121.2, 119.9, 109.0, 102.5, 61.7, 47.9, 14.2.



**2-(1H-indol-1-yl)-acetonitrile (1m):** Obtained from indole and 2-bromoacetonitrile as a yellow liquid following a procedure for the synthesis of **1a**. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.53 (d, *J* = 8.0 Hz, 1H), 7.16 (m, 2H), 7.07 (m, 1H), 6.84 (d, *J* = 3.2 Hz, 1H), 6.44 (d, *J* = 3.2 Hz, 1H), 4.62 (s, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  135.7, 128.9, 127.2, 122.9, 121.5, 120.8, 114.6, 108.9, 104.0, 34.0.



**1-Phenyl-indole (1n)** <sup>[5]</sup>: To a stirred solution of indole (300 mg, 2.56 mmol) in DMF (5 mL) was added iodobenzene (627 mg, 3.07 mmol), cesium carbonate (1.67 g, 5.12 mmol), Cu(OAc)<sub>2</sub> (46 mg, 256 umol). The reaction proceeded at a 120 °C for 12h under argon atmosphere. The mixture was extract with EtOAc and the combined organic layers were washed with H<sub>2</sub>O and brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, concentrated by rotary evaporation. The crude product was purified by column chromatography on a silica gel (PE) to afford **1n** (100mg, 21% yield) as a white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.74 (d, *J* = 7.6 Hz, 1H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.56 (d, *J* = 4.8 Hz, 4H), 7.44 – 7.36 (m, 2H), 7.31 – 7.17 (m, 2H), 6.74 (d, *J* = 3.2 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  140.0, 136.0, 129.7, 129.5, 128.1, 126.6, 124.5, 122.5, 121.3, 120.5, 110.6, 103.7.

### General procedure for the preparation of cyclic diaryliodoniums

These diphenyleneiodoniums were synthesized according to our previous work  $^{[6]}$ . The synthesis of diphenyleniodonium triflate (**2a**) was exemplified herein.



[1,1'-biphenyl]-2-amine (2a-1): To a stirred solution of 2-iodoaniline (1.0 g, 4.57 mmol) in EtOH (10 mL) was added phenylboronic acid (0.68 g, 5.48 mmol),  $K_3PO_4$  (2.91g, 13.7 mmol) and Pd(PPh\_3)\_4 (52.76 mg, 45.66 µmol). The reaction proceeded at a reflux for 12h under argon atmosphere before EtOH was removed by rotary evaporation. The residue was extracted with EtOAc, and the combined organic layers were washed with H<sub>2</sub>O and brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, concentrated by rotary evaporation. The crude product was purified by column chromatography on a silica gel (PE/EtOAc = 20/1) to afford **2a-1** (750 mg, 97% yield) as a yellow liquid.

**2-Iodo-1,1'-biphenyl (2a-2):** To a stirred solution of **2a-1** (750 mg, 4.43 mmol) in THF (10 mL) was added 4 M aqueous HCl (11.1 mL), and the solution was cooled with an ice bath. NaNO<sub>2</sub> (458.2 mg, 6.65 mmol) dissolved in H<sub>2</sub>O (5 mL) was added dropwise. KI (2.21 g, 13.3 mmol) dissolved in H<sub>2</sub>O (5 mL) was added after 20 min. The reaction mixture was stirred for 10 min with the ice bath, then slowly warmed up to rt and stirred for 1 h. The mixture was extracted with EtOAc, and the combined organic layers were washed with H<sub>2</sub>O and brine. Then the organic layer was washed with 1M aqueous Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> until the color of the organic layer didn't change, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, concentrated by rotary evaporation. The crude product was purified by column chromatography on silica gel (PE) to afford **2a-2** (1.1 g, 85% yield) as a colorless liquid.

**Dibenzo[b,d]iodol-5-ium trifluoromethanesulfonate** (**2a**): To a stirred solution of **2a-2** (1.1 g, 3.93 mmol) in anhydrous CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was added *m*-CPBA (1.02 g, 5.89 mmol), TfOH (1.04 mL, 11.78 mmol). The solution was stirred for 1h at rt. CH<sub>2</sub>Cl<sub>2</sub> was removed by rotary evaporation before Et<sub>2</sub>O (15 mL) was added, and the mixture was stirred for 20 min, and filtered. The collected solid was washed with Et<sub>2</sub>O three times, dried in vacuo to afford **2a** (1.68 g, 100% yield) as a white solid. <sup>1</sup>H NMR (400 Hz, DMSO-*d*<sub>6</sub>)  $\delta$ : 8.40 (d, *J* = 6.8 Hz, 2H), 8.17 (d, *J* = 7.6 Hz, 2H), 7.88 – 7.75 (m, 2H), 7.74 – 7.58 (m, 2H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 141.7, 131.1, 130.7, 130.5, 126.9, 121.5.



**3,7-Dimethyldibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (2b)**: Brown solid (680 mg, 89% yield); <sup>1</sup>H NMR (400 Hz, DMSO- $d_6$ )  $\delta$ : 8.22 (t, J = 6.4, 2H), 7.90 (s, 2H), 7.59 (s, 2H), 2.45 (s, 6H). <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$ : 141.0, 139.1, 131.6, 130.1, 126.2, 121.3, 119.1, 21.1



**3,7-Difluorodibenzo[b,d]iodol-5-ium trifluoromethanesulfonate** (**2c**): White solid (650 mg, 84% yield); <sup>1</sup>H NMR (400 Hz, DMSO-*d*<sub>6</sub>)  $\delta$ : 8.39 (s, 2H), 7.91 (s, 2H), 7.71 (s, 2H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$ : 161.85 (d, *J* = 252.1 Hz), 137.3, 128.3, 122.3, 119.0, 118.8 (d, *J* = 22.8 Hz), 117.5 (d, *J* = 27.0 Hz).



**3,7-Dimethoxydibenzo[b,d]iodol-5-ium trifluoromethanesulfonate** (**2d**): Yellow solid (550 mg, 75 % yield); <sup>1</sup>H NMR (400 Hz, DMSO- $d_6$ )  $\delta$ : 8.23 (d, J = 8.8 Hz, 2H), 7.70 (d, J = 2.4 Hz, 2H), 7.39 (dd, J = 8.8, 2.4 Hz, 2H), 3.89 (s, 6H). <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$ : 159.8, 134.2, 126.8, 121.9, 117.8, 114.7, 56.0.



**Dibenzo[b,d]iodol-5-ium 4-methylbenzenesulfonate** (**2e**): To a stirred solution of **2a-2** (300 mg, 1.07 mmol) in anhydrous CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was added *m*-CPBA (277.1 mg, 1.61 mmol), TsOH (553.3 mg, 3.21 mmol). The solution was stirred for 1h at rt. CH<sub>2</sub>Cl<sub>2</sub> was removed by rotary evaporation before Et<sub>2</sub>O (15 mL) was added, and the mixture was stirred for 20 min, and filtered. The collected solid was washed with Et<sub>2</sub>O three times, dried in vacuo to afford **2e** (335 mg, 97% yield) as a white solid. <sup>1</sup>H NMR (400 MHz, DMSO-*d*6)  $\delta$ 8.47 (d, *J* = 7.6 Hz, 2H), 8.25 (d, *J* = 8.0 Hz, 2H), 7.85 (t, *J* = 7.6 Hz,

2H), 7.70 (t, J = 7.6 Hz, 2H), 7.52 (d, J = 7.6 Hz, 2H), 7.13 (d, J = 7.6 Hz, 2H), 2.29 (s, 3H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*6)  $\delta$  145.4, 141.8, 137.8, 131.0, 130.7, 128.1, 126.9, 125.49, 121.6, 20.8.



**Dibenzo[b,d]iodol-5-ium chloride** (**2f**): To a stirred solution of **2a-2** (300 mg, 1.07 mmol) in anhydrous CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was added *m*-CPBA (277.1 mg, 1.61 mmol), TfOH (0.28 mL, 3.21 mmol). The solution was stirred for 1h at rt before CH<sub>2</sub>Cl<sub>2</sub> was removed by rotary evaporation. To the residue mixture dissolved in formic acid was added brine, and the mixture was stirred for 20 min, and filtered. The collected solid was washed with H<sub>2</sub>O and Et<sub>2</sub>O three times, dried in vacuo to afford **2f** (336.1 mg, 100% yield) as a white solid. <sup>1</sup>H NMR (400 Hz, DMSO-*d*<sub>6</sub>)  $\delta$ : 8.40 (d, *J* = 6.8 Hz, 2H), 8.17 (d, *J* = 7.6 Hz, 2H), 7.88 – 7.75 (m, 2H), 7.74 – 7.58 (m, 2H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 141.7, 131.1, 130.7, 130.5, 126.9, 121.5.



**Dibenzo[b,d]iodol-5-ium trifluoroacetate** (**2g**): To a stirred solution of **2a-2** (300 mg, 1.07 mmol) in anhydrous CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was added *m*-CPBA (277.1 mg, 1.61 mmol), TFA (0.284 mL, 3.21 mmol). The solution was stirred for 1h at rt. CH<sub>2</sub>Cl<sub>2</sub> was removed by rotary evaporation before Et<sub>2</sub>O (15 mL) was added, and the mixture was stirred for 20 min, and filtered. The collected solid was washed with Et<sub>2</sub>O three times, dried in vacuo to afford **2g** (3.23 g, 92% yield) as a white solid. <sup>1</sup>H NMR (400 Hz, DMSO-*d*<sub>6</sub>)  $\delta$ : 8.40 (d, *J* = 6.8 Hz, 2H), 8.17 (d, *J* = 7.6 Hz, 2H), 7.88 – 7.75 (m, 2H), 7.74 – 7.58 (m, 2H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  = 141.7, 131.1, 130.7, 130.5, 126.9, 121.5.

## **Reference:**

- 1. C.A. Mudry, A.R. Frasca, *Tetrahedron*, 1974, 30, 2983.
- 2. A. Vlahovici, H. Ofenberg, Journal of Luminescence, 1983, 28, 451
- 3. M.E. Buden, V. A. Vaillard , S. E. Martin, R. A. Rossi, J. Org. Chem., 2009, 74 , 4490
- 4. L. Zhang , C. Peng , D. Zhao , Y. Wang , H. Fu , Q. Shen, J. Li, Chem. Commun., 2012, 48, 5928.
- 5. L. Zhu, P. Guo, G. Li, J. Lan, R. Xie, J. You, J. Org. Chem., 2007, 72, 8535
- 6. D. Zhu, Q. Liu, B. Luo, M. Chen, R. Pi, P. Huang, S. Wen, Adv. Synth. Catal., 2013, 355, 2172.















s20





















































s39

















s47













160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

-200

-10

0





















