Supporting Information for:

Expedient Access to α,β-Difunctionalized Azepenes using Alpha-Halo Eneformamides:

Application to the Synthesis of 2-Benzazepanes

Daniel P. Bassler, Laura Spence, Amir Alwali, Oliver Beale, and Timothy K. Beng*

Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA

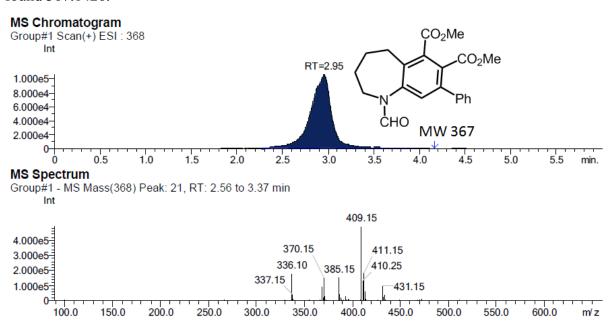
beng@susqu.edu

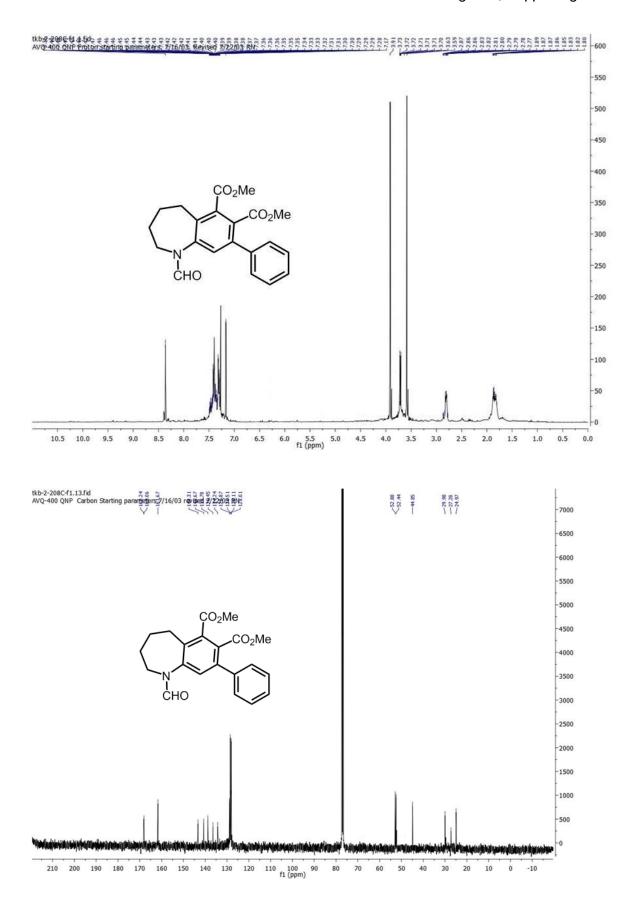
Contents:

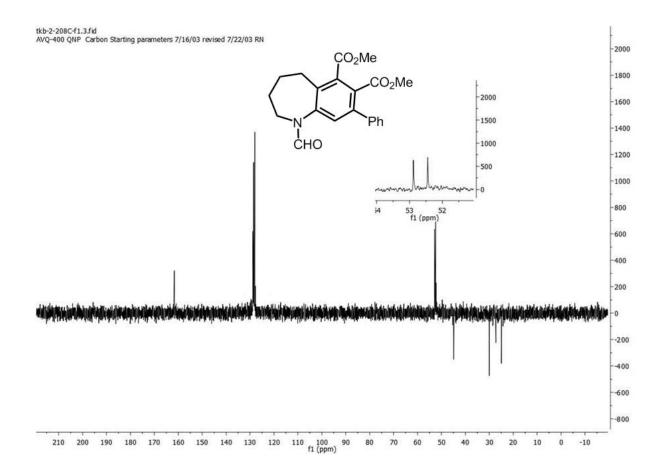
1. General Procedures	S2
2. Synthesis of 2-benzazepanes.	S3
3. C-3/C-2 functionalization	S17
4. References	S45

2. Experimental Section

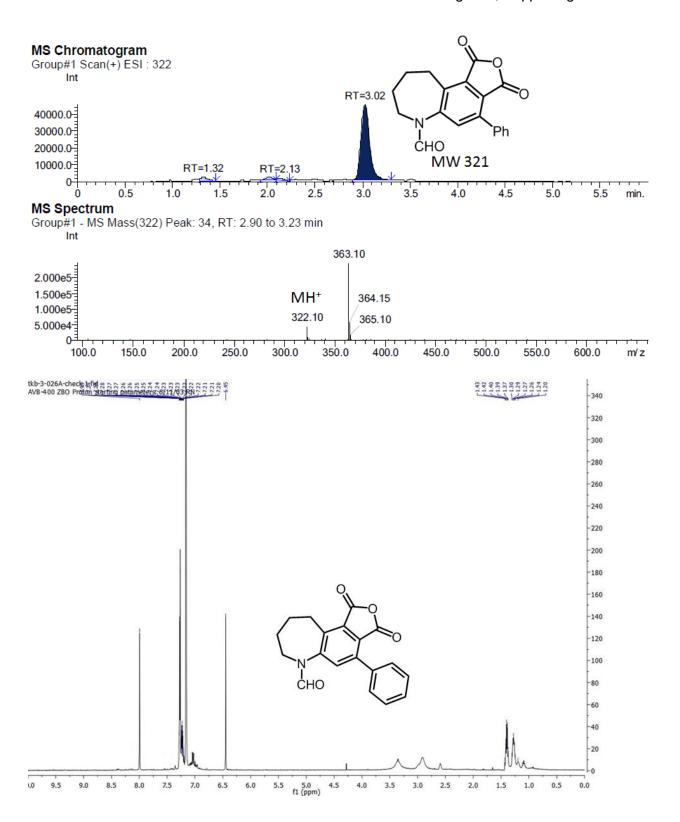
All experiments involving air and moisture sensitive reagents such as palladium precatalysts were carried out under an inert atmosphere of argon or nitrogen and using freshly distilled solvents. Anhydrous 1,4-dioxane was used as purchased. Dichloromethane was distilled from MgSO₄. Aryl iodides, boronic acids, terminal alkynes, and simple dienophiles were obtained from commercial sources. Column chromatography was performed on silica gel (230-400 mesh). Thin-layer chromatography (TLC) was performed on silica plates. Visualization of the TLC plates was aided by UV irradiation at 254 nm or by KMnO₄ staining. ¹H, ¹³C, DEPT-135, and 2D-NMR spectra were acquired using C₆D₆ or CDCl₃ as solvent at room temperature. Chemical shifts are quoted in parts per million (ppm).

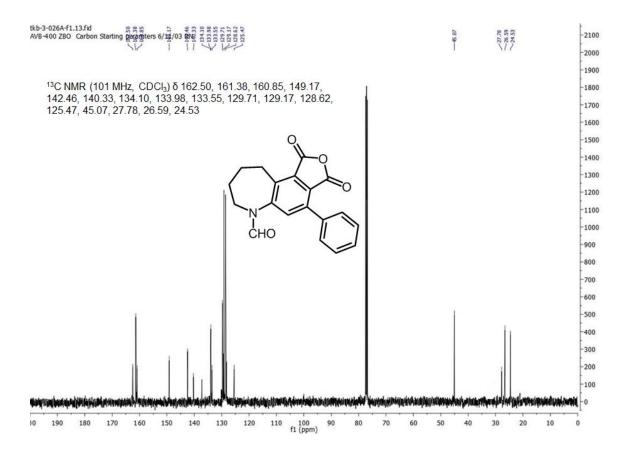

General Procedure A: Synthesis of 2-benzazepanes

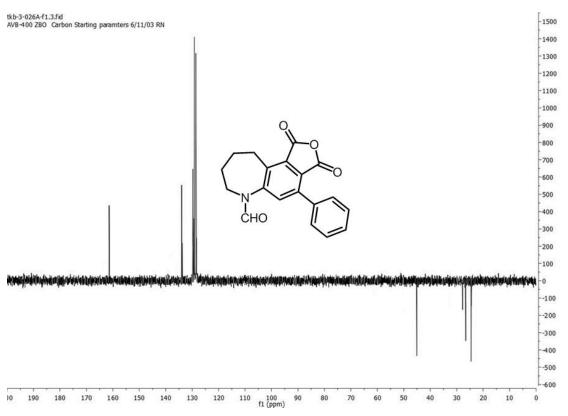

A 5 mL tube was flame-dried, evacuated and flushed with nitrogen. A solution of the desired dienophile (0.10 M in dioxane) was added to a solution of the diene¹ (0.10 M in dioxane) under nitrogen. The mixture was heated to the desired temperature whiles being stirred. Upon completion (TLC and GC-MS or LC-MS monitoring), the mixture was cooled to room temperature and SeO₂ (3 equiv) was added. The heterogeneous mixture was heated to 130 °C for 30 min to give the crude benzazepane (s).


General Procedure B: C-3 arylation of α-halo eneformamides²

To a vial was added the eneformamide (0.5 mmol), aryl iodide (1.0 mmol, 2.0 equiv), Pd(OAc)₂ (12 mg, 10 mol %), Bu₄NCl (70 mg, 0.25 mmol, 0.5 equiv), NaHCO₃ (47 mg, 0.55 mmol, 1.1 equiv), and AgCl (86 mg, 0.6 mmol, 1.2 equiv) were mixed in DMSO/dioxane (5 mL/1 mL). The reaction vessel was then capped and stirred at 80 °C for the indicated length of time prior to cooling to room temperature. The mixture was filtered through a pad of Celite and washed with EtOAc. The filtrate was concentrated under reduced pressure to give the crude product.


Prepared from **7a** (227.3 mg, 1.0 mmol), dimethyl maleate (0.51 mL, 4 mmol, 4 equiv), and SeO₂ (3 equiv) using **General Procedure A.** Time = 2 h, Temp = 130 °C. Purification: Flash chromatography on silica (pretreated with 1% Et₃N) eluting with hexane/EtOAc (80:20 to 50:50). Yield = 235 mg, 64%. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (1H), 7.49 to 7.17 (5H), 3.91 (1H), 3.73 to 3.70 (2H), 3.63 (1H), 2.87 to 2.77 (2H), 1.89 to 1.80 (4H). ¹³C NMR (101 MHz, CDCl₃) δ 168.24, 168.06, 161.67, 143.31, 140.67, 138.78, 136.45, 134.24, 128.87, 128.51, 128.11, 128.01, 52.88, 52.44, 44.85, 29.98, 27.28, 24.97. HRMS calc for C₂₁H₂₁NO₅ 367.1420, found 367.1426.



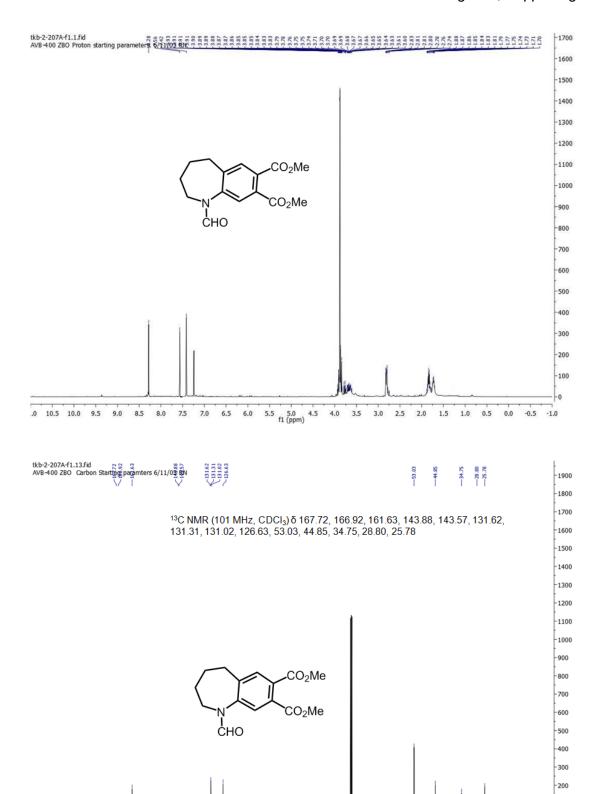


Prepared from **7a** (227.3 mg, 1.0 mmol), maleic anhydride (392 mg, 4 mmol, 4 equiv), and selenium dioxide using **General Procedure A.** Temp = $100\,^{\circ}$ C, Time = 2 h. Purification: Flash chromatography on silica (pretreated with 1% Et₃N) eluting with hexane/EtOAc (70:30 to 50:50). Yield = 241 mg, 75%. ¹H NMR (400 MHz, C₆D₆) δ 7.99 (1H), 7.28 to 7.15 (5H), 6.45 (1H), 3.36 to 3.33 (2H), 2.97 to 2.86 (2H), 1.43 to 1.17 (4H). ¹³C NMR (101 MHz, CDCl₃) δ 162.50, 161.38, 160.85, 149.17, 142.46, 140.33, 134.10, 133.98, 133.55, 129.71, 129.17, 128.62, 125.47, 45.07, 27.78, 26.59, 24.53. HRMS calc for C₁₉H₁₅NO₄ 321.1001, found 321.0997.



$$CO_2Me$$
 CO_2Me
 CHO
19a

Prepared from **7b** (209.2 mg, 1.0 mmol), and methyl acrylate (0.554 mL, 6 mmol, 6 equiv) and selenium dioxide (3 equiv) using **General Procedure A.** Time = 2 h, Temp = 130 $^{\circ}$ C. Purification: Flash chromatography on silica (pretreated with 1% Et₃N) eluting with hexane/EtOAc (80:20). Yield = 195 mg, 67%. 1 H NMR (400 MHz, CDCl₃) δ 8.27 (1H), 7.55 (1H), 7.45 (1H), 3.89 to 3.64 (8H), 2.88 to 2.84 (2H), 1.88 to 1.55 (4H). 13 C NMR (101 MHz, CDCl₃) δ 167.72, 166.92, 161.63, 143.88, 143.57, 131.62, 131.31, 131.02, 126.63, 53.03, 44.85, 34.75, 28.80, 25.78. HRMS calc for C₁₅H₁₇NO₅ 291.1107, found 291.1103.



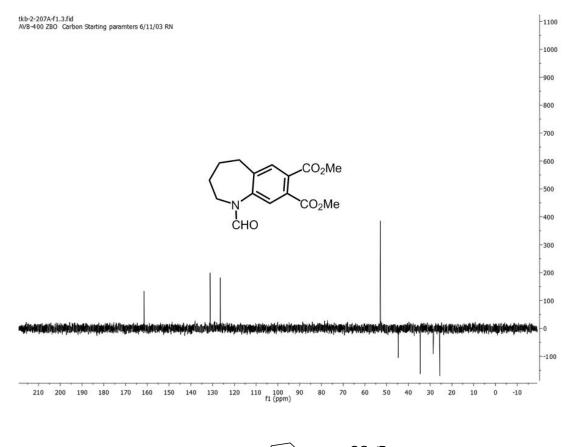
100

20

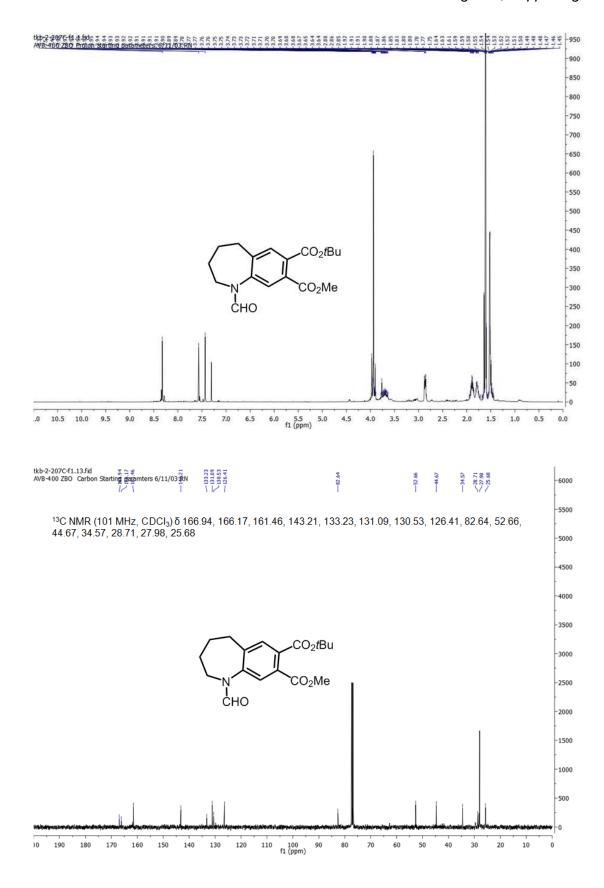
10

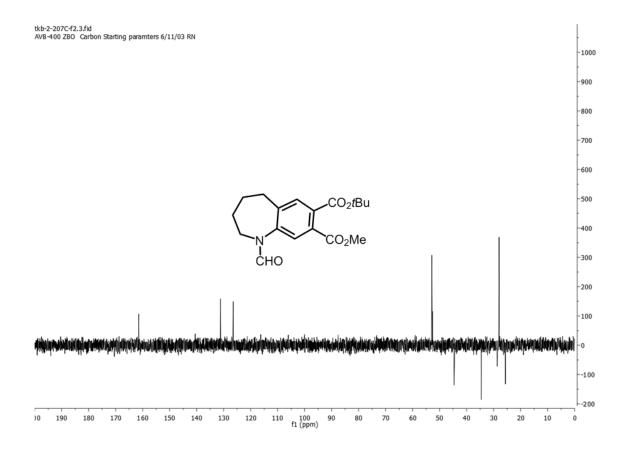
30

60 50 40


150

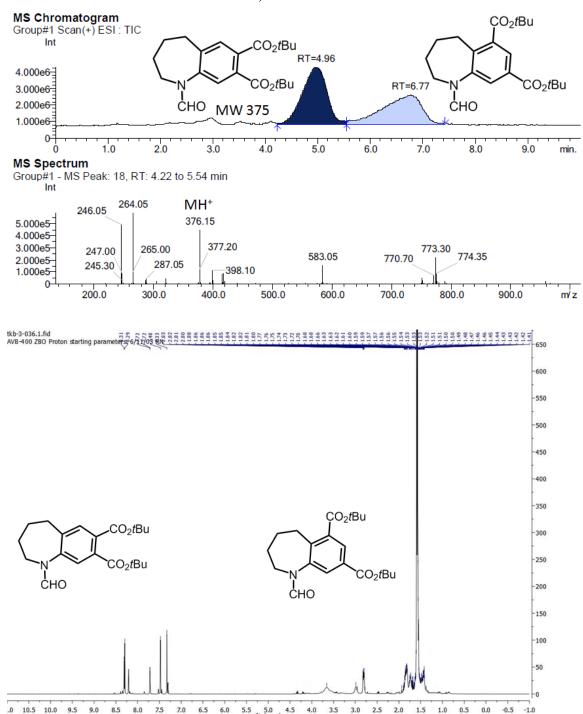
140 130

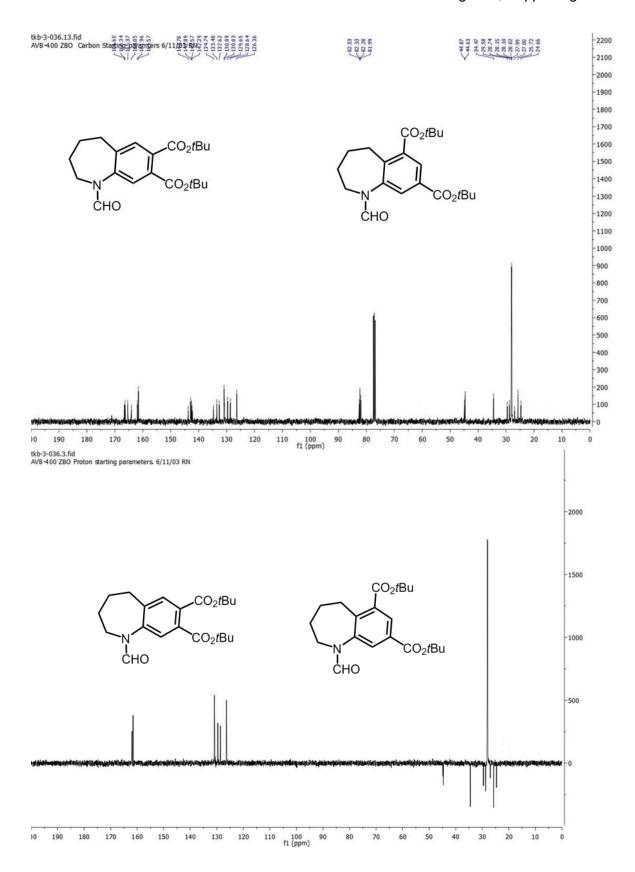

180 170 160


120

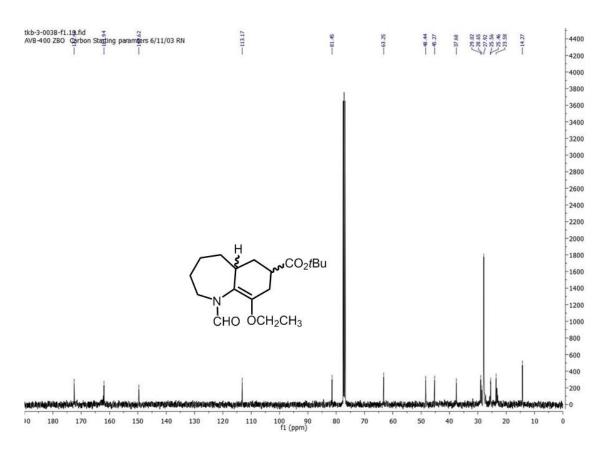
100 f1 (ppm)

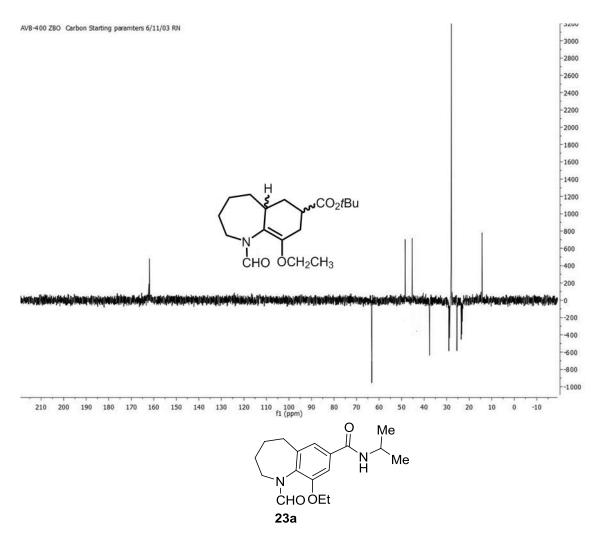
Prepared from **7b** (209.2 mg, 1.0 mmol), *tert*-butyl acrylate (0.29 mL, 2 mmol, 2 equiv), and selenium dioxide (3 equiv) using **General Procedure A.** Time = 2 h, Temp = 130 °C. Purification: Flash chromatography on silica (pretreated with 1% Et₃N) eluting with hexane/EtOAc (90:10 to 70:30). Yield = 243 mg, 73%. ¹H NMR (400 MHz, CDCl₃) δ 8.32 (1H), 7.57 (1H), 7.43 (1H), 3.98 to 3.64 (5H), 2.88 to 2.84 (2H), 1.95 to 1.44 (13H). ¹³C NMR (101 MHz, CDCl₃) δ 166.94, 166.17, 161.46, 143.21, 133.23, 131.09, 130.53, 126.41, 82.64, 52.66, 44.67, 34.57, 28.71, 27.98, 25.68. HRMS calc for C₁₈H₂₃NO₅ 333.1576, found 333.1572.

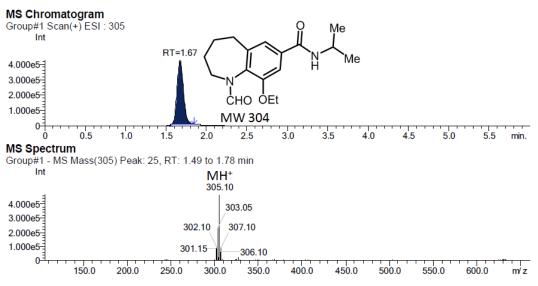




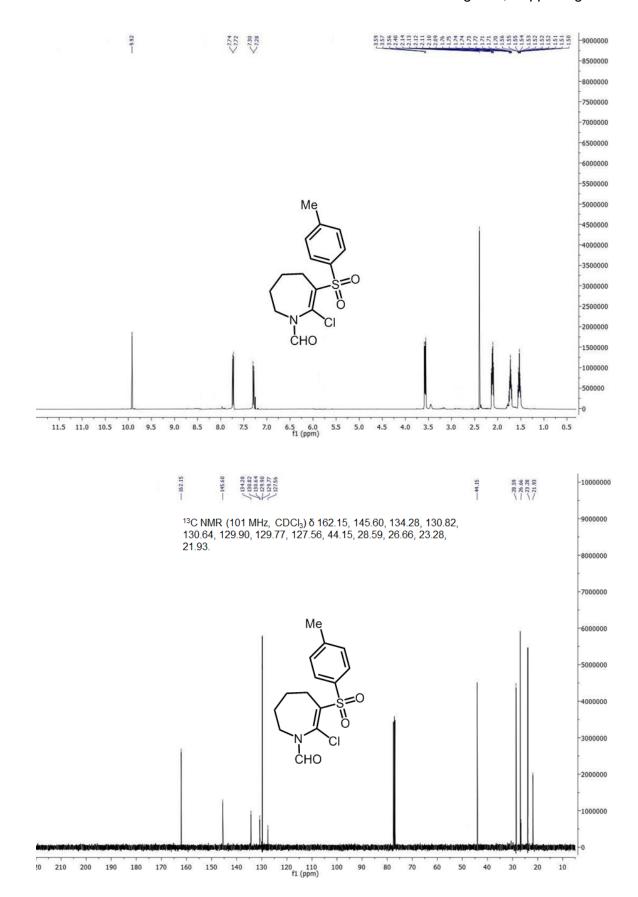
$$CO_2 tBu$$
 + $CO_2 tBu$ + $CO_2 tBu$ $CO_2 tBu$


Prepared from **7c** (251.3 mg, 1.0 mmol) and *tert*-butyl acrylate (0.29 mL, 2 mmol, 2 equiv) using **General Procedure A.** Time = 2 h, Temp = 130 °C. Purification: Flash chromatography on silica (pretreated with 1% Et3N) eluting with hexane/EtOAc (90:10 to 80:20). Yield = 289 mg, 77%. 1H NMR (400 MHz, CDCl₃) δ 8.31, 8.29, 7.72, 7.72, 7.48, 7.33, 3.66, 2.99, 2.96, 2.83, 2.82, 2.81, 2.80, 2.78, 1.93, 1.90, 1.89, 1.88, 1.88, 1.86, 1.86, 1.86, 1.85, 1.85, 1.84, 1.82, 1.82, 1.81, 1.80, 1.77, 1.76, 1.75, 1.74, 1.73, 1.72, 1.70, 1.68, 1.68, 1.66, 1.66, 1.65, 1.64, 1.63, 1.63, 1.62, 1.61, 1.60, 1.59, 1.59, 1.57, 1.57, 1.56, 1.56, 1.55, 1.54, 1.53, 1.53, 1.53, 1.52, 1.51, 1.51, 1.50, 1.50, 1.49, 1.48, 1.47, 1.46, 1.46, 1.45, 1.44, 1.43, 1.43, 1.42, 1.42, 1.41, 1.38, 1.37. 13C NMR (101 MHz, CDCl3) δ 166.60, 166.34, 165.37, 164.05, 161.96, 161.57, 143.78, 142.89, 142.57, 142.29, 134.74, 133.48, 132.62, 130.89, 130.83, 129.65, 128.64, 126.35, 82.53, 82.33,


82.28, 81.99, 44.87, 44.63, 34.47, 29.58, 28.74, 28.15, 28.10, 28.02, 27.99, 27.00, 25.72, 24.66. HRMS calc for C21H29NO5 375.2046, found 375.2040.

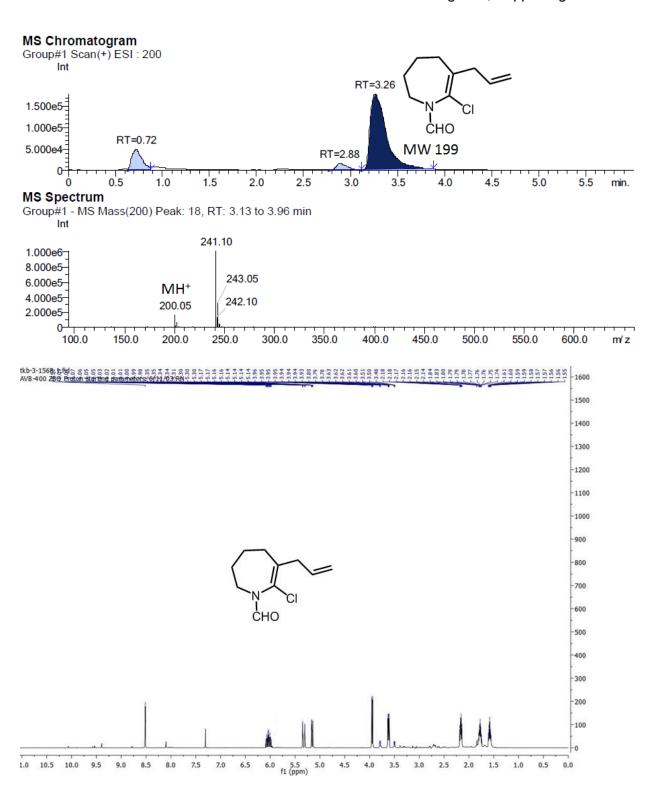


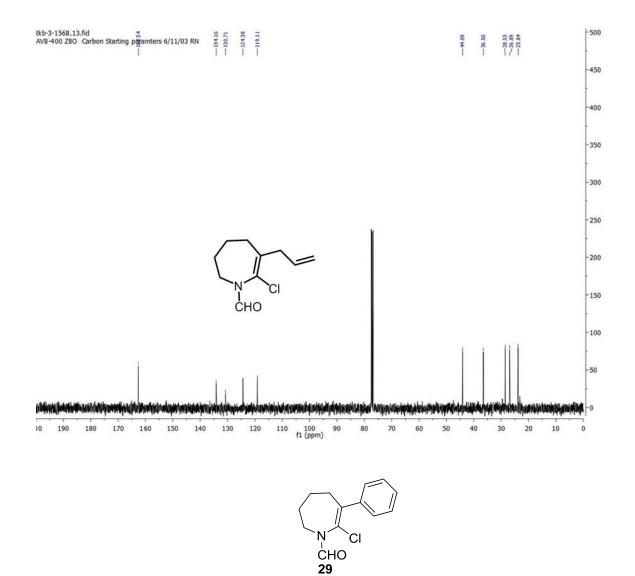
Prepared from **9** (195.3 mg, 1.0 mmol) and *tert*-butyl acrylate (0.29 mL, 2 mmol, 2 equiv) using **General Procedure A.** Time = 2 h, T = 100 °C. Purification: Flash chromatography on silica (pretreated with 1% Et₃N) eluting with hexane/EtOAc (60:40 to 10:90). Yield = 259 mg, 80%. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (1H), 4.17 to 4.12 (2H), 3.83 to 3.71 (2H), 3.59 to 3.23 (3H), 3.08 to 2.34, 1.93 to 1.37. ¹³C NMR (101 MHz, CDCl₃) δ 172.48, 161.94, 149.62, 113.17, 81.46, 63.25, 48.44, 45.27, 37.60, 29.01, 28.65, 27.92, 25.56, 25.46, 23.58, 23.27, 14.27.



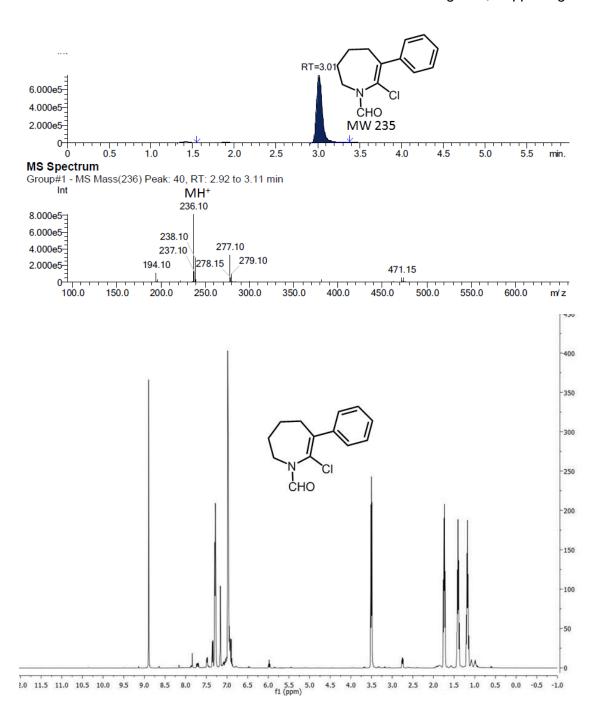
Obtained in trace amounts from **9** (19.5 mg, 0.10 mmol), *N*-isopropyl acrylamide (22.6 mg, 0.20 mmol, 2 equiv), selenium dioxide (3 equiv) using **General Procedure A.** Time = 2 h.

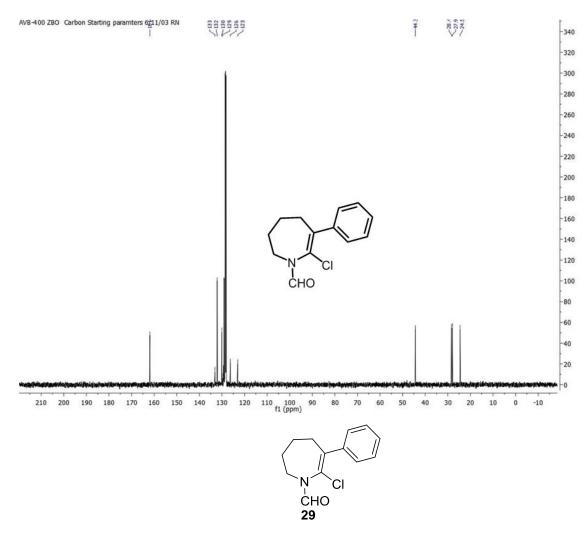
β-Sulfonation of α-chloro eneformamide $1a^3$


To a 100 mL flask was equipped with a rubber septum and magnetic stir bar was added α-chloro eneformamide 1a (800 mg, 5.0 mmol, 1.0 equiv), p-toluenesulfonyl chloride (1.91 g, 10 mmol, 2.0 equiv), Ir(ppy)₂(dtbbpy)PF₆ (1 mol%), Na₂HPO₄ (15.0 mmol, 3 equiv). The flask was evacuated and backfilled with argon for several times. CH₃CN (50 mL, 0.1 M) was added via syringe under argon. The mixture was then irradiated by a 3 W blue LED strip at a distance of 5 cm. After the reaction was complete (as judged by GC-MS and TLC monitoring, ~32 h), the mixture was poured into a separatory funnel containing H₂O (50 mL) and EtOAc (100 mL). The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure to afford the crude product, which was purified by flash chromatography (hexane/EtOAc, 60:40) on silica gel to afford 1.27 g of the desired product as an amorphous solid in 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.92 (1H), 7.73 (2H), 7.28 (2H), 3.59 to 3.56 (2H), 2.40 (3H), 2.14 to 2.09 (2H), 1.76 to 1.70 (2H), 1.56 to 1.50 (2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.1, 145.6, 134.3, 130.8, 130.6, 129.9, 129.8, 127.6, 44.1, 28.6, 26.7, 23.3, 21.9. HRMS calc for C₁₄H₁₆ClNO₃S 313.0539, found 313.0551.

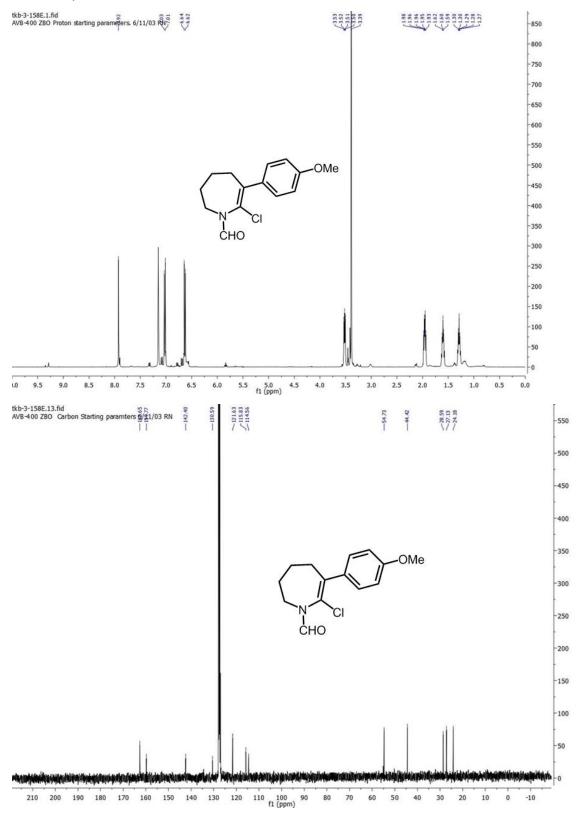


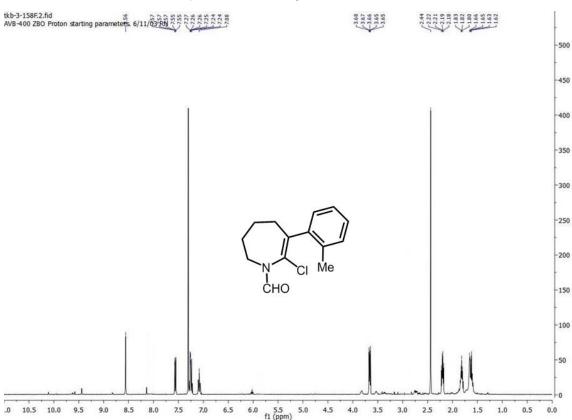
To an oven-dried, septum-capped two-necked flask equipped with a stir bar were added freshly distilled TMEDA (0.90 mL, 6.00 mmol, 6.0 equiv), allylmagnesium bromide (1.0 M in THF, 3.00 mL, 3.00 mmol, 3.0 equiv) diluted with anhydrous cyclopentyl methyl ether (CPME, 3.0 mL) via syringe under an argon atmosphere. One of the septa was opened and Fe(acac)₃ (20 mg, 0.050 mmol, 5 mol%) was rapidly introduced and the suspension was diluted with CPME (5.0 mL) was added. After several minutes (~5 min), vinyl sulfone 27 (313 mg, 1.00 mmol, 1.0 equiv) in CPME (5.0 mL) was added. The suspension was sonicated until a clear solution was obtained (~10 min, longer time required for less suluble Grignard reagents). After 5 h at rt (TLC and GC-MS monitoring), the mixture was quenched by slow addition of *sat* NH₄Cl. It was then filtered through a pad of Celite under vacuum and the remaining residue was rinsed with EtOAc. The filtrate was transferred to a separatory funnel, and the layers were separated. The aqueous layer was extracted with EtOAc and the combined organic extracts were dried over Na₂SO₄ (30 min), filtered, and concentrated in under reduced pressure to give the crude product.

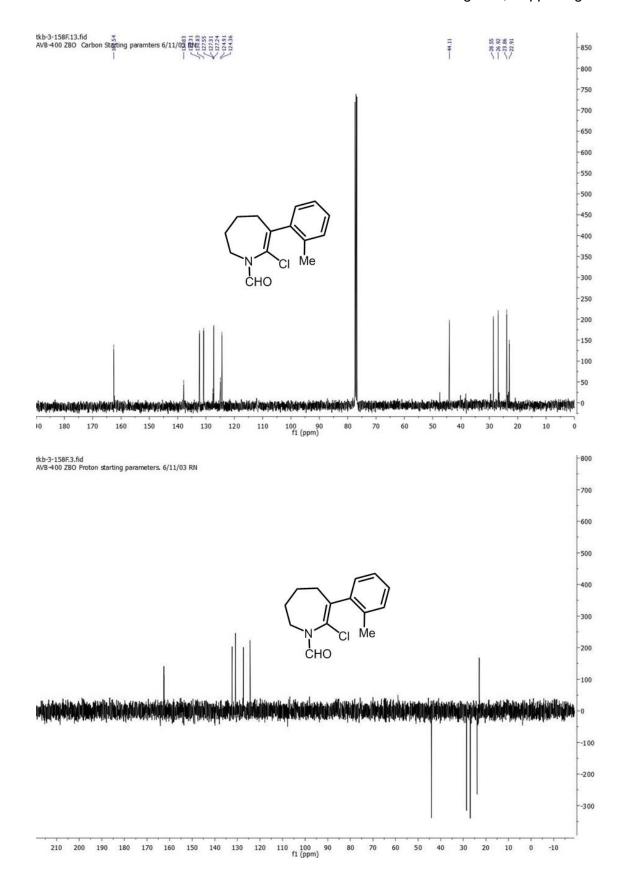

Purification: Flash chromatography on silica (pretreated with 1% Et₃N) eluting with


Purification: Flash chromatography on silica (pretreated with 1% Et₃N) eluting with hexane/EtOAc (90:10 to 70:30). Yield = 141 mg, 71%. 1 H NMR (400 MHz, CDCl₃) δ 8.52 (1H), 6.09 to 5.98 (1H), 5.31 (1H), 5.16 (1H), 3.95 (2H), 3.63 to 3.60 (2H), 2.18 to 2.14 (2H), 1.84, to 1.74 (2H), 1.61 to 1.55 (2H). 13 C NMR (101 MHz, CDCl₃) δ 162.5, 134.2, 130.7, 124.4, 119.1, 44.1, 36.5, 28.5, 26.9, 23.8. HRMS calc for $C_{10}H_{14}$ CINO 199.0607, found 199.0610.

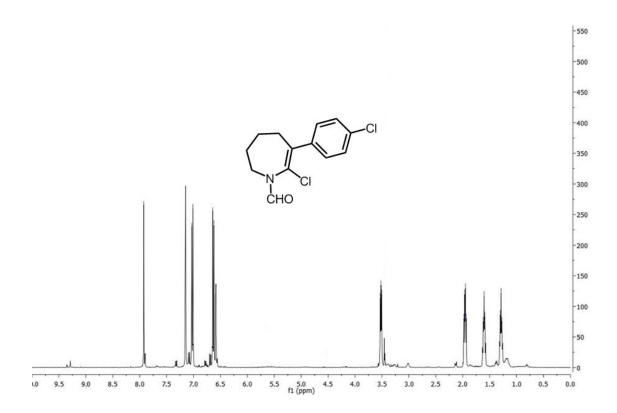
Prepared from vinyl sulfone **27** (1 mmol) in the same way as was **28**; Purification: Flash chromatography on silica (pretreated with 1% Et₃N) eluting with hexane/EtOAc (70:30 to 50:50). Yield = 207 mg, 88%. ¹H NMR (400 MHz, C_6D_6) δ 8.90 (1H), 7.30 to 6.96 (5H), 3.52 to 3.49 (2H), 1.76 to 1.72 (2H), 1.44 to 1.38 (2H), 1.21 to 1.15 (2H), 1.10 to 1.07 (2H). ¹³C NMR (101 MHz, C_6D_6) δ 161.89, 133.09, 132.11, 130.09, 129.70, 126.27, 123.04, 44.39, 28.44, 27.94, 24.59. HRMS calc for $C_{13}H_{14}CINO$ 235.0764, found 235.0760.

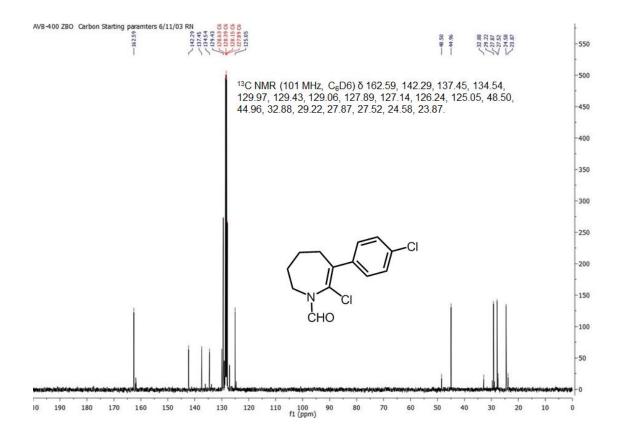


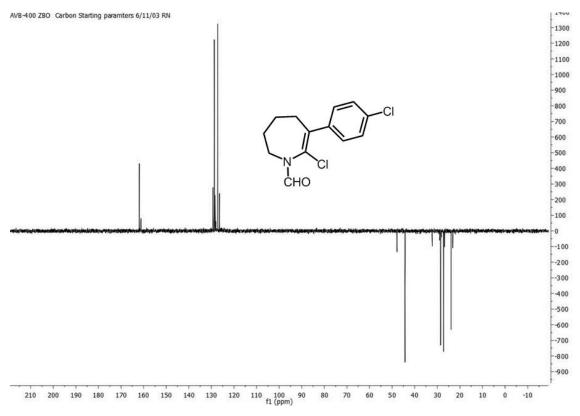

Prepared from 1a (80 mg, 0.5 mmol) and iodobenzene (204 mg, 2 equiv) using **General Procedure B.** Time = 22 h. Purification: Flash chromatography on silica (pretreated with 1% Et₃N) eluting with hexane/EtOAc (70:30 to 50:50). Yield = 85.8 mg, 73%.

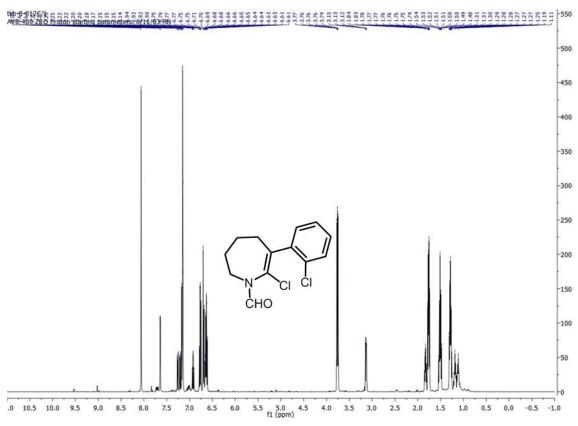

Prepared from **1a** (80 mg, 0.5 mmol) and 4-iodoanisole (234 mg, 2 equiv) using **General Procedure B.** Time = 16 h. Purification: Flash chromatography on silica (pretreated with 1% Et₃N) eluting with hexane/EtOAc (50:50 to 20:80). Yield = 114 mg, 86%. ¹H NMR (400 MHz, C_6D_6) δ 7.92 (1H), 7.03 (2H), 6.63 (2H), 3.53 to 3.50 (2H), 3.39 (3H), 1.98 to 1.93 (2H), 1.62 to 1.59 (2H), 1.31 to 1.28 (2H). ¹³C NMR (101 MHz, C_6D_6) δ 162.65, 159.77, 142.40, 130.59,

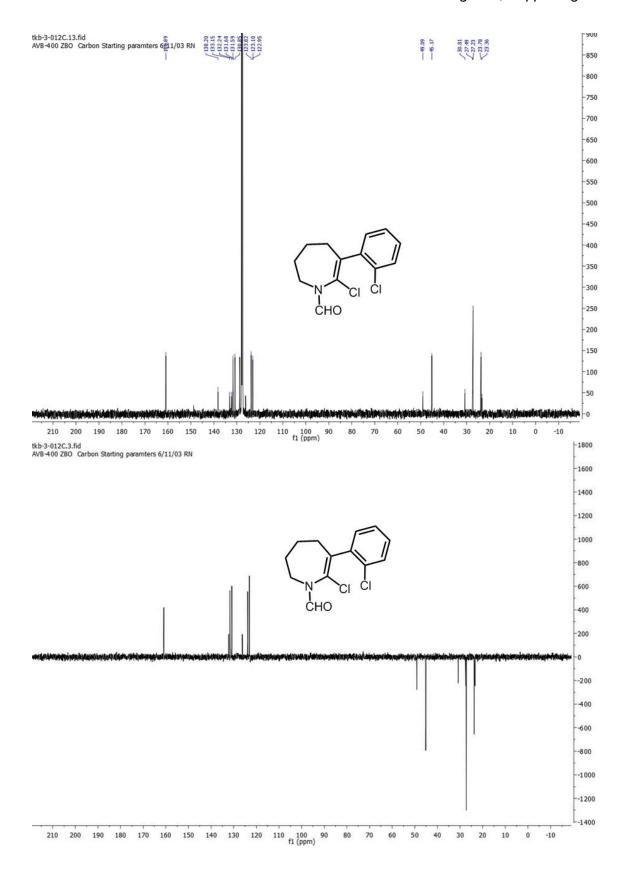
121.63, 115.83, 114.56, 54.73, 44.42, 28.59, 27.13, 24.18. HRMS calc for $C_{14}H_{16}CINO_2$ 265.0870, found 265.0874.

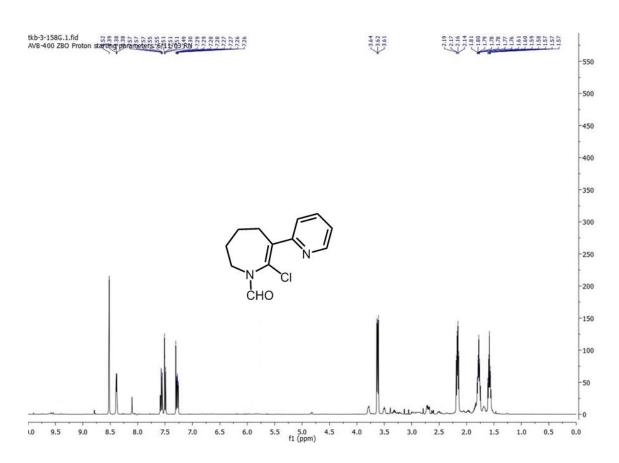


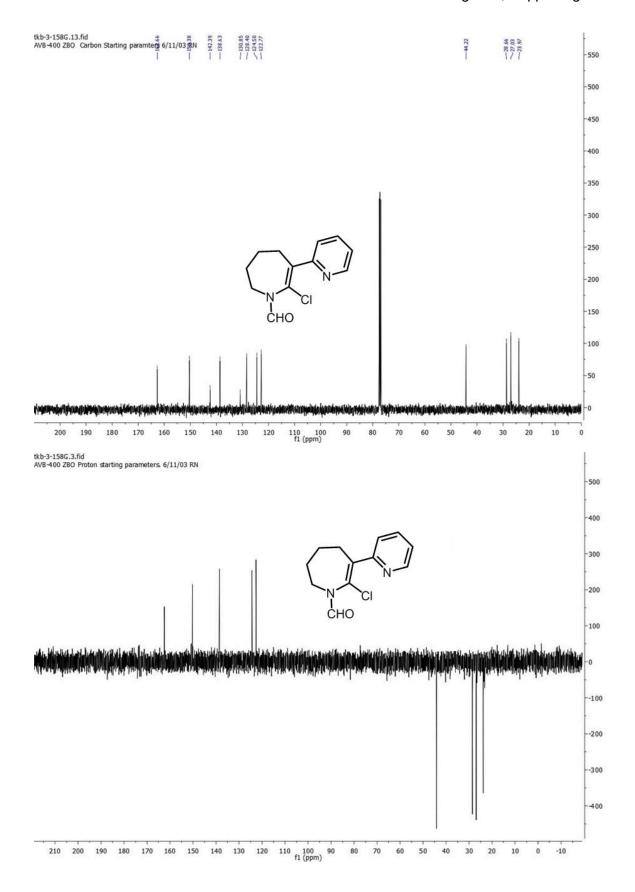

Prepared from **1a** (80 mg, 0.5 mmol) and iodotoluene (218 mg, 2 equiv) using **General Procedure B.** Time = 22 h. Purification: Flash chromatography on silica (pretreated with 1% Et₃N) eluting with hexane/EtOAc (70:30 to 50:50). Yield = 76 mg, 61%. 1 H NMR (400 MHz, CDCl₃) δ 8.56 (1H), 7.57 (1H), 7.27 to 7.24 (2H), 7.08 (1H), 3.68 to 3.65 (2H), 2.44 (3H), 2.22 to 2.18 (2H), 1.83 to 1.80 (2H), 1.66 to 1.62 (2H). 13 C NMR (101 MHz, CDCl₃) δ 162.54, 137.83, 132.31, 130.83, 127.55, 127.31, 127.24, 124.91, 124.36, 44.11, 28.55, 26.92, 23.86, 22.91. HRMS calc for $C_{14}H_{16}CINO$ 249.0920, found 249.0912.

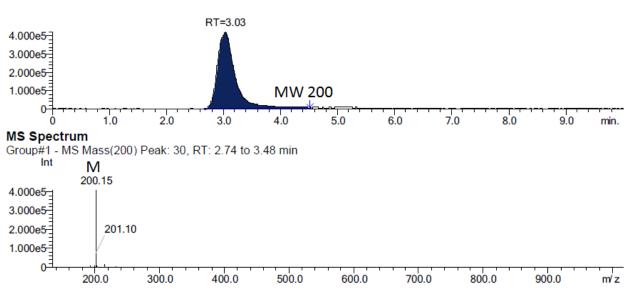


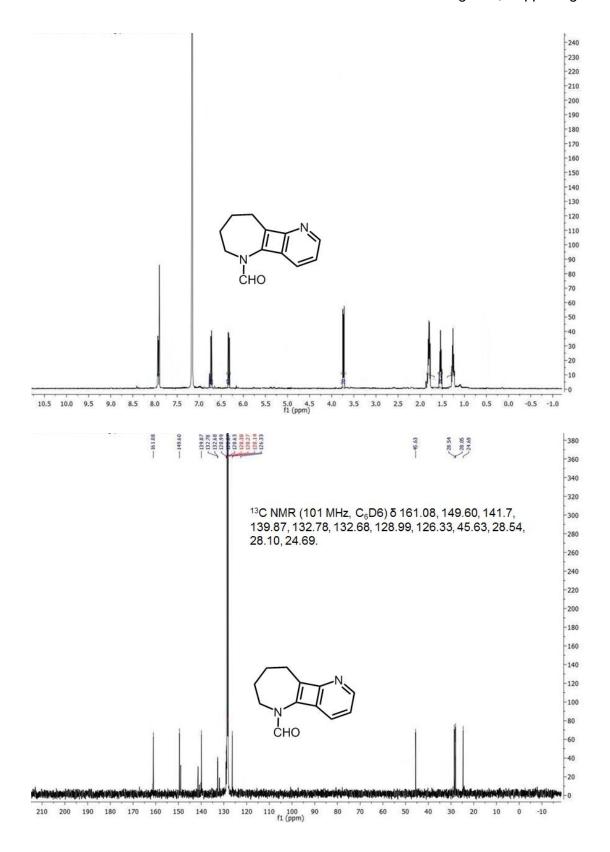

Prepared from **1a** (80 mg, 0.5 mmol) and 1-chloro-4-iodobenzene (238 mg, 2 equiv) using **General Procedure B.** Time = 22 h. Purification: Flash chromatography on silica (pretreated with 1% Et₃N) eluting with hexane/EtOAc (80:20). Yield = 88.8 mg, 66%. 1 H NMR (400 MHz, $C_{6}D_{6}$, mixture of rotamers) δ 7.92 (1H), 7.02 (2H) 6.63 (2H), 3.52 (2H), 1.98 to 1.93 (2H), 1.62 to 1.59 (2H), 1.30 to 1.26 (2H). 13 C NMR (101 MHz, $C_{6}D_{6}$) δ 162.59, 142.29, 137.45, 134.54, 129.97, 129.43, 129.06, 127.89, 127.14, 126.24, 125.05, 48.50, 44.96, 32.88, 29.22, 27.87, 27.52, 24.58, 23.87. HRMS calc for $C_{13}H_{13}Cl_{2}NO$ 269.0374, found 269.0366.

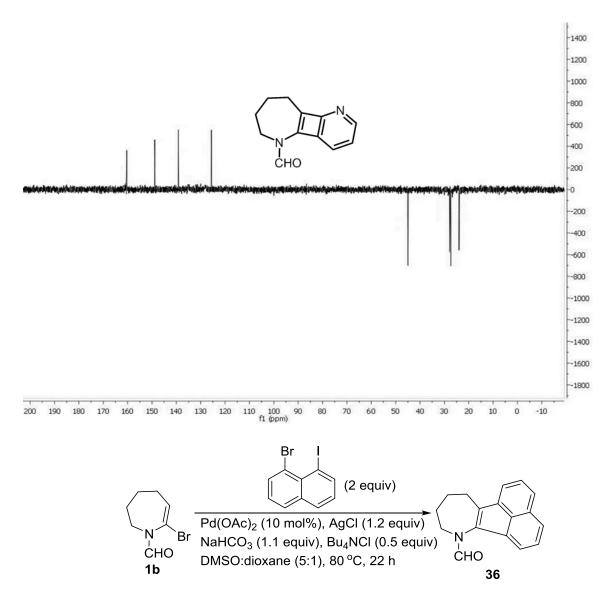


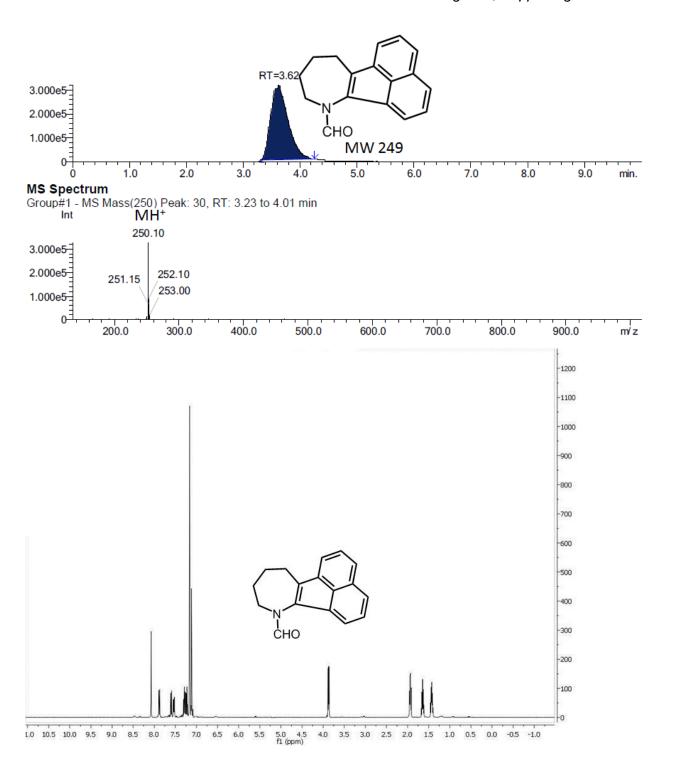


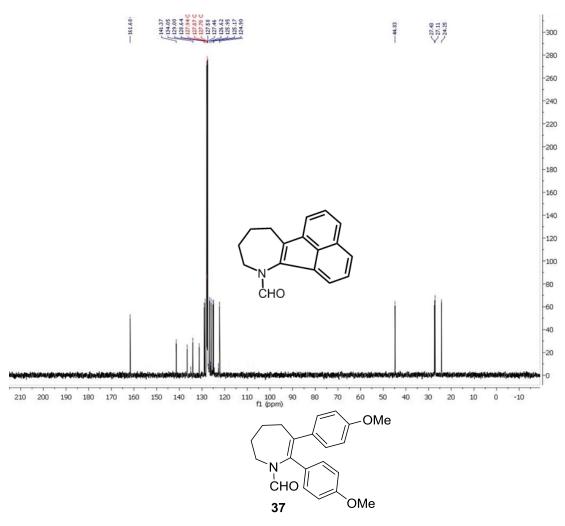

Prepared from **1a** (80 mg, 0.5 mmol) and 1-chloro-4-iodobenzene (238 mg, 2 equiv) using **General Procedure B.** Time = 22 h. Purification: Flash chromatography on silica (pretreated with 1% Et₃N) eluting with hexane/EtOAc (80:20). Yield = 64.6 mg, 48%. ¹H NMR (400 MHz, C_6D_6 , mixture of rotamers) δ 8.06 (1H), 7.64 (1H, minor), 7.27 to 6.61 (8H, both), 3.77 to 3.74 (2H), 3.15 to 3.12 (2H, minor), 1.86 to 1.81 to 1.74 (4H, both), 1.53 to 1.48 (2H), 1.31 to 1.19 (6H). ¹³C NMR (101 MHz, C_6D_6) δ 160.89, 138.20, 133.15, 132.24, 131.68, 131.59, 130.85, 123.82, 123.10, 122.95, 49.09, 45.17, 30.81, 27.49, 27.23, 23.78, 23.36. HRMS calc for $C_{13}H_{13}Cl_2NO$ 269.0374, found 269.0366.

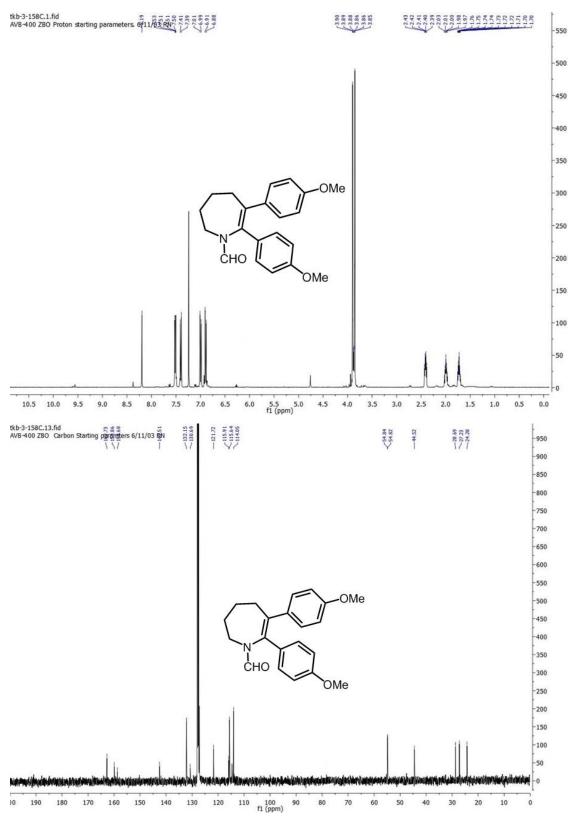


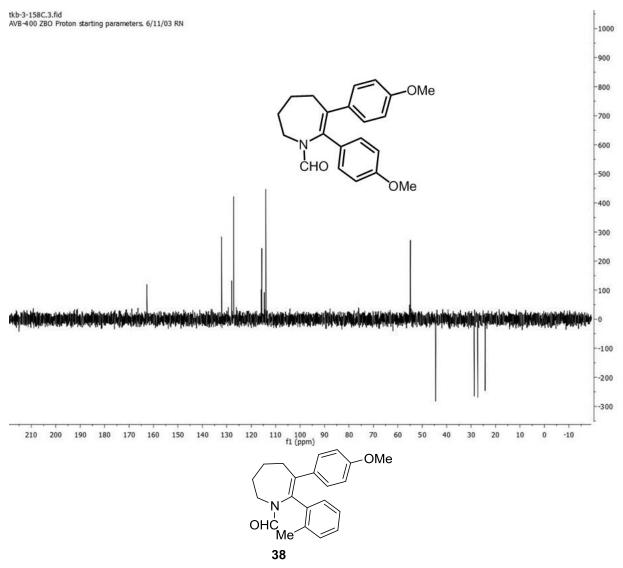

Prepared from **1a** (80 mg, 0.5 mmol) and 2-iodopyridine (205 mg, 2 equiv) using **General Procedure B.** Time = 36 h. Purification: Flash chromatography on silica (pretreated with 1% Et₃N) eluting with hexane/EtOAc (50:50 to 10:90). Yield = 35.4 mg, 30%. 1 H NMR (400 MHz, CDCl₃) δ 8.52 (1H), 8.37 (1H), 7.57 to 7.49 (2H), 7.28 (1H), 3.62 (2H), 2.19 to 2.14 (2H), 1.81 to 1.76 (2H), 1.61 to 1.56 (2H). 13 C NMR (101 MHz, CDCl₃) δ 162.66, 150.38, 142.39, 138.63, 130.85, 128.40, 124.50, 122.77, 44.22, 28.66, 27.03, 23.97. HRMS calc for $C_{12}H_{13}ClN_{2}O$ 236.0716, found 236.0712.

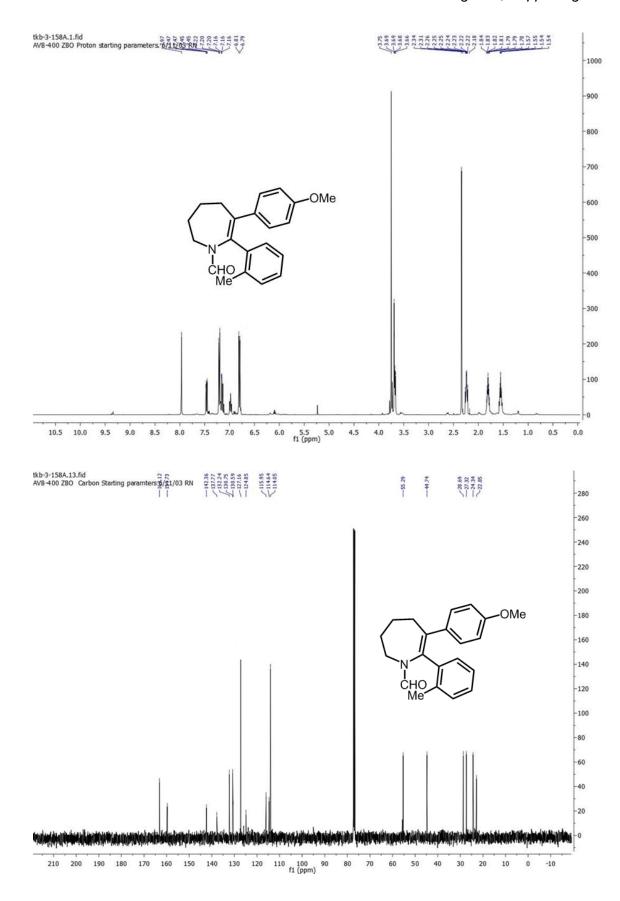


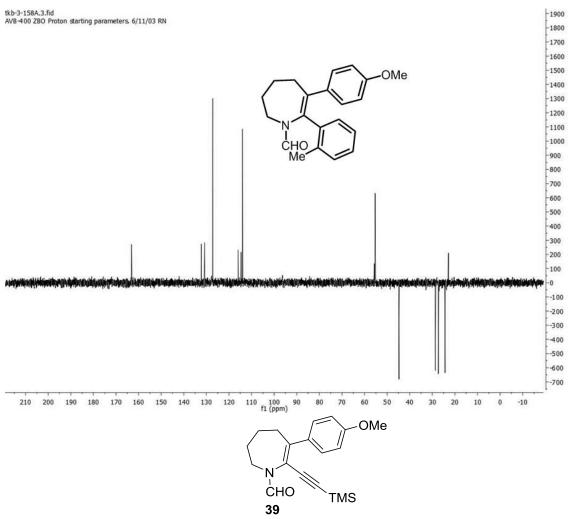

Prepared from **1b** (102 mg, 0.5 mmol) and 3-bromo-2-iodopyridine (284 mg, 2 equiv) using **General Procedure B.** Time = 36 h. Purification: Flash chromatography on silica (pretreated with 1% Et₃N) eluting with hexane/EtOAc (50:50 to 10:90). Yield = 36 mg, 36%. H NMR (400 MHz, C_6D_6) δ 7.94 to 7.90 (2H), 6.73 (1H), 6.33 (2H), 3.73 (2H), 1.85 to 1.79 (2H), 1.57 to 1.51 (2H), 1.29 to 1.23 (2H). NMR (101 MHz, C_6D_6) δ 161.08, 149.60, 141.7, 139.87, 132.78, 132.68, 128.99, 126.33, 45.63, 28.54, 28.10, 24.69. HRMS calc for $C_{12}H_{12}N_2O$ 200.0950, found 200.0954.

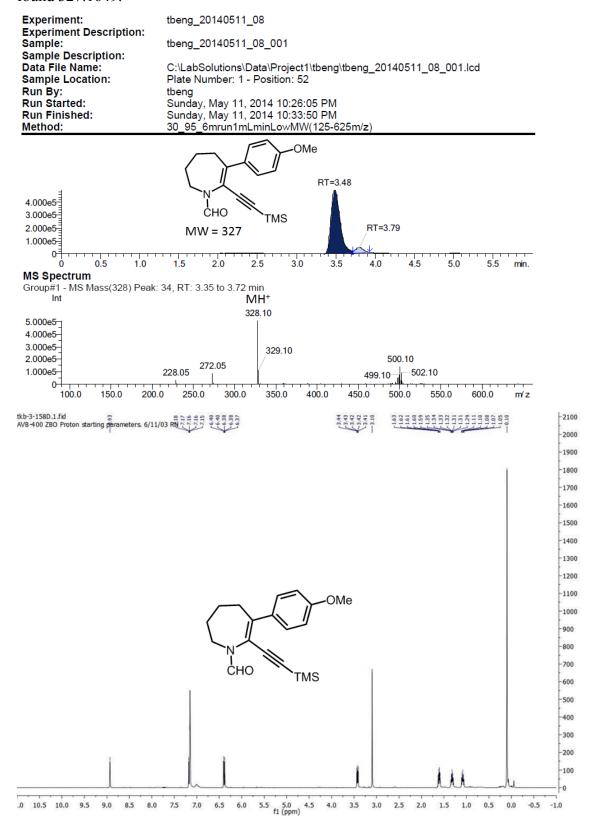


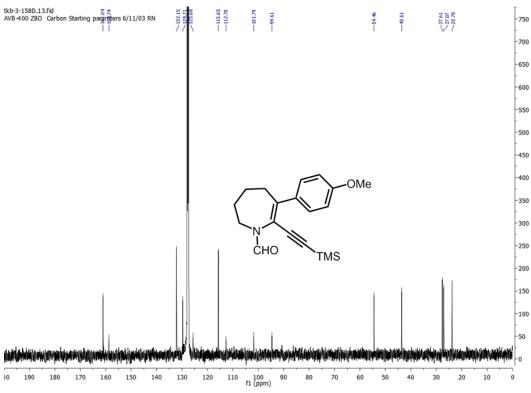

Prepared from **1b** (102 mg, 0.5 mmol) and 1-bromo-8-iodonaphthalene (333 mg, 2 equiv) using **General Procedure B.** Time = 22 h. Purification: Flash chromatography on silica (pretreated with 1% Et₃N) eluting with hexane/EtOAc (70:30). Yield = 85.9 mg, 69%. ¹H NMR (400 MHz, C_6D_6) δ 8.07 (1H), 7.89 (1H), 7.61 to 7.51 (2H), 7.31 to 7.09 (3H), 3.87 (2H), 1.97 to 1.91 (2H), 1.66 to 1.62 (2H), 1.46 to 1.40 (2H). ¹³C NMR (101 MHz, C_6D_6) δ 161.68, 141.37, 136.50, 134.05, 131.24, 129.00, 128.64, 126.62, 125.95, 125.17, 124.90, 122.24, 44.83, 27.43, 27.11, 24.25. HRMS calc for $C_{17}H_{15}NO$ 249.1154, found 249.1148.

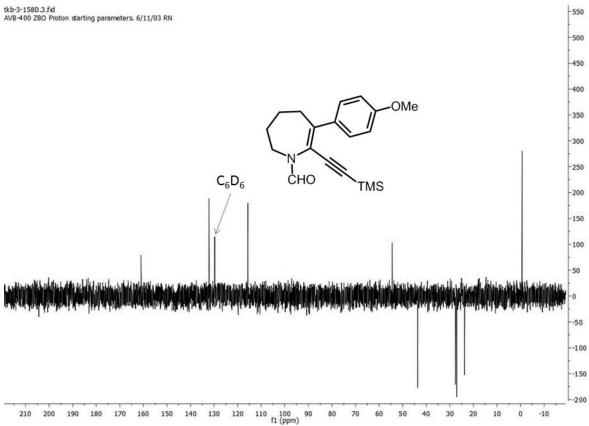



To an oven-dried, septum-capped 2-neck-round bottom flask equipped with a stir bar, was added 30 (26.6 mg, 0.1 mmol, 1.0 equiv) in DMF (1 mL) under an argon or nitrogen atmosphere. 4-methoxyphenyl boronic acid (23 mg, 0.15 mmol, 1.5 equiv) was added followed by addition of Et₃N (0.12 mL, 0.5 mmol, 5 equiv). After completely degassing the flask, $PdCl_2(PPh_3)_2$ (3.5 mg, 5 mol%) was added rapidly. The mixture was then heated to 60 °C and stirred for 4 h (TLC and LC-MS monitoring). Upon completion, the mixture was quenched with water and extracted with CH_2Cl_2 . The combined organic layers were concentrated to ~5 mL and dried with for ~30 min with Na_2SO_4 . It was filtered and evaporated to give the crude product. Purification: Flash chromatography on silica (pretreated with 1% Et_3N) eluting with hexane/EtOAc (50:50 to 20:80). Yield = 25.6 mg, 76%. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (1H), 7.52 (2H), 7.39 (2H), 6.99 (2H), 6.88 (2H), 3.90 to 3.85 (8H), 2.43 to 2.39 (2H), 2.03 to 1.97 (2H), 1.76 to 1.70 (2H). l_3 C NMR (101 MHz, CDCl₃) δ 162.73, 159.86, 158.68, 142.51, 132.15, 130.69, 121.72, 115.91,

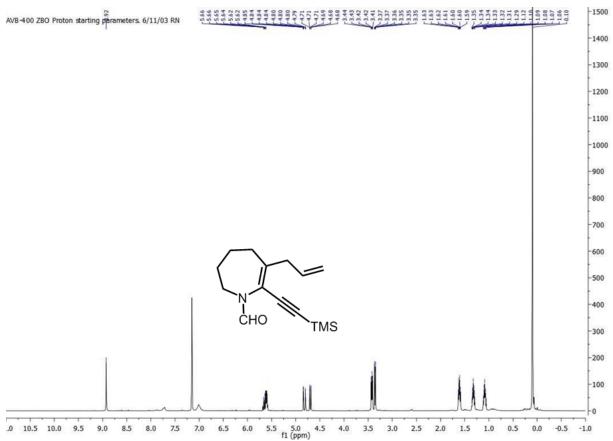

115.64, 114.05, 54.84, 54.82, 44.52, 28.69, 27.23, 24.28. HRMS calc for $C_{21}H_{23}NO_3$ 337.1678, found 337.1684.

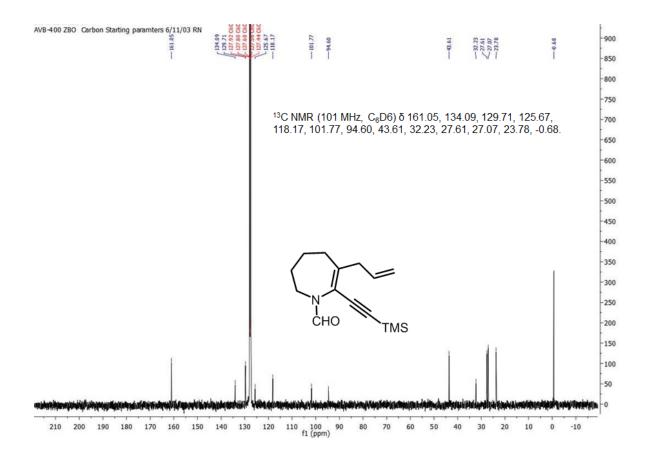

Prepared in the same way as **37** using *o*-toluylboronic acid (20.4 mg). Purification: Flash chromatography on silica (pretreated with 1% Et₃N) eluting with hexane/EtOAc (80:20 to 50:50). Yield = 18.3 mg, 57%. ¹H NMR (400 MHz, C_6D_6) δ 7.97 (1H), 7.46 (1H), 7.22 to 7.16 (4H), 6.81 (1H), 6.79 (2H), 3.69 to 3.66 (5H), 2.34 (3H), 2.26 to 2.18 (2H), 1.84 to 1.78 (2H), 1.57 to 1.54 (2H). ¹³C NMR (101 MHz, C_6D_6) δ 163.12, 159.73, 142.36, 137.77, 132.24, 130.75, 130.59, 127.16, 124.85, 115.95, 114.64, 114.05, 55.29, 44.74, 28.69, 27.32, 24.34, 22.85. HRMS calc for $C_{21}H_{23}NO_2$ 321.1729, found 321.1723.





To an oven-dried, septum-capped 2-neck-round bottom flask equipped with a stir bar, was added 30 (26.6 mg, 0.1 mmol, 1.0 equiv) in DMF (1 mL) under an argon or nitrogen atmosphere. TMS acetylene (0.043 mL, 0.30 mmol, 3 equiv) was added followed by addition of Et_3N (0.12 mL, 0.5 mmol, 5 equiv). After completely degassing the flask, $PdCl_2(PPh_3)_2$ (3.5 mg, 5 mol%) and CuI (0.5 mg, 1 mol%) were added rapidly and concurrently. The mixture was then heated to 60 °C and stirred for 1 h (TLC and LC-MS monitoring). Upon completion, the mixture was quenched with water and extracted with CH_2Cl_2 . The combined organic layers were concentrated to \sim 5 mL and dried with for \sim 30 min with Na_2SO_4 . It was filtered and evaporated to give the crude product. Purification: Flash chromatography on silica (pretreated with 1% Et_3N) eluting with hexane/EtOAc (80:20). Yield = 53 mg, 81%. 1H NMR (400 MHz, C_6D_6) δ 8.93 (1H), 7.17 (2H), 6.38 (2H), 3.42 (2H), 3.10 (3H), 1.63 to 1.59 (2H), 1.35 to 1.29 (2H), 1.11 to 1.05 (2H), 0.10 (9H). ^{13}C NMR (101 MHz, C_6D_6) δ 161.04, 158.74, 132.15, 129.71, 125.68, 115.65, 112.70,


101.79, 94.61, 54.46, 43.61, 27.61, 27.07, 23.78, -0.68. HRMS calc for $C_{19}H_{25}NO_2Si$ 327.1655, found 327.1649.



Prepared from **28** (0.1 mmol) in the same way as was **39** from **30**. Purification: Flash chromatography on silica (pretreated with 1% Et₃N) eluting with hexane/EtOAc (80:20). Yield = 53 mg, 86%. 1 H NMR (400 MHz, C₆D₆) δ 8.92 (1H), 5.65 (1H), 4.85 to 4.68 (2H), 3.44 to 3.35 (4H), 1.63, to 1.59 (2H), 1.35 to 1.29 (2H), 1.12 to 1.06 (2H), 0.10 (9H). 13 C NMR (101 MHz, C₆D₆) δ 161.05, 134.09, 129.71, 125.67, 118.17, 101.77, 94.60, 43.61, 32.23, 27.61, 27.07, 23.78, -0.68.

References

- (1) Beng, T. K.; Wilkerson-Hill, S. M.; Sarpong, R. Org. Lett. 2014, 16, 916.
- (2) Yu, Y.-Y.; Bi, L.; Georg, G. I. J. Org. Chem. 2013, 78, 6163.
- (3) Beng, T. K.; Bassler, D. P. Tetrahedron Lett. 2014, 55, 6662.