Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Highly Regio- and Diastereoselective Synthesis of Novel Tri- and Tetracyclic Perhydroquinoline Architectures Through an Intramolecular [3 + 2] Cycloaddition Reaction

Manickam Bakthadoss,^{*a,b} Damodharan Kannan,^b Jayakumar Srinivasan^b and Varathan Vinayagam^b ^aDepartment of Chemistry, Pondicherry University, Pondicherry – 605 014, India ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai-600025, Tamil Nadu, India

CONTENTS	PAGE NO
1) Experimental section	2-19
2) ¹ H and ¹³ C NMR spectra for Pyrroloquinolines (9a-l)	20-43
3) ¹ H and ¹³ C NMR spectra for Pyrroloquinolines (12a-h)	44-59
4) ¹ H and ¹³ C NMR spectra for Pyrrolizinoquinolines (15a-d)	60-67
5) ¹ H and ¹³ C NMR spectra for Pyrrolizinoquinolines (17a-d)	68-75
6) NOE spectrum of compound 17d	76-78

Experimental Section

General Remarks: Melting points were recorded on a Superfit (India) capillary melting point apparatus and were uncorrected. IR spectra were recorded on a Bruker-FT-IR spectrometer using solid samples as KBr plates. For compounds ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra **9a-1**, **12a-h**, **15a-d** and **17a-d** were recorded in deuterochloroform (CDCl₃) on a Bruker 300 MHz spectrometer using tetramethylsilane (TMS, $\delta = 0$) as an internal standard at room temperature. Mass spectra were recorded on Agilent 1200 LC/MS-6110 mass spectrometer. The X-ray diffraction measurements were carried out on a Bruker AXS Kappa APEX 2 CCD difractometer. All the compounds were synthesized as racemates.

Typical experimental procedure for the synthesis of Compound 9a: To a stirred solution of methyl (2E)-2-{[N-(2-formylphenyl)(4-methylbenzene) sulfonamido]methyl}-3-phenylprop-2-enoate (**6a**) (1 mmol, 0.45 g) in acetonitrile (10 mL), N-methyl glycine (**7**) (1.1 mmol, 0.10 g) was added and allowed to stir under reflux condition over a period of 6 h. After completion of the reaction as indicated by TLC, the reaction mixture was concentrated and the resulting crude mass was diluted with water (20 mL) and extracted with ethyl acetate (3 x 10 mL). The combined organic layer thus obtained was washed with brine (3 x 10 mL) and dried over anhydrous Na₂SO₄. The organic layer was concentrated and the crude mass was recrystallized using ethyl acetate : hexane mixture (2:8) to provide **9a** as a colorless solid in 94% yield.

Methyl 1-methyl-5-[(4-methylbenzene)sulfonyl]-3-phenyl-1*H*,2*H*,3*H*,3a*H*,4*H*,5*H*,9b*H*pyrrolo[3,2-c]quinoline-3a-carboxylate (9a):

Yield: 94%; mp: 226-228°C; IR (KBr): 1754, 1693 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.34 (s, 3H), 2.36 (s, 3H), 2.91 (t, 1H, J = 9.9 Hz), 3.35 (dd, 1H, J = 4.2, 9.9 Hz), 3.51 (d, 1H, J = 12.3 Hz), 3.64 (s, 1H), 3.69 (s, 3H), 3.89 (dd, 1H, J = 4.2, 9.9 Hz), 3.96 (d, 1H, J = 12.6 Hz), 6.96–7.58 (m, 13H); ¹³C NMR (75 MHz, CDCl₃): δ 16.25, 34.64, 42.30, 43.80, 47.17, 48.79, 54.45,

62.98, 114.48, 117.20, 119.19, 121.76, 122.17, 123.05, 123.23, 123.56, 124.29, 126.06, 131.52, 132.04, 132.50, 138.22, 168.30; MS (m/z): 478 (M⁺+1); Anal. Calcd. for C₂₇H₂₈N₂O₄S: C, 68.04; H, 5.92; N, 5.88; Found: C, 68.13; H, 5.99; N, 6.01.

Methyl 1-methyl-5-[(4-methylbenzene)sulfonyl]-3-(4-methylphenyl)-1*H*,2*H*,3*H*,3a*H*,4*H*,5*H*, 9b*H*-pyrrolo[3,2-c]quinoline-3a-carboxylate (9b)

Yield: 92%; mp: 229-231°C; IR (KBr): 1740, 1698 cm⁻¹; ¹H NMR: δ 2.20 (s, 3H), 2.30 (s, 3H), 2.35 (s, 3H), 2.89 (t, 1H, J = 9.6 Hz), 3.20 (d, 1H, J = 9.3 Hz), 3.44 (d, 1H, J = 12.6 Hz), 3.63 (s, 4H), 4.02 (t, 2H, J = 12.6 Hz), 6.89 – 7.54 (m, 12H); ¹³C NMR (CDCl₃, 75 MHz): δ 19.72, 21.51, 40.30, 45.27, 47.65, 52.42, 62.10, 68.26, 119.43, 122.47, 125.94, 127.06, 127.19, 128.17, 128.45, 129.61, 130.65, 131.13, 136.76, 137.09, 137.52, 143.60, 149.61, 174.16; MS (m/z): 492 (M⁺+1); Anal. Calcd. for C₂₈H₃₀N₂O₄S: C, 68.55; H, 6.16; N, 5.71; Found: C, 68.66; H, 6.24; N, 5.84.

Methyl 1-methyl-5-[(4-methylbenzene)sulfonyl]-3-[4-(propan-2-yl)phenyl]-1*H*,2*H*,3*H*,3*aH*, 4*H*,5*H*,9b*H*-pyrrolo[3,2-c]quinoline-3a-carboxylate (9c)

Yield: 91%; mp: 227-229°C; IR (KBr): 1732, 1698 cm⁻¹; ¹H NMR: δ 1.27 (d, 6H, J = 6.9 Hz), 2.31 (s, 3H), 2.36 (s, 3H), 2.81-2.99 (m, 2H), 3.34 (dd, 1H, J = 4.8, 9.9 Hz), 3.53 (d, 1H, J = 12.3

Hz), 3.64 (s, 1H), 3.68 (s, 3H), 3.87 (dd, 1H, J = 4.5, 10.2 Hz), 3.98 (d, 1H, J = 12.6 Hz), 6.96–7.59 (m, 12H); ¹³C NMR (CDCl₃, 75 MHz): δ 21.51, 23.96, 24.00, 33.73, 39.85, 47.40, 48.82, 52.40, 54.12, 59.62, 68.35, 119.81, 122.46, 124.44, 126.54, 127.05, 128.34, 128.72, 129.51, 131.30, 134.85, 136.74, 137.16, 143.47, 147.94, 173.56; MS (m/z): 520 (M⁺+1); Anal. Calcd for C₃₀H₃₄N₂O₄S: C, 69.47; H, 6.61; N, 5.40; Found: C, 69.60; H, 6.73; N, 5.53.

Methyl 1-methyl-5-[(4-methylbenzene)sulfonyl]-3-(2-methoxyphenyl)-1*H*,2*H*,3*H*,3a*H*,4*H*, 5*H*,9b*H*-pyrrolo[3,2-c]quinoline-3a-carboxylate (9d)

Yield: 94%; mp: 223-225°C; IR (KBr): 1761, 1656 cm⁻¹; ¹H NMR: δ 2.29 (s, 3H), 2.36 (s, 3H), 2.89 (t, 1H, *J* = 9.9 Hz), 3.39 (dd, 1H, *J* = 4.8, 9.9 Hz), 3.51 (d, 1H, *J* = 12.3 Hz), 3.65 (s, 3H), 3.69 (s, 1H), 3.77 (s, 3H), 4.02 (d, 1H, *J* = 12.3 Hz), 4.37 (dd, 1H, *J* = 4.5, 10.2 Hz), 6.85–7.60 (m, 12H); ¹³C NMR (CDCl₃, 75 MHz): δ 21.51, 39.86, 42.58, 46.76, 52.13, 53.21, 55.32, 58.92, 69.29, 110.34, 119.68, 120.37, 122.24, 124.11, 125.56, 127.17, 128.32, 128.42, 128.54, 129.47, 131.37, 136.71, 137.14, 143.37, 157.65, 173.49; MS (m/z): 508 (M⁺+1); Anal. Calcd. for C₂₈H₃₀N₂O₅S: C, 66.38; H, 5.97; N, 5.53; Found: C, 66.45; H, 6.09; N, 5.64.

Methyl 1-methyl-5-[(4-methylbenzene)sulfonyl]-3-(3,4-dimethoxyphenyl)-1H,2H,3H,3aH,

```
4H, 5H,9bH-pyrrolo[3,2-c]quinoline-3a-carboxylate (9e)
```


Yield: 95%; mp: 227-229°C; IR (KBr): 1777, 1687 cm⁻¹; ¹H NMR: δ 2.37 (s, 3H), 2.38 (s, 3H), 2.92 (t, 1H, J = 9.9 Hz), 3.32 (dd, 1H, J = 4.5, 10.2 Hz), 3.48 (d, 1H, J = 12.6 Hz), 3.67 (s, 1H),

3.70 (s, 3H), 3.84 (s, 4H), 3.89 (s, 3H), 4.04 (d, 1H, J = 12.9 Hz), 6.83–7.61 (m, 11H); ¹³C NMR (CDCl₃, 75 MHz): δ 21.50, 40.20, 47.57, 49.10, 52.42, 54.90, 55.88, 55.95, 59.79, 67.97, 111.00, 112.11, 120.00, 121.02, 122.69, 125.33, 127.00, 128.20, 129.55, 130.20, 130.90, 136.83, 137.40, 143.49, 148.28, 148.81, 173.80; MS (m/z): 538 (M⁺+1); Anal. Calcd. for C₂₉H₃₂N₂O₆S: C, 64.91; H, 6.01; N, 5.22; Found: C, 64.99; H, 6.12; N, 5.36.

Crystal data for **Methyl 1-methyl-5-[(4-methylbenzene)sulfonyl]-3-(3,4-dimethoxyphenyl)-**1*H*,2*H*,3*H*,3a*H*, 4*H*, 5*H*,9b*H*-pyrrolo[3,2-c]quinoline-3a-carboxylate (9e)

Empirical formula, $C_{29}H_{32}N_2O_6S$; Formula weight, 537; crystal color, colorless; Single crystal Xray structure of the molecule shown in ORTEP diagram (Figure 1). Detailed X-ray crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (for pyrroloquinoline (**9e**) CCDC # **764210**).

Figure 1. ORTEP diagram of compound 9e

Methyl 3-(2H-1,3-benzodioxol-5-yl)-1-methyl-5-[(4-methylbenzene)sulfonyl]-1*H*,2*H*,3*H*, 3a*H*,4*H*,5*H*,9b*H*-pyrrolo[3,2-c]quinoline-3a-carboxylate (9f)

Yield: 95%; mp: 226-228°C; IR (KBr): 1781, 1595 cm⁻¹; ¹H NMR: δ 2.33 (s, 3H), 2.38 (s, 3H), 2.89 (t, 1H, J = 10.2 Hz), 3.25 (dd, 1H, J = 3.9, 9.9 Hz), 3.51 (d, 1H, J = 12.3 Hz), 3.61 (s, 1H),

3.69 (s, 3H), 3.81 (dd, 1H, J = 3.9, 9.9 Hz), 4.05 (d, 1H, J = 12.6 Hz), 5.98 (s, 2H), 6.73–7.62 (m, 11H); ¹³C NMR (CDCl₃, 75 MHz): δ 21.52, 39.91, 47.48, 48.85, 52.46, 54.12, 60.01, 68.05, 101.11, 108.15, 109.19, 119.72, 122.01, 122.48, 124.46, 127.01, 128.28, 129.59, 131.27, 131.49, 136.74, 137.35, 143.53, 146.80, 147.74, 173.58; MS (m/z): 522 (M⁺+1); Anal. Calcd. for C₂₈H₂₈N₂O₆S: C, 64.60; H, 5.42; N, 5.38; Found: C, 64.69; H, 5.52; N, 5.49.

Methyl 1-methyl-5-[(4-methylbenzene)sulfonyl]-3-(4-fluorophenyl)-1*H*,2*H*,3*H*,3a*H*,4*H*, 5*H*,9b*H*-pyrrolo[3,2-c]quinoline-3a-carboxylate (9g)

Yield: 94%; mp: 230-232°C; IR (KBr): 1784, 1632 cm⁻¹; ¹H NMR: δ 2.36 (s, 3H), 2.37 (s, 3H), 2.92 (t, 1H, J = 9.9 Hz), 3.29 (dd, 1H, J = 3.9, 9.9 Hz), 3.46 (d, 1H, J = 12.3 Hz), 3.62 (s, 1H), 3.69 (s, 3H), 3.87 (dd, 1H, J = 3.6, 9.9 Hz), 3.94 (d, 1H, J = 12.6 Hz), 6.97–7.59 (m, 12H); ¹³C NMR (CDCl₃, 75 MHz): δ 21.51, 39.91, 47.68, 48.15, 52.51, 53.82, 60.05, 67.94, 115.33 (d, J = 21.1 Hz), 119.61, 122.49, 124.36, 126.93, 128.30, 129.62, 130.36 (d, J = 7.9 Hz), 131.30, 133.62, 137.04 (d, J = 48.3 Hz), 143.59, 173.51. MS (m/z): 496 (M⁺+1); Anal. Calcd. for C₂₇H₂₇FN₂O₄S: C, 65.57; H, 5.50; N, 5.66; Found: C, 65.68; H, 5.64; N, 5.79.

Methyl 1-methyl-5-[(4-methylbenzene)sulfonyl]-3-(3-chlorophenyl)-1*H*,2*H*,3*H*,3a*H*,4*H*, 5*H*,9b*H*-pyrrolo[3,2-c]quinoline-3a-carboxylate (9h)

Yield: 90%; mp: 223-225°C; IR (KBr): 1729, 1686 cm⁻¹; ¹H NMR: δ 2.36 (s, 6H), 2.91 (t, 1H, J = 9.3 Hz), 3.27 (t, 1H, J = 9.9 Hz), 3.46 (d, 1H, J = 12.3 Hz), 3.62 (s, 1H), 3.69 (s, 3H), 3.85 (d, 1H, J = 12.3 Hz), 3.62 (s, 1H), 3.69 (s, 2H), 3.85 (d, 2H), 3.85 (d

1H, J = 6.6 Hz), 3.94 (d, 1H, J = 12.3 Hz), 6.91–7.78 (m, 12H); ¹³C NMR (CDCl₃, 75 MHz): δ 21.51, 39.90, 47.67, 48.25, 52.53, 53.85, 59.87, 67.90, 119.64, 122.54, 124.35, 126.93, 127.28, 128.31, 128.61, 129.64, 129.78, 130.22, 131.27, 133.19, 136.51, 136.72, 137.36, 143.62, 173.42; MS (m/z): 512 (M⁺+1); Anal. Calcd. for C₂₇H₂₇ClN₂O₄S: C, 63.46; H, 5.33; N, 5.48; Found: C, 63.52; H, 5.40; N, 5.61.

Methyl 1-methyl-5-[(4-methylbenzene)sulfonyl]-3-(4-chlorophenyl)-1*H*,2*H*,3*H*,3a*H*,4*H*, 5*H*,9b*H*-pyrrolo[3,2-c]quinoline-3a-carboxylate (9i)

Yield: 92%; mp: 221-223°C; IR (KBr): 1780, 1673 cm⁻¹; ¹H NMR: δ 2.37 (s, 3H), 2.38 (s, 3H), 2.91 (t, 1H, *J* = 9.6 Hz), 3.28 (d, 1H, *J* = 7.5 Hz), 3.45 (d, 1H, *J* = 12.3 Hz), 3.62 (s, 1H), 3.70 (s, 3H), 3.85 (d, 1H, *J* = 6.9 Hz), 3.94 (d, 1H, *J* = 12.3 Hz), 7.00–7.60 (m, 12H); ¹³C NMR (CDCl₃, 75 MHz): δ 21.51, 39.91, 47.67, 48.25, 52.53, 53.85, 59.90, 67.91, 119.65, 122.52, 124.37, 126.93, 128.30, 128.62, 129.62, 130.20, 131.25, 133.20, 136.51, 136.72, 137.40, 143.59, 173.43; MS (m/z): 512 (M⁺+1); Anal. Calcd. for C₂₇H₂₇ClN₂O₄S: C, 63.46; H, 5.33; N, 5.48; Found: C, 63.53; H, 5.39; N, 5.61.

Methyl 1-methyl-5-[(4-methylbenzene)sulfonyl]-3-(3-bromophenyl)-1*H*,2*H*,3*H*,3a*H*,4*H*, 5*H*,9b*H*-pyrrolo[3,2-c]quinoline-3a-carboxylate (9j)

Yield: 90%; mp: 232-234°C; IR (KBr): 1794, 1659 cm⁻¹; ¹H NMR: δ 2.36 (s, 3H), 2.39 (s, 3H), 2.89 (t, 1H, J = 9.9 Hz), 3.26 (dd, 1H, J = 3.6, 10.2 Hz), 3.43 (d, 1H, J = 12.3 Hz), 3.60 (s, 1H),

3.72 (s, 3H), 3.83 (dd, 1H, J = 3.6, 9.9 Hz), 3.93 (d, 1H, J = 12.3 Hz), 6.99–7.60 (m, 12H); ¹³C NMR (CDCl₃, 75 MHz): δ 21.51, 39.89, 47.75, 48.53, 52.56, 53.95, 59.84, 67.86, 119.75, 122.56, 122.59, 124.43, 126.99, 127.78, 128.32, 129.64, 129.99, 130.55, 131.23, 131.74, 136.75, 137.12, 140.53, 143.60, 173.38; MS (m/z): 557 (M⁺+2); Anal. Calcd. for C₂₇H₂₇BrN₂O₄S: C, 58.38; H, 4.90; N, 5.04; Found: C, 58.45; H, 4.99; N, 5.17.

Methyl 1-methyl-5-[(4-methylbenzene)sulfonyl]-3-(naphthalen-1-yl)-1*H*,2*H*,3*H*,3*aH*, 4*H*,5*H*,9b*H*-pyrrolo[3,2-c]quinoline-3a-carboxylate (9k)

Yield: 96%; mp: 226-228°C; IR (KBr): 1773, 1686 cm⁻¹; ¹H NMR: δ 2.36 (s, 3H), 2.47 (s, 3H), 3.11 (t, 1H, J = 9.9 Hz), 3.53 (d, 2H, J = 12.6 Hz), 3.60 (s, 3H), 3.89 (s, 1H), 3.98 (d, 1H, J = 12.6 Hz), 4.70 (t, 1H, J = 6.3 Hz), 6.99–7.94 (m, 15H); ¹³C NMR (CDCl₃, 75 MHz): δ 21.50, 40.46, 44.74, 47.57, 52.44, 55.15, 61.40, 68.47, 119.87, 122.82, 123.01, 124.14, 125.63, 126.11, 126.16, 127.07, 128.20, 129.13, 129.54, 130.72, 132.64, 133.86, 133.97, 136.73, 137.23, 143,50, 174.15; MS (m/z): 528 (M⁺+1); Anal. Calcd. for C₃₁H₃₀N₂O₄S: C, 70.70; H, 5.74; N, 5.32; Found: C, 70.78; H, 5.83; N, 5.45.

Typical experimental procedure for the synthesis of Compound 91: To a stirred solution of methyl (2*E*)-2-{[*N*-(5-bromo-4-chloro-2-formylphenyl)(4-methylbenzene)sulfonamido]methyl}-3-(3-chlorophenyl)prop-2-enoate (**61**) (1 mmol, 0.59 g) in acetonitrile (10 mL), *N*-methyl glycine (7) (1.1 mmol, 0.10 g) was added and allowed to stir under reflux condition over a period of 6 h. After completion of the reaction as indicated by TLC, the reaction mixture was concentrated and the resulting crude mass was diluted with water (20 mL) and extracted with ethyl acetate (3 x 10 mL). The combined organic layer thus obtained was washed with brine (3 x 10 mL) and dried over anhydrous Na₂SO₄. The organic layer was concentrated and the crude mass was recrystallized using ethyl acetate : hexane mixture (2:8) to provide **91** as a colorless solid in 86% yield.

Methyl7-bromo-8-chloro-3-(3-chlorophenyl)-1-methyl-5-[(4-methylbenzene)sulfonyl]-1H,2H,3H,3aH,4H,5H,9bH-pyrrolo[3,2-c]quinoline-3a-carboxylate (9l)

Yield: 86%; mp: 239-241°C; IR (KBr): 1786, 1694 cm⁻¹; ¹H NMR: δ 2.33 (s, 3H), 2.39 (s, 3H), 2.89 (t, 1H, J = 9.6 Hz), 3.25-3.36 (m, 2H), 3.52 (s, 1H), 3.72 (s, 3H), 3.81-3.91 (m, 2H), 7.14-7.89 (m, 10H); ¹³C NMR (CDCl₃, 75 MHz): δ 21.57, 39.77, 47.49, 48.53, 52.74, 53.96, 59.55, 67.26, 121.33, 124.64, 127.05, 127.22, 127.83, 128.32, 128.86, 129.71, 129.80, 130.59, 131.82, 134.46, 136.21, 139.65, 139.88, 143.91, 144.30, 172.92; MS (m/z): 626 (M⁺+2); Anal. Calcd. for C₂₇H₂₅BrCl₂N₂O₄S: C, 51.94; H, 4.04; N, 4.49; Found: C, 51.99; H, 4.14; N, 4.60.

Typical experimental procedure for the synthesis of pyrroloquinoline (12a)

A mixture of $(2Z)-2-\{[N-(2-formylphenyl)(4-methylbenzene)sulfonamido]methyl\}-3-phenylprop-2-enenitrile ($ **10a**) (1 mmol, 0.42 g) and sarcosine (**7a**) (1.1 mmol, 0.18 g) in acetonitrile (10 mL) was stirred under reflux temperature for 6 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated. Then the resulting crude mass was diluted with water (20 mL) and extracted with ethyl acetate (3 x 10 mL). The combined organic layer obtained was washed with brine (3 x 10 mL) and dried over anhydrous Na₂SO₄. The organic layer was concentrated and the crude mass was recrystallized using ethylacetate:hexane mixture (3:7) to provide**12a**as a colorless solid in 94% yield.

Crystal data for 1-Methyl-5-[(4-methylbenzene)sulfonyl]-3-phenyl-1*H*,2*H*,3*H*,3a*H*,4*H*,5*H*, 9b*H*-pyrrolo[3,2-c]quinoline-3a-carbonitrile (12a)

Empirical formula, C₂₆H₂₅N₃O₂S; Formula weight, 444; crystal color, colorless; Single crystal Xray structure of the molecule shown in ORTEP diagram (Figure 2). Detailed X-ray crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (for pyrroloquinoline (**12a**) CCDC # **833470**).

Figure 2. ORTEP diagram of compound 12a

1-Methyl-5-[(4-methylbenzene)sulfonyl]-3-phenyl-1*H*,2*H*,3*H*,3a*H*,4*H*,5*H*, 9b*H*-pyrrolo[3,2-c]quinoline-3a-carbonitrile (12a)

Yield: 94%; mp: 216-218°C; IR (KBr): 2242, 1514 cm⁻¹; ¹H NMR: δ 2.28 (s, 3H), 2.41 (s, 3H), 2.93 (t, 1H, *J* = 11.1 Hz), 3.25 (dd, 1H, *J* = 6.3, 9.3 Hz), 3.58-3.61 (m, 2H), 3.85 (dd, 1H, *J* = 6.3, 11.4 Hz), 4.39 (d, 1H, *J* = 13.2 Hz), 7.11–7.83 (m, 13H); ¹³C NMR (CDCl₃, 75 MHz): δ 21.54, 39.53, 49.41, 52.10, 52.39, 59.97, 70.92, 120.32, 121.12, 124.53, 127.24, 127.93, 128.32, 128.78, 128.95, 129.16, 129.82, 130.47, 135.68, 137.32, 138.91, 144.10; MS (m/z): 445 (M⁺+1); Anal. Calcd. for C₂₆H₂₅N₃O₂S: C, 70.40; H, 5.68; N, 9.47; Found: C, 70.52; H, 5.78; N, 9.59.

1-Methyl-5-[(4-methylbenzene)sulfonyl]-3-(4-methylphenyl-1*H*,2*H*,3*H*,3a*H*,4*H*,5*H*,9b*H*pyrrolo[3,2-c]quinoline-3a-carbonitrile (12b)

Yield: 92%; mp: 220-222 °C; IR (KBr): 2232, 1544 cm⁻¹; ¹H NMR: δ 2.26 (s, 3H), 2.36 (s, 3H), 2.39 (s, 3H), 2.90 (t, 1H, J = 10.5 Hz), 3.21 (t, 1H, J = 9.0 Hz), 3.56 (s, 1H), 3.60 (d, 1H, J = 13.2 Hz), 3.79 (dd, 1H, J = 6.0, 11.1 Hz), 4.37 (d, 1H, J = 12.9 Hz), 7.12–7.82 (m, 12H); ¹³C NMR (CDCl₃, 75 MHz): δ 21.20, 21.56, 39.57, 49.15, 52.04, 52.33, 60.06, 70.83, 120.37, 121.14, 124.54, 127.27, 127.89, 128.96, 129.01, 129.50, 129.84, 130.51, 132.64, 137.28, 138.04, 138.86, 144.13; MS (m/z): 459 (M⁺+1); Anal. Calcd. for C₂₇H₂₇N₃O₂S: C, 70.87; H, 5.95; N, 9.18; Found: C, 70.94; H, 6.09; N, 9.30.

1-Methyl-5-[(4-methylbenzene)sulfonyl]-3-(2-methoxyphenyl-1*H*,2*H*,3*H*,3a*H*,4*H*,5*H*,9b*H*-pyrrolo[3,2-c]quinoline-3a-carbonitrile (12c)

Yield: 96%; mp: 221-223°C; IR (KBr): 2251, 1526 cm⁻¹; ¹H NMR: δ 2.38 (s, 3H), 2.40 (s, 3H), 3.01 (t, 1H, *J* = 10.2 Hz), 3.29 (dd, 1H, *J* = 3.3, 9.7 Hz), 3.57 (d, 1H, *J* = 12.3 Hz), 3.70 (s, 3H), 3.74 (d, 1H, *J* = 7.5 Hz), 4.15 (d, 1H, *J* = 12.6 Hz), 4.38-4.42 (m, 1H), 6.96–7.64 (m, 12H); ¹³C NMR (CDCl₃, 75 MHz): δ 21.51, 40.03, 45.75, 47.15, 52.52, 53.66, 60.86, 68.26, 119.31, 122.44, 124.35, 126.80, 127.14, 128.33, 128.69, 129.59, 129.76, 129.80, 131.21, 135.21, 135.80, 136.75, 137.31, 143.56; MS (m/z): 475 (M⁺+1); Anal. Calcd. for C₂₇H₂₇N₃O₃S: C, 68.48; H, 5.75; N, 8.87; Found: C, 68.59; H, 5.84; N, 8.99.

1-Methyl-5-[(4-methylbenzene)sulfonyl]-3-(3,4-dimethoxyphenyl-1*H*,2*H*,3*H*,3a*H*,4*H*,5*H*, 9b*H*-pyrrolo[3,2-c]quinoline-3a-carbonitrile (12d)

Yield: 95%; mp: 224-226°C; IR (KBr): 2245, 1511 cm⁻¹; ¹H NMR: δ 2.32 (s, 3H), 2.41 (s, 3H), 2.94 (dd, 1H, J = 9.6, 11.7 Hz), 3.25 (dd, 1H, J = 6.0, 9.3 Hz), 3.51 (d, 1H, J = 12.9 Hz), 3.61 (s, 1H), 3.83-3.87 (m, 1H), 3.90 (s, 3H), 3.95 (s, 3H), 4.41 (d, 1H, J = 12.9 Hz), 6.91–7.83 (m, 11H); ¹³C NMR (CDCl₃, 75 MHz): δ 21.54, 39.64, 48.87, 52.20, 52.38, 55.89, 56.01, 59.98, 70.82, 111.29, 112.72, 120.54, 120.85, 121.31, 124.52, 127.17, 127.70, 128.19, 128.86, 129.91, 130.33, 137.32, 138.96, 144.17, 148.95, 149.00; MS (m/z): 505 (M⁺+1); Anal. Calcd. for C₂₈H₂₉N₃O₄S: C, 66.78; H, 5.80; N, 8.34; Found: C, 66.89; H, 5.87; N, 8.46.

3-(2*H*-1,3-Benzodioxol-5-yl)-1-methyl-5-[(4-methylbenzene)sulfonyl]1*H*,2*H*,3*H*,3a*H*,4*H*,5*H*, 9b*H*-pyrrolo[3,2-c]quinoline-3a-carbonitrile (12e)

Yield: 92%; mp: 231-233°C; IR (KBr): 2276, 1503 cm⁻¹; ¹H NMR: δ 2.26 (s, 3H), 2.41 (s, 3H), 2.84 (t, 1H, J = 10.2 Hz), 3.21 (t, 1H, J = 7.8 Hz), 3.55-3.59 (m, 2H), 3.76-3.81 (m, 1H), 4.37 (d, 1H, J = 13.2 Hz), 5.98 (s, 2H), 6.84–7.82 (m, 11H); ¹³C NMR (CDCl₃, 75 MHz): δ 21.54, 39.49, 49.10, 52.13, 52.35, 60.10, 70.83, 101.21, 108.51, 109.25, 120.30, 121.09, 122.69, 124.52, 127.23, 127.94, 128.93, 129.28, 129.83, 130.46, 137.34, 138.95, 144.11, 147.61, 147.92; MS (m/z): 489 (M⁺+1); Anal. Calcd. for C₂₇H₂₅N₃O₄S: C, 66.51; H, 5.17; N, 8.62; Found: C, 66.66; H, 5.28; N, 8.77.

1-Methyl-5-[(4-methylbenzene)sulfonyl]-3-(2-chlorophenyl-1*H*,2*H*,3*H*,3a*H*,4*H*,5*H*,9b*H*pyrrolo[3,2-c]quinoline-3a-carbonitrile (12f)

Yield: 91%; mp: 227-229°C; IR (KBr): 2258, 1529 cm⁻¹; ¹H NMR: δ 2.22 (s, 3H), 2.37 (s, 3H), 2.77 (t, 1H, J = 9.6 Hz), 3.23 (t, 1H, J = 9 Hz), 3.47 (s, 1H), 4.13 (t, 1H, J = 9 Hz), 4.36 (dd, 2H, J = 13.2, 26.4 Hz), 7.09–7.81(m, 12H); ¹³C NMR (CDCl₃, 75 MHz): δ 21.54, 39.30, 46.03, 49.32, 51.79, 60.40, 69.96, 119.48, 121.41, 123.95, 124.95, 127.14, 127.60, 128.12, 129.22, 129.54, 129.62, 130.11, 131.17, 135.01, 135.08, 137.03, 137.54, 143.94; MS (m/z): 479 (M⁺+1); Anal. Calcd. for C₂₆H₂₄ClN₃O₂S: C, 65.33; H, 5.06; N, 8.79; Found: C, 65.45; H, 5.19; N, 8.92.

1-Methyl-5-[(4-methylbenzene)sulfonyl]-3-(4-chlorophenyl-1*H*,2*H*,3*H*,3a*H*,4*H*,5*H*,9b*H*pyrrolo[3,2-c]quinoline-3a-carbonitrile (12g)

Yield: 93%; mp: 219-221°C; IR (KBr): 2248, 1526 cm⁻¹; ¹H NMR: δ 2.29 (s, 3H), 2.42 (s, 3H), 2.90 (t, 1H, J = 10.2 Hz), 3.24 (t, 1H, J = 8.1 Hz), 3.53 (d, 1H, J = 13.2 Hz), 3.59 (s, 1H), 3.89 (dd, 1H, J = 5.7, 10.8 Hz), 4.37 (d, 1H, J = 12.9 Hz), 7.13–7.82 (m, 12H); ¹³C NMR (CDCl₃, 75 MHz): δ 21.55, 39.46, 48.54, 52.16, 52.28, 59.86, 70.86, 120.11, 120.96, 124.58, 127.15, 127.85, 128.98, 129.91, 130.44, 130.55, 134.12, 13.31, 137.33, 138.99, 142.07, 144.22; MS (m/z): 479 (M⁺+1); Anal. Calcd. for C₂₆H₂₄ClN₃O₂S: C, 65.33; H, 5.06; N, 8.79; Found: C, 65.47; H, 5.14; N, 8.92.

Typical experimental procedure for the synthesis of pyrroloquinoline (12h)

A mixture of N-[(2Z)-2-cyano-2-[(2,4-dichlorophenyl)methylidene]ethyl]-N-(2-formylphenyl) benzamide (**10h**) (1 mmol, 0.43 g) and sarcosine (**7a**) (1.1 mmol, 0.10 g) in acetonitrile (10 mL) was stirred under reflux temperature for 6 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated. Then the resulting crude mass was diluted with water (20 mL) and extracted with ethyl acetate (3 x 10 mL). The combined organic layer obtained was washed with brine (3 x 10 mL) and dried over anhydrous Na₂SO₄. The organic layer was concentrated and the crude mass was recrystallized using ethylacetate:hexane mixture (3:7) to provide **12h**as a colorless solid in 84% yield.

5-benzoyl-3-(2,4-dichlorophenyl)-1-methyl-1*H*,2*H*,3*H*,3a*H*,4*H*,5*H*,9b*H*-pyrrolo[3,2-c]quino -line-3a-carbonitrile (12h)

Yield: 84%; mp: 209-211°C; IR (KBr): 2258, 1542 cm⁻¹; ¹H NMR: δ 2.40 (s, 3H), 2.84 (t, 1H, J = 10.2 Hz), 3.33-3.41 (m, 4H), 3.72 (s, 1H), 4.34-4.40 (m, 1H), 5.29 (d, 1H, J = 13.2 Hz), 6.59-7.58 (m, 12H); ¹³C NMR (CDCl₃, 75 MHz): δ 39.38, 45.90, 51.30, 52.48, 61.01, 72.67, 122.39, 125.18, 125.64, 127.23, 128.00, 128.11, 128.67, 129.15, 129.98, 130.18, 130.83, 131.22, 132.57, 134.51, 134.80, 135.92, 141.99, 169.63; MS (m/z): 463 (M⁺+1); Anal. Calcd. for C₂₆H₂₁Cl₂N₃O: C, 67.54; H, 4.58; N, 9.09; Found: C, 67.64; H, 4.70; N, 9.20.

Typical experimental procedure for the synthesis of pyrrolizinoquinoline (15a)

A mixture of methyl (2E)-2-{[N-(2-formylphenyl)(4-methylbenzene)sulfonamido] methyl}-3-phenylprop-2-enoate (**6a**) (1 mmol, 0.45g) and L-proline (**7b**) (1.1 mmol, 0.23 g) in acetonitrile (10 mL) was refluxed for 10 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated. Then the resulting crude mass was diluted with water (20 mL) and extracted with ethyl acetate (3 x 10 mL). The combined organic layer

obtained was washed with brine (3 x 10 mL) and dried over anhydrous Na_2SO_4 . The organic layer was concentrated and the crude mass was recrystallized using ethylacetate:hexane mixture (1:1) to provide **15a** as a colorless solid in 88% yield.

Methyl 8-[(4-methylbenzene)sulfonyl]-11-phenyl-8,16-diazatetracyclo[8.6.0.0^{2,7}.0^{12,16}] hexadeca-2,4,6-triene-10-carboxylate (15a)

Yield : 88%; mp: 186-188°C; IR (KBr): 1784, 1685 cm⁻¹; ¹H NMR: δ 1.56-2.13 (m, 4H), 2.39 (s, 3H), 3.05-3.14 (m, 2H), 3.52 (d, 1H, *J* = 10.5 Hz), 3.62 (s, 3H), 3.78 (d, 1H, *J* = 12.3 Hz), 4.04-4.10 (m, 1H), 4.33 (s, 1H), 4.53 (d, 1H, *J* = 12.6 Hz), 6.97–7.68 (m, 13H); ¹³C NMR (CDCl₃, 75 MHz): δ 21.52, 27.18, 31.62, 45.69, 52.26, 54.99, 58.76, 58.94, 66.85, 68.89, 119.36, 123.14, 127.05, 127.55, 127.88, 128.02, 128.52, 128.73, 129.61, 129.76, 135.15, 135.78, 137.68, 143.53, 172.53; MS (m/z): 504 (M⁺+1); Anal. Calcd. for C₂₉H₃₀N₂O₄S: C, 69.30; H, 6.02; N, 5.57; Found: C, 69.41; H, 6.17; N, 5.73.

Methyl 8-[(4-methylbenzene)sulfonyl]-11-[4-(propan-2-yl)phenyl]-8,16-diazatetracyclo [8.6.0.0^{2,7}.0^{12,16}]hexa deca-2,4,6-triene-10-carboxylate (15b)

Yield: 86%; mp: 189-191°C; IR (KBr): 1787, 1639 cm⁻¹; ¹H NMR: δ 1.26 (s, 3H), 1.29 (s, 3H), 1.57-2.11 (m, 5H), 2.38 (s, 3H), 2.85-3.10 (m, 2H), 3.51 (d, 1H, J = 10.2 Hz), 3.63 (s, 3H), 3.77 (d, 1H, J = 5.7 Hz), 4.04-4.06 (m, 1H), 4.30 (s, 1H), 4.54 (d, 1H, J = 12.6 Hz), 6.96–7.71 (m,

12H); ¹³C NMR (CDCl₃, 75 MHz): δ 21.50, 23.88, 27.10, 31.66, 33.68, 45.70, 52.25, 54.88, 58.58, 58.72, 66.89, 68.96, 119.50, 123.11, 126.78, 127.09, 128.02, 128.39, 129.57, 129.73, 132.29, 135.82, 137.71, 143.47, 148.25, 172.62; MS (m/z): 546 (M⁺+1); Anal. Calcd. for C₃₂H₃₆N₂O₄S: C, 70.56; H, 6.66; N, 5.14; Found: C, 70.66; H, 6.75; N, 5.26.

Crystal data for Methyl 8-[(4-methylbenzene)sulfonyl]-11-[4-(propan-2-yl)phenyl]-8,16diazatetracyclo [8.6.0.0^{2,7}.0^{12,16}]hexa deca-2,4,6-triene-10-carboxylate (15b)

Empirical formula, $C_{32}H_{36}N_2O_4S$; Formula weight, 545; crystal color, colorless; Single crystal Xray structure of the molecule shown in ORTEP diagram (Figure 3). Detailed X-ray crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (for pyrrolizinoquinoline (**15b**) CCDC # **976506**).

Figure 3. ORTEP diagram of compound 15b

Methyl 11-(2H-1,3-benzodioxol-5-yl)-8-[(4-methylbenzene) sulfonyl]-8,16-diazatetracyclo [8.6.0. 0^{2,7}.0^{12,16}]hexadeca-2,4,6-triene-10-carboxylate (15c)

Yield: 84%; mp: 190-192°C; IR (KBr): 1779, 1648 cm⁻¹; ¹H NMR: δ 1.62-2.11 (m, 4H), 2.41 (s, 3H), 3.03-3.13 (m, 2H), 3.36-3.44 (m, 1H), 3.47 (s, 3H), 3.60-3.87 (m, 4H), 6.01–7.71 (m, 13H); ¹³C NMR (CDCl₃, 75 MHz): δ 21.62, 26.12, 30.32, 47.75, 52,29, 53.75, 57.47, 58.69, 66.98,

68.78, 74.67, 101.32, 108.56, 109.12, 122.23, 123.86, 124.70, 126.82, 127.04, 129.62, 132.07, 135.18, 135.35, 143.87, 147.02, 147.97, 148.13, 174.22; MS (m/z): 548 (M⁺+1); Anal. Calcd. for C₃₀H₃₀N₂O₆S: C, 65.92; H, 5.53; N, 5.12; Found: C, 66.08; H, 5.62; N, 5.28.

Methyl11-(4-fluorophenyl)-8-[(4-methylbenzene)sulfonyl]-8,16-diazatetracyclo[8.6.0.0^{2,7}.0^{12,16}]hexa deca-2,4,6-triene-10-carboxylate (15d)

Yield: 87%; mp: 196-198°C; IR (KBr): 1787, 1678 cm⁻¹; ¹H NMR: δ 1.59-2.08 (m, 4H), 2.41 (s, 3H), 2.91-3.06 (m, 2H), 3.37-3.42 (m, 1H), 3.49 (s, 3H), 3.56-3.87 (m, 4H), 7.05-7.69 (m, 12H); ¹³C NMR (CDCl₃, 75 MHz) : δ 21.59, 26.23, 30.41, 47.91, 52,32, 53.76, 56.69, 59.55, 66.85, 74.59, 115.81 (d, *J* = 21.0 Hz), 123.99, 124.15, 124.58, 126.80, 129.57, 130.37 (d, *J* = 7.5 Hz), 134.82 (d, *J* = 84.5 Hz), 143.82, 174.07; MS (m/z): 522 (M⁺+1); Anal. Calcd. for C₂₉H₂₉FN₂O₄S: C, 66.90; H, 5.61; N, 5.38; Found: C, 66.99; H, 5.74; N, 5.53.

Typical experimental procedure for the synthesis of pyrrolizinoquinoline (17a)

To a stirred solution of $(2Z)-2-\{[N-(2-formylphenyl)(4-methylbenzene)sulfonamido] methyl\}-3-phenylprop-2-enenitrile ($ **10a**) (1 mmol, 0.42 g) and*L*-proline (**7b**) (1.1 mmol, 0.17 g) in acetonitrile (10 mL) was refluxed for 10 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated. Then the resulting crude mass was diluted with water (20 mL) and extracted with ethyl acetate (3 x 10 mL). The combined organic layer obtained was washed with brine (3 x 10 mL) and dried over anhydrous Na₂SO₄. The organic layer was concentrated and the crude mass was recrystallized using ethylacetate:hexane mixture (4:6) to provide**17a**as a colorless solid in 83% yield.

8-[(4-Methylbenzene)sulfonyl]-11-phenyl-8,16-diaza 2,4,6-triene-10-carbonitrile (17a)

Yield: 83%; mp: 196-198°C; IR (KBr): 2254, 1571 cm⁻¹; ¹H NMR: δ 1.60-2.07 (m, 4H), 2.40 (s, 3H), 2.88-2.96 (m, 1H), 3.27-3.32 (m, 1H), 3.47 (d, 1H, *J* = 7.8 Hz), 3.51 (s, 1H), 3.67 (d, 1H, *J* = 14.1 Hz), 3.84-3.92 (m, 1H), 4.61 (d, 1H, *J* = 14.1 Hz), 7.21–7.70 (m, 13H); ¹³C NMR (CDCl₃, 75 MHz): δ 21.55, 26.78, 28.60, 47.22, 51.71, 54.40, 56.10, 68.86, 69.21, 122.85, 123.83, 126.16, 127.59, 127.68, 128.22, 128.34, 128.75, 128.90, 129.28, 129.84, 132.11, 135.18, 135.53, 136.62, 144.20; MS (m/z): 471 (M⁺+1); Anal. Calcd. for C₂₈H₂₇N₃O₂S: C, 71.61; H, 5.80; N, 8.95; Found: C, 71.69; H, 5.89; N, 9.09.

8-[(4-Methylbenzene)sulfonyl]-11-(4-methylphenyl)-8,16-diazatetracyclo[8.6.0.0^{2,7}.0^{12,16}] hexadeca-2,4,6-triene-10-carbonitrile (17b)

Yield: 84%; mp: 200-202°C; IR (KBr): 2259, 1528 cm⁻¹; ¹H NMR: δ 1.58-2.05 (m, 4H), 2.34 (s, 3H), 2.40 (s, 3H), 2.87-2.95 (m, 1H), 3.27-3.32 (m, 1H), 3.43 (d, 1H, *J* = 7.8 Hz), 3.51 (s, 1H), 3.66 (d, *J* = 14.1 Hz, 1H), 3.78-3.88 (m, 1H), 4.59 (d, 1H, *J* = 14.1 Hz), 7.16-7.70 (m, 12H); ¹³C NMR (CDCl₃, 75 MHz): δ 21.03, 21.54, 26.81, 28.58, 47.36, 51.68, 54.08, 56.09, 68.89, 69.17, 122.84, 123.74, 126.09, 127.60, 128.24, 128.29, 128.83, 129.44, 129.82, 132.04, 132.10, 135.54, 136.64, 137.42, 144.17; MS (m/z): 485 (M⁺+1); Anal. Calcd. for C₂₉H₂₉N₃O₂S: C, 72.02; H, 6.04; N, 8.69; Found: C, 72.13; H, 6.15; N, 8.84.

11-(2*H*-1,3-Benzodioxol-5-yl)-8-[(4-methylbenzene)sulfonyl]-8,16-diazatetracyclo[8.6.0.0^{2,7}. 0^{12,16}] hexa deca-2,4,6-triene-10-carbonitrile (17c)

Yield: 82%; mp: 209-211°C; IR (KBr): 2268, 1532 cm⁻¹; ¹H NMR: δ 1.63-2.05 (m, 4H), 2.40 (s, 3H), 2.87-2.95 (m, 1H), 3.28-3.80 (m, 5H), 4.53 (d, 1H, *J* = 14.1 Hz), 5.97 (d, 2H, *J* = 5.7 Hz), 6.80-7.71 (m, 11H); ¹³C NMR (CDCl₃, 75 MHz): δ 21.56, 26.84, 28.45, 47.53, 51.52, 53.91, 55.86, 67.54, 68.90, 69.04, 101.23, 108.39, 109.27, 122.55, 123.43, 126.01, 126.90, 127.00, 127.55, 128.35,128.70, 129.86, 131.71, 135.57, 136.65, 144.23, 147.16, 148.00; MS (m/z): 515 (M⁺+1); Anal. Calcd. for C₂₉H₂₇N₃O₄S: C, 67.82; H, 5.30; N, 8.18; Found: C, 67.93; H, 5.39; N, 8.32.

11-(4-Chlorophenyl)-8-[(4-methylbenzene)sulfonyl]-8,16-diazatetracyclo[8.6.0.0^{2,7}.0^{12,16}] hexadeca-2,4,6-triene-10-carbonitrile (17d)

Yield: 86%; mp: 201-203°C; IR (KBr): 2259, 1548 cm⁻¹; ¹H NMR: δ 1.73-2.06 (m, 4H), 2.40 (s, 3H), 2.89-2.97 (m, 1H), 3.22-3.31 (m, 1H), 3.51 (d, 1H, *J* = 7.5 Hz), 3.59 (s, 1H), 3.71 (d, 1H, *J* = 14.1 Hz), 3.80-3.85 (m, 1H), 4.50 (d, 1H, *J* = 14.1 Hz), 7.22-7.70 (m, 12H); ¹³C NMR (CDCl₃, 75 MHz): δ 21.56, 26.71, 28.53, 47.19, 51.51, 53.33, 55.92, 68.79, 69.16, 122.50, 123.39, 126.09, 127.48, 128.41, 128.94, 129.06, 129.61, 129.92, 130.37, 131.61, 133.74, 135.59, 136.65, 144.32; MS (m/z): 505 (M⁺+1); Anal. Calcd. for C₂₈H₂₆ClN₃O₂S: C, 66.72; H, 5.20; N, 8.34; Found: C, 66.86; H, 5.29; N, 8.47.

İ

.

4----

1.1

