Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Enantioselective synthesis of benzoindolizidine derivatives using chiral

phase-transfer catalytic intramolecular domino aza-Michael addition/

alkylation

Jiajia Guo, and Shouyun Yu*

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University.

22 Hankou Road, Nanjing 210093, China.

E-mail: yushouyun@nju.edu.cn; Tel: 86-25-83594717

Homepage: http://hysz.nju.edu.cn/yusy/

Supplementary Information

Table of contents

1.	General information S2
2.	Catalyst screeningS3
3.	Optimization of reaction conditionsS4
4.	Representative procedures for the preparation and characterization of the starting materials·S4-12
5.	¹ H NMR and ¹³ C NMR spectra ······S13-70
6.	HPLC of the products
7.	X-ray spectra of 31

1. General information.

Thin layer chromatography (TLC) was performed on EMD precoated plates (silica gel 60 F254, Art 5715), Optical rotations were recorded on a A212000-T APIV/IW. Column chromatography was performed on Silica Gel 60 (300–400 Mesh) using a forced flow of 0.5–1.0 bar. ¹H NMR (400 MHz), ¹³C NMR (100 MHz) were measured on a Bruker AVANCE III–400 spectrometer. Chemical shifts are expressed in parts per million (ppm) with respect to the residual solvent peak. Coupling constants are reported as Hertz (Hz), signal shapes and splitting patterns are indicated as follows: br, broad; s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; Infrared (IR) spectra were recorded on a Nicolet iS10 spectrophotometer and are reported as wavenumber (cm⁻¹). HRMS was measured by Agilent G 6500. Optical rotations were recorded on a A212000-T APIV/IW.

 1^{1} was prepared according to published literature procedures. 1-(triphenylphosphoranylidene) propan-2-one, 2-(triphenylphosphoranylidene)-acetophenon, 2-chloroacetyl chloride, KOH (85% w/w) were commercially available. Other Wittig reagents² and all the chiral PTC³ were prepared according to the published literature procedures.

Y. Chen, R. D. Crockett, X. Wang, R. D. Larsen, S. Cui and M. M. Faul, *Synlett*, 2013, 24, 301-304.
 (b) J. Guo, X. Sun and S. Yu, *Org. Biomol. Chem.*, 2014, 12, 265-268.

² J. Yang, G. A. Felton, M. J. Krische, J. Am. Chem. Soc., 2004, 126, 1634-1635.

^{3 (}a) T. Ooi, M. Kameda and K. Maruoka, J. Am. Chem. Soc., 2003, 125, 5139-5151

⁽b) E. J. Corey, F. Xu and M. C. Noe, J. Am. Chem. Soc., 1997, 119, 12414-12415.

2. Catalyst screening^{*a,b*}

^{*a*}A solution of **1** (0.10 mmol), **2** (0.01 mmol), and 5M KOH (0.2 mL, 1.0 mmol) in toluene (2 mL) at -30 $^{\circ}$ C was stirred for 48 h. ^{*b*} ¹H NMR yield with CH₂Br₂ as internal standard. ^{*c*}The reaction carried out at -20 $^{\circ}$ C.

Entry	Base	Cat.2g	Toluene	Temp.	Yield	Er
Entry		[equiv.].	[mL]	[°C]	[% ^{<i>a</i>}]	
1	5M KOH 0.2mL	0.1	2.0	-20	52	84.0/16.0
2	5M KOH 0.1mL	0.1	2.0	-20	27	67.5/32.5
3	5M KOH 0.4mL	0.1	2.0	-20	68	83.6/16.4
4	5M KOH 0.8mL	0.1	2.0	-20	75	84.0/16.0
5	5M KOH 2.0mL	0.1	2.0	-20	19	83.7/16.3
6	5M KOH 0.8mL	0.1	2.0	-30	51	88.7/11.3
7	5M KOH 0.8mL	0.1	2.0	-40	10	74.6/25.4
8	6M KOH 0.8mL	0.1	2.0	-30	trace	
9	3M KOH 0.8mL	0.1	2.0	-30	33	84.0/16.0
10	5M KOH 0.8mL	0.2	2.0	-30	20	78.2/21.8
11	5M KOH 0.8mL	0.05	2.0	-30	trace	

3. Optimization of reaction conditions

^{*a* ¹}H NMR yield with CH₂Br₂ as internal standard.

4. Representative procedures for the preparation and characterization of the starting materials

Reaction conditions : a). 2-chloroacetyl chloride, sat.NaHCO₃, CH_2CI_2 , 0 ^{o}C ; b). Wittig reagents, toluene, reflux, 6-12h.

1 was prepared according to General Procedure **A**: To a vigorously stirred mixture of 3,4-dihydroisoquinoline (1.0 mmol, 1.0 equiv), dichloromethane (10 mL), and saturated aqueous sodium hydrogen carbonate (10 ml) was added dropwise a solution of 2-chloroacetyl chloride (124.2 mg, 1.1 mmol, 1.1 equiv) in dichloromethane (2 mL) at 0 $^{\circ}$ C, and the mixture was stirred vigorously at 0 $^{\circ}$ C until the reaction was completed (monitoring by TLC). The organic phase was separated and the aqueous phase was extracted with dichloromethane (5.0 mL \times 3). The combined organic phase was washed with brine, dried over Na₂SO₄. The solvent was removed under reduced

pressure to afford the crude product and the crude mixture purified by flash chromatography with hexanes / ethyl acetate to afford the intermediates.

Intermediate (0.5 mmol, 1.0 equiv) and the Wittig reagent (0.6 mmol, 1.2 equiv) were added to the flask, stirred vigorously at 110 $^{\circ}$ C until the reaction was completed, monitoring with TLC. The mixture was cool to room temperature, without removed the solvent under reduced pressure, the mixture was loaded on silica gel column and purified by flash chromatography (ethyl acetate /hexanes) to afford the pure product **1**.

According to General Procedure A: 1a was obtained as a white solid in 65% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.14 (d, J = 15.6 Hz, 1H), 8.05 (s, 1H), 8.04 (t, J = 1.6 Hz, 1H), 7.75 (dd, J = 7.6, 0.8 Hz, 1H), 7.61 - 7.57 (m, 1H), 7.55 - 7.49 (m, 3H), 7.38 (td, J = 7.2, 1.2 Hz, 1H), 7.32 (td, J = 7.4, 1.2 Hz, 1H), 7.27 - 7.25 (m, 1H), 6.73 (brs, 1H), 4.01 (s, 2H), 3.54 (dd, J = 13.2, 6.8 Hz, 2H), 3.06 (t, J = 7.2 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃): δ 190.00, 165.99, 141.35, 138.76, 138.01, 133.90, 133.02, 130.74, 130.61, 128.72, 128.55, 127.43, 126.90, 123.80, 42.65, 40.91, 32.78.

FTIR (film): *v*_{max} 3303, 2920, 2849, 1656, 1605, 1594, 1571, 1556, 1481, 1447, 1331, 1214, 1016, 968, 749 cm⁻¹.

HRMS (ESI) calcd for $C_{19}H_{18}CINNaO_2 (M+Na)^+$: 350.0924, found: 350.0922.

According to General Procedure A: 1b was obtained as a yellow solid in 58% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (d, J = 15.6 Hz, 1H), 7.95 (d, J = 8.2 Hz, 2H), 7.74 (d, J = 7.3 Hz, 1H), 7.51 (d, J = 15.4 Hz, 1H), 7.40 – 7.28 (m, 4H), 7.25 (d, J = 7.5 Hz, 1H), 6.74 (brs, 1H), 4.00 (s, 2H), 3.53 (q, J = 6.8 Hz, 2H), 3.05 (t, J = 7.2 Hz, 2H), 2.43 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 189.48, 165.99, 143.89, 140.92, 138.68, 135.44, 134.02, 130.70, 130.47, 129.42, 128.70, 127.39, 126.89, 123.88, 42.65, 40.89, 32.76, 21.73.

FTIR (film): *v*_{max} 3309, 1664, 1642, 1609, 1593, 1541, 1479, 1409, 1325, 1292, 1175, 1026, 978, 753 cm⁻¹.

HRMS (ESI) calcd for $C_{20}H_{20}CINNaO_2$ (M+Na)⁺: 364.1080, found: 364.1076.

According to General Procedure A: 1c was obtained as a yellow solid in 61% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 15.2 Hz, 1H), 8.08 – 8.03 (m, 2H), 7.74 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.52 (d, *J* = 15.2 Hz, 1H), 7.37 (td, *J* = 7.6, 1.5 Hz, 1H), 7.32 (td, *J* = 7.6, 1.3 Hz, 1H), 7.26 (dd, *J* = 7.6, 1.3 Hz, 1H), 7.01 – 6.96 (m, 2H), 6.70 (brs, 1H), 4.01 (s, 2H), 3.89 (s, 3H), 3.54 (q, *J* = 6.8 Hz, 2H), 3.06 (t, *J* = 7.2 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 188.24, 165.96, 163.58, 140.54, 138.59, 134.13, 130.91, 130.89, 130.69, 130.38, 127.38, 126.87, 123.77, 113.93, 55.54, 42.65, 40.88, 32.78.

FTIR (film): *v*_{max} 3277, 1653, 1604, 1586, 1553, 1338, 1305, 1257, 1219, 1167 cm⁻¹.

HRMS (ESI) calcd for $C_{20}H_{20}CINNaO_3$ (M+Na)⁺: 380.1029, found: 380.1029.

According to General Procedure A: 1d was obtained as a yellow solid in 65% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.17 (d, *J* = 15.2 Hz, 1H), 8.14 (s, 1H), 8.12 (s, 1H), 7.78 (d, *J* = 6.8 Hz, 1H), 7.75 (s, 1H), 7.73 (s, 1H), 7.66 (t, *J* = 1.6 Hz, 1H), 7.64 (s, 1H), 7.57 (d, *J* = 15.2 Hz, 1H), 7.62 – 7.46 (m, 2H), 7.44 – 7.30 (m, 3H), 7.28 (dd, *J* = 7.6, 1.2 Hz, 1H), 6.72 (brs, 1H), 4.02 (s, 2H), 3.55 (q, *J* = 6.8 Hz, 2H), 3.08 (t, *J* = 7.2 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 189.45, 166.00, 145.74, 141.30, 139.88, 138.78, 136.71, 133.96, 130.77, 130.63, 129.18, 129.00, 128.30, 127.45, 127.37, 127.32, 126.92, 123.75, 42.66, 40.94, 32.82.
FTIR (film): *v*_{max} 3324, 2938, 1647, 1590, 1539, 1485, 1405, 1338, 1318, 1219, 1194, 1032, 1005, 979, 835, 751, 693 cm⁻¹.

HRMS (ESI) calcd for $C_{25}H_{22}CINNaO_2$ (M+Na)⁺: 426.1237, found: 426.1236.

According to General Procedure A: 1e was obtained as a yellow solid in 68% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.20 (d, *J* = 15.2 Hz, 1H), 8.12 (dd, *J* = 8.8, 1.6 Hz, 1H), 8.00 (d, *J* = 8.0 Hz, 1H), 7.94 (d, *J* = 8.8 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.82 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.68 (d, *J* = 15.2 Hz, 1H), 7.64 – 7.54 (m, 2H), 7.39 (td, *J* = 7.6, 1.6 Hz, 1H), 7.35 (td, *J* = 7.6, 1.6 Hz, 1H), 7.28 (dd, *J* = 7.6, 1.2 Hz, 1H), 6.71 (brs, 1H), 4.01 (s, 2H), 3.56 (q, *J* = 6.8 Hz, 2H), 3.08 (t, *J* = 7.2 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 189.80, 165.99, 141.32, 138.77, 135.59, 135.37, 134.00, 132.58, 130.76, 130.62, 130.11, 129.58, 128.69, 128.54, 127.87, 127.46, 126.98, 126.88, 124.45, 123.87, 42.66, 40.93, 32.82.

FTIR (film): *v*_{max} 3312, 3067, 1652, 1590, 1549, 1325, 1277, 1185, 1122, 1015, 968, 828, 761 cm⁻¹. **HRMS** (ESI) calcd for C₂₃H₂₀ClNNaO₂ (M+Na)⁺: 400.1080, found: 400.1081.

According to General Procedure A: 1f was obtained as a yellow solid in 67% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (d, *J* = 15.2 Hz, 1H), 8.12 – 8.05 (m, 2H), 7.75 (d, *J* = 6.8 Hz, 1H), 7.50 (d, *J* = 15.6 Hz, 1H), 7.39 (td, *J* = 7.4, 1.2 Hz, 1H), 7.33 (t, *J* = 6.8 Hz, 1H), 7.30 – 7.25 (m, 1H), 7.22 – 7.13 (m, 2H), 6.69 (brs, 1H), 4.02 (s, 2H), 3.54 (dd, *J* = 13.6, 6.8 Hz, 2H), 3.07 (t, *J* = 7.2 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 188.32, 165.97, 165.73 (d, J = 254.8 Hz), 141.60, 138.79, 134.36 (d, J = 2.7 Hz), 133.81, 131.21, 131.12, 130.77, 130.70, 127.45, 126.89, 123.33, 115.96, 115.74, 42.64, 40.93, 32.80.

FTIR (film): *v*_{max} 3310, 1664, 1638, 1597, 1502, 1409, 1327, 1296, 1028, 1154, 1024, 980, 832, 752 cm⁻¹.

HRMS (ESI) calcd for C₁₉H₁₇ClFNNaO₂ (M+Na)⁺: 368.0830, found: 368.0833.

According to General Procedure A: 1g was obtained as a yellow solid in 71% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (d, *J* = 15.6 Hz, 1H), 8.01 (s, 1H), 7.98 (s, 1H), 7.75 (d, *J* = 7.6 Hz, 1H), 7.53 – 7.43 (m, 3H), 7.40 (t, *J* = 7.2 Hz, 1H), 7.33 (t, *J* = 7.2 Hz, 1H), 7.27 (d, *J* = 8.0 Hz, 1H), 6.67 (brs, 1H), 4.02 (s, 2H), 3.54 (q, *J* = 6.8 Hz, 2H), 3.07 (t, *J* = 7.2 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 188.65, 165.96, 141.87, 139.44, 138.85, 136.32, 133.74, 130.78, 129.96, 129.03, 127.46, 126.91, 123.21, 42.64, 40.94, 32.80.

FTIR (film): v_{max} 3312, 1665, 1642, 1595, 1537, 1409, 1291, 1209, 1087, 1027, 1010, 981, 830, 756

cm⁻¹.

HRMS (ESI) calcd for C₁₉H₁₇Cl₂NNaO₂ (M+Na)⁺: 384.0534, found: 384.0530.

According to General Procedure A: 1h was obtained as a yellow solid in 67% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (d, *J* = 15.4 Hz, 1H), 7.95 – 7.86 (m, 2H), 7.78 – 7.71 (m, 1H), 7.69 – 7.61 (m, 2H), 7.47 (d, *J* = 15.4 Hz, 1H), 7.40 (td, *J* = 7.4, 1.2 Hz, 1H), 7.33 (t, *J* = 7.0 Hz, 1H), 7.29 – 7.26 (m, 1H), 6.68 (brs, 1H), 4.02 (s, 2H), 3.54 (dd, *J* = 13.6, 6.8 Hz, 2H), 3.06 (t, *J* = 7.2 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 188.86, 165.96, 141.93, 138.85, 136.74, 133.73, 132.02, 130.80, 130.79, 130.06, 128.16, 127.47, 126.91, 123.17, 42.64, 40.94, 32.81.

FTIR (film): *v*_{max} 3315, 1665, 1642, 1594, 1536, 1476, 1409, 1322, 1290, 1208, 1067, 1024, 1007, 975, 826, 787, 756 cm⁻¹.

HRMS (ESI) calcd for C₁₉H₁₇BrClNNaO₂ (M+Na)⁺: 428.0029, found: 428.0026.

According to General Procedure A: 1i was obtained as a light green solid in 60% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.17 (d, *J* = 15.6 Hz, 1H), 7.75 (d, *J* = 7.6 Hz, 1H), 7.67 (d, *J* = 1.2 Hz, 1H), 7.46 – 7.22 (m, 5H), 6.72 (brs, 1H), 6.61 (dd, *J* = 3.6, 1.6 Hz, 1H), 4.02 (s, 2H), 3.54 (q, *J* = 6.8 Hz, 2H), 3.07 (t, *J* = 7.2 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 177.78, 165.97, 153.62, 146.73, 140.52, 138.83, 133.71, 130.73, 130.65, 127.39, 126.96, 123.20, 117.81, 112.66, 42.64, 40.90, 32.75.

FTIR (film): v_{max} 3290, 2947, 2880, 1649, 1603, 1590, 1558, 1461, 1392, 1330, 1306, 1241, 1215,

1190, 1152, 1039, 1010, 965, 881, 758 cm⁻¹.

HRMS (ESI) calcd for $C_{17}H_{16}CINNaO_3$ (M+Na)⁺: 340.0716, found: 340.0714.

According to General Procedure A: 1j was obtained as a brown solid in 63% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (d, J = 15.2 Hz, 1H), 7.88 (d, J = 3.2 Hz, 1H), 7.74 (d, J = 7.6 Hz, 1H), 7.72 – 7.67 (m, 1H), 7.43 – 7.36 (m, 2H), 7.33 (t, J = 7.2 Hz, 1H), 7.27 (d, J = 6.0 Hz, 1H), 7.20 (dd, J = 4.8, 4.0 Hz, 1H), 6.69 (brs, 1H), 4.02 (s, 2H), 3.54 (q, J = 6.8 Hz, 2H), 3.07 (t, J = 7.2 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 181.78, 165.96, 145.39, 140.70, 138.78, 134.19, 133.74, 132.02, 130.76, 130.65, 128.36, 127.43, 126.93, 123.65, 42.65, 40.90, 32.80.

FTIR (film): *v*_{max} 3295, 1654, 1646, 1589, 1558, 1515, 1410, 1351, 1327, 1233, 1219, 1061, 966, 858, 749 cm⁻¹.

HRMS (ESI) calcd for C₁₇H₁₆ClNNaO₂S (M+Na)⁺: 356.0488, found: 356.0491.

According to General Procedure A: 1k was obtained as a brown solid in 50% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.74 (d, *J* = 4.0 Hz, 1H), 8.26 (s, 2H), 8.20 (d, *J* = 8.0 Hz, 1H), 7.89 (td, *J* = 7.6, 1.6 Hz, 2H), 7.50 (ddd, *J* = 7.6, 4.8, 1.1 Hz, 1H), 7.37 (td, *J* = 7.6, 1.6 Hz, 1H), 7.32 (td, *J* = 7.6, 1.6 Hz, 1H), 7.26 (dd, *J* = 7.6, 1.6 Hz, 1H), 6.71 (brs, 1H), 4.03 (s, 2H), 3.56 (q, *J* = 6.8 Hz, 2H), 3.10 (t, *J* = 7.2 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 189.35, 166.00, 154.09, 148.90, 141.19, 138.86, 137.08, 134.02, 130.67, 130.62, 127.38, 127.35, 127.01, 123.02, 122.78, 42.65, 41.00, 32.80.

FTIR (film): v_{max} 3285, 3087, 1656, 1594, 1558, 1427, 1406, 1329, 1269, 1220, 1190, 1024, 979,

752 cm⁻¹.

HRMS (ESI) calcd for C₁₈H₁₇ClN₂NaO₂ (M+Na)⁺: 351.0876, found: 351.0875.

According to General Procedure A: 11 was obtained as a yellow solid in 53% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.04 – 8.02 (m, 3H), 7.86 (d, *J* = 2.0 Hz, 1H), 7.61 (t, *J* = 7.2 Hz, 1H), 7.56 – 7.45 (m, 4H), 7.14 (d, *J* = 8.4 Hz, 1H), 6.73 (brs, 1H), 4.02 (s, 2H), 3.51 (q, *J* = 6.8 Hz, 2H), 3.01 (t, *J* = 7.2 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 189.51, 166.06, 139.74, 137.69, 137.59, 135.97, 133.27, 133.23, 132.31, 129.59, 128.79, 128.60, 124.71, 121.22, 42.62, 40.67, 32.39.

FTIR (film): *v*_{max} 3318, 1658, 1643, 1603, 1544, 1480, 1446, 1406, 1320, 1263, 1215, 1174, 1117, 1019, 910, 857, 824, 786, 725, 692 cm⁻¹.

HRMS (ESI) calcd for C₁₉H₁₇BrClNNaO₂ (M+Na)⁺: 428.0029, found: 428.0026.

According to General Procedure A: 1m was obtained as a yellow solid in 81% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.58 (d, J = 2.0 Hz, 1H), 8.20 (dd, J = 8.4, 2.4 Hz, 1H), 8.15 – 8.05 (m, 3H), 7.71 – 7.60 (m, 2H), 7.55 (t, J = 7.6 Hz, 2H), 7.47 (d, J = 8.4 Hz, 1H), 6.81 (brs, 1H), 4.03 (s, 2H), 3.59 (q, J = 6.8 Hz, 2H), 3.17 (t, J = 7.2 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 189.14, 166.22, 147.24, 145.67, 138.74, 137.40, 135.53, 133.53, 131.77, 128.88, 128.66, 126.06, 124.44, 121.71, 42.57, 40.33, 33.01.

FTIR (film): *v*_{max} 3332, 2927, 1652, 1600, 1542, 1515, 1434, 1343, 1265, 1221, 1076, 976, 836, 803, 762, 729, 690 cm⁻¹.

HRMS (ESI) calcd for C₁₉H₁₇ClN₂NaO₄ (M+Na)⁺: 395.0775, found: 395.0774.

According to General Procedure A: 1n was obtained as a yellow solid in 73% yield;

¹**H** NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 15.6 Hz, 1H), 8.04 (s, 1H), 8.02 (d, *J* = 1.2 Hz, 1H), 7.75 (d, *J* = 8.8 Hz, 1H), 7.58 (t, *J* = 7.2 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.44 (d, *J* = 15.6 Hz, 1H), 6.86 (dd, *J* = 8.8, 2.8 Hz, 1H), 6.78 (d, *J* = 2.8 Hz, 1H), 6.77 (brs, 1H), 4.02 (s, 2H), 3.84 (s, 3H), 3.54 (dd, *J* = 13.6, 6.8 Hz, 2H), 3.04 (t, *J* = 7.2 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 190.07, 166.02, 161.56, 141.02, 140.95, 138.32, 132.79, 128.64, 128.49, 128.44, 126.24, 121.22, 115.45, 113.60, 55.44, 42.66, 40.89, 32.98.

FTIR (film): *v*_{max} 3335, 2938, 2834, 1650, 1586, 1575, 1539, 1444, 1412, 1343, 1315, 1266, 1246, 1216, 1184, 1163, 1103, 1019, 974, 810, 779, 688 cm⁻¹.

HRMS (ESI) calcd for $C_{20}H_{20}CINNaO_3$ (M+Na)⁺: 380.1029, found: 380.1029.

According to General Procedure A: 10 was obtained as a white solid in 56 % yield.

¹**H NMR** (400 MHz, CDCl3): δ 7.93 (d, *J* = 16.0 Hz, 1H), 7.63 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.36 (td, *J* = 7.2, 1.2 Hz, 1H), 7.31-7.29 (m, 1H), 7.24 (dd, *J* = 7.2, 1.2 Hz, 1H), 6.77 (brs, 1H), 6.68(d, *J* = 16.0 Hz, 1H), 4.03 (s, 2H), 3.53-3.47 (m, 2H), 3.04(t, *J* = 7.4, 2H), 2.44 (s, 3H).

¹³**C NMR** (100 MHz, CDCl3): δ = 198.64, 166.14, 140.12, 138.20, 133.57, 130.57, 130.51, 129.07, 127.50, 126.86, 42.60, 41.12, 32.92, 27.77.

FTIR (film): v max 3351, 3065, 2994, 2925, 1657, 1633, 1523, 1482, 1463, 1433, 1359, 974, 759, 675 cm-1.

HRMS (ESI) calcd for C₁₄H₁₆ClNO₂ Na (M+Na)+: 288.0767, found: 288.0765.

5. ¹H NMR and ¹³C NMR spectra

S69

6. HPLC of the products

1 Det.A Ch1/254nm

PeakTable

Detector A Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area %	Height %
1	16.630	3514008	153847	50.094	60.734
2	26.711	3500876	99464	49.906	39.266
Total		7014884	253311	100.000	100.000

D:\data\俞寿云\郭嘉嘉\LC Data File\GJJ-8-94-215-G.lcd

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.243	1612278	49992	88.358	90.542
2	27.496	212441	5222	11.642	9.458
Total		1824720	55214	100.000	100.000

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	21.764	9300636	326300	49.976	56.209
2	30.124	9309648	254209	50.024	43.791
Total		18610283	580509	100.000	100.000

PeakTable

Detector A Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area %	Height %
1	21.737	25101631	881318	84.586	87.472
2	30.073	4574064	126230	15.414	12.528
Total		29675695	1007548	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.278	1208219	32023	50.329	51.089
2	20.596	1192441	30657	49.671	48.911
Total		2400660	62680	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.704	4317996	188343	82.916	86.422
2	20.992	889654	29591	17.084	13.578
Total		5207650	217934	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.257	1018364	37932	49.941	57.104
2	24.921	1020783	28494	50.059	42.896
Total		2039147	66426	100.000	100.000

D:\data\俞寿云\郭嘉嘉\LC Data File\GJJ-8-93-325-G.lcd

Detector A Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	17.276	7699351	287053	87.585	90.444			
2	25.080	1091412	30328	12.415	9.556			
Total		8790763	317381	100.000	100.000			

Height %

56.992 43.008 100.000

1	Detector A Ch1 254nm									
	Peak#	Ret. Time	Area	Height	Area %					
	1	25.287	1928200	53542	49.911					
	2	35.287	1935078	40403	50.089					
	Total		3863278	93945	100.000					

-		-		
Pea	Z 1	a	hl	ρ
1 00	<u>, 1</u>	La		.

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	25.315	5164886	133112	86.607	89.148				
2	35.373	798735	16205	13.393	10.852				
Total		5963621	149317	100.000	100.000				

PeakTable

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.263	728024	24931	49.970	51.632
2	18.325	728893	23355	50.030	48.368
Total		1456917	48285	100.000	100.000

D:\data\俞寿云\郭嘉嘉\LC Data File\GJJ-8-116-339-G.lcd

Peak#	Ret. Time	Area	Height	Area %	Height %			
1	10.399	6809592	403880	75.852	83.028			
2	18.471	2167898	82561	24.148	16.972			
Total		8977490	486442	100.000	100.000			

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	22.970	1724015	58952	49.970	59.834
2	37.028	1726074	39574	50.030	40.166
Total		3450089	98526	100.000	100.000

D:\data\俞寿云\郭嘉嘉\LC Data File\GJJ-8-85-222-光.lcd

Peak#	Ret. Time	Area	Height	Area %	Height %
1	23.008	51112677	1719829	90.863	93.551
2	37.078	5140057	118562	9.137	6.449
Total		56252734	1838391	100.000	100.000

PeakTable

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.941	1523521	74702	49.809	58.084
2	19.206	1535190	53908	50.191	41.916
Total		3058711	128610	100.000	100.000

D:\data\俞寿云\郭嘉嘉\LC Data File\GJJ-8-117-338-G-重复.lcd

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.868	2016142	106730	82.816	87.592
2	20.040	418355	15120	17.184	12.408
Total		2434497	121850	100.000	100.000

D:\data\俞寿云\郭嘉嘉\LC Data File\GJJ-8-97-327-X.Icd

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.247	1020933	52059	49.080	52.954
2	14.134	1059209	46251	50.920	47.046
Total		2080142	98310	100.000	100.000

Pe Detector A Ch1 254nm				eakTable	
Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.205	6196656	312131	76.965	78.748
2	14.064	1854570	84234	23.035	21.252
Total		8051226	396366	100.000	100.000

S79

Peak#	Ret. Time	Area	Height	Area %	Height %
1	20.179	478467	14277	49.898	58.160
2	33.745	480431	10271	50.102	41.840
Total		958898	24547	100.000	100.000

D:\data\俞寿云\郭嘉嘉\LC Data File\GJJ-8-130-329-G.lcd

PeakTable

Peak#	Ret. Time	Area	Height	Area %	Height %
1	19.129	1601790	34867	84.153	86.383
2	32.711	301629	5496	15.847	13.617
Total		1903418	40364	100.000	100.000

Detector A Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	15.889	179471	6608	50.227	53.276	
2	19.460	177849	5796	49.773	46.724	
Total		357320	12404	100.000	100.000	

Detector A Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.923	135286	5702	18.325	20.872
2	19.473	602978	21615	81.675	79.128
Total		738265	27316	100.000	100.000

Peal	cΠ	a	hl	e
T Ca	<u> </u>			

Detector A	A Ch1	254nm	
-	_		

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.412	1547195	101226	49.944	58.881
2	17.112	1550647	70690	50.056	41.119
Total		3097842	171916	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.221	1734369	103460	92.775	94.593
2	15.875	135065	5913	7.225	5.407
Total		1869434	109374	100.000	100.000

Detector A	Ch1	254nm
------------	-----	-------

Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.643	3091501	115009	50.078	57.473
2	25.625	3081843	85099	49.922	42.527
Total		6173344	200108	100.000	100.000

D:\data\俞寿云\郭嘉嘉\LC Data File\GJJ-8-129-324-G-2ci.lcd

De	Detector A Ch1 254nm						
	Peak#	Ret. Time	Area	Height	Area %	Height %	
	1	16.493	1589089	54797	92.133	93.878	
	2	24.632	135696	3574	7.867	6.122	
	Total		1724784	58370	100.000	100.000	

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.046	666631	35035	49.922	56.044
2	16.498	668727	27478	50.078	43.956
Total		1335358	62513	100.000	100.000

Detector A Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.008	10450030	540766	68.990	73.987
2	16.460	4697172	190124	31.010	26.013
Total		15147202	730890	100.000	100.000

7. X-ray spectra of 3l (CCDC 1029009)

