Electronic Supplementary Information

A Simple and Robust Preparation of *N*-Acetylindoxyls: Precursors for Indigogenic Substrates

Michael N. Gandy,[†] Lindsay T. Byrne,[‡] and Keith A. Stubbs^{*,†}

[†]School of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, Australia, 6009 [‡]Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, Australia, 6009

Email: keith.stubbs@uwa.edu.au

Table of contents

S3
S4
S5
S6
S7
S8
. S9–S48
S49

General methods

Thin layer chromatography (TLC) was conducted on Merck Kieselgel 60 F_{254} silica plates and visualised under shortwave UV light (254 nm). Infrared spectra were recorded for solid samples using a PerkinElmer Spectrum One Fourier transform infrared spectrometer fitted with an ATR attachment. ¹H- and ¹³C-nuclear magnetic resonance spectra were obtained using a Bruker AV-500 spectrometer (500 MHz for ¹H or 125 MHz for ¹³C) or Bruker Avance 600 spectrometer (600 MHz for ¹H or 150 MHz for ¹³C). Each sample was dissolved in the specified deuterated solvent and each spectrum was calibrated using the residual solvent peak as follows: CDCl₃ (δ 7.26 for ¹H and δ 77.0 for ¹³C); DMSO-*d*₆ (δ 2.50 for ¹H and δ 39.5 for ¹³C). High resolution mass spectra were acquired using a Waters liquid chromatograph premier mass spectrometer. Samples were ionised using the atmospheric-pressure chemical ionisation technique (APCI) and all spectra were acquired in positive ionisation mode. For novel compounds, microanalyses were performed by Robertson Microlit, Ledgewood NJ.

General procedure for the preparation of benzonitriles (11, 16 and 22)

Following a literature procedure previously used to synthesise other nitriles, ¹ to a solution of the appropriate aldehyde **12**, **15** or **21** (30.0 mmol) in formic acid (60 mL) was added hydroxylamine hydrochloride (40.0 mmol). The solution was heated at reflux for 6 h under an atmosphere of air. The mixture was then allowed to cool then diluted with ice/water (200 mL). The precipitate was then collected and the filter cake washed with water (200 mL), to give the corresponding benzonitrile **11**, **16** or **22** with yields in the range of 84–89%.

2-Chloro-6-fluorobenzonitrile (11)

White solid (4.10 g, 89%). R_f (1:4 EtOAc/hexanes): 0.63. IR (ATR) \bar{v}_{max} (cm⁻¹): 2241 (m, C=N). ¹H NMR (600 MHz, CDCl₃): δ 7.49 (ddd [app dt], J = 8.2, 8.2, 6.1 Hz, 1H), 7.34 (d, J = 8.2 Hz, 1H), 7.16 (dd [app t] J = 8.2, 8.2 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 163.8 (d, J = 261 Hz), 137.9 (d, J = 2.0 Hz), 134.8 (d, J = 9.4 Hz), 125.8 (d, J = 3.6 Hz), 114.6 (d, J = 19.8 Hz), 111.1, 103.4 (d, J = 17.8 Hz). HRMS (APCI) m/z: [M+Na]⁺ calcd for C₇H₃ClFNNa 177.9836; found, 177.9824.

3-Bromo-6-fluorobenzonitrile (16)

White solid (5.10 g, 85%). R_f (1:4 EtOAc/hexanes): 0.68. IR (ATR) \bar{v}_{max} (cm⁻¹): 2236 (m, C \equiv N). ¹H NMR (600 MHz, CDCl₃): δ 7.76–7.74 (m [app dd], 1H), 7.73–7.70 (m [app ddd], 1H), 7.13 (dd [app t], J = 9.0, 9.0 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 162.2 (d, J = 260 Hz), 138.1 (d, J = 8.1 Hz), 135.7, 118.2 (d, J = 20.8 Hz), 117.0 (d, J = 3.9 Hz), 112.4, 103.4 (d, J = 16.8 Hz). HRMS (APCI) m/z: [M+Na]⁺ calcd for C₇H₃BrFNNa 221.9331; found, 221.9321.

4-Chloro-2-fluorobenzonitrile (22)

White solid (3.90 g, 84%). R_f (1:4 EtOAc/hexanes): 0.55. IR (ATR) \bar{v}_{max} (cm⁻¹): 2242 (m, C=N). ¹H NMR (600 MHz, CDCl₃): δ 7.60–7.56 (m, 1H), 7.29–7.25 (m, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 163.0 (d, J = 263 Hz), 141.0 (d, J = 9.8 Hz), 134.0, 125.6 (d, J = 3.8 Hz), 117.6 (d, J = 22.3 Hz), 113.1, 100.2 (d, J = 15.5 Hz). HRMS (APCI) m/z: [M+Na]⁺ calcd for C₇H₃ClFNNa 177.9836; found, 177.9829.

General procedure for the preparation of ethyl glycinates (10, 17 and 20)

To a stirring solution of the appropriate benzonitrile **11**, **16** or **22** (20.0 mmol) in DMSO (50 mL) was added glycine ethyl ester hydrochloride (5.58 g, 40.0 mmol) and NEt₃ (10.2 mL, 100 mmol). The flask was stoppered and the mixture was heated at $110 \,^{\circ}$ C (3 h). The reaction mixture was allowed to cool then diluted with water (500 mL) and cooled in an ice bath. The product was collected by filtration to give the corresponding ethyl glycinate **10**, **17** or **20** with yields in the range of 68–76%.

Ethyl [(3-chloro-2-cyanophenyl)amino]acetate (10)

White solid (3.20 g, 68%). R_f (1:4 EtOAc/hexanes): 0.50. IR (ATR) \bar{v}_{max} (cm⁻¹): 2241 (m, C=N), 1743 (s, C=O). ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.39 (dd [app t], J = 8.0, 8.0 Hz, 1H), 6.84 (d, J = 8.0 Hz, 1H), 6.69–6.62 (m, 2H), 4.13 (q, J = 7.0 Hz, 2H), 4.07 (d, J = 6.0 Hz, 2H), 1.20 (t, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 170.0, 152.2, 135.6, 134.9, 116.8, 115.1, 110.3, 95.1, 60.7, 44.2, 14.1. HRMS (APCI) m/z: [M+H]⁺ calcd for C₁₁H₁₂ClN₂O₂ 239.0587; found, 239.0587.

Ethyl [(4-bromo-2-cyanophenyl)amino]acetate (17)

White solid (4.30 g, 76%). R_f (1:4 EtOAc/hexanes): 0.38. IR (ATR) \bar{v}_{max} (cm⁻¹): 2223 (m, C=N), 1745 (s, C=O). ¹H NMR (500 MHz, DMSO- d_6): δ 7.72 (d, J = 2.4 Hz, 1H), 7.53 (dd, J = 9.0 2.4 Hz, 1H), 6.63 (d, J = 9.0 Hz, 1H), 6.56 (t, J = 6.1 Hz, 1H), 4.12 (q, J = 6.1 Hz, 2H), 4.04 (d, J = 6.2 Hz, 2H), 1.19 (t, J = 6.2 Hz, 3H). ¹³C NMR (125 MHz, DMSO- d_6): δ 170.1, 149.6, 137.0, 134.6, 116.5, 113.8, 106.3, 96.4, 60.7, 44.1, 14.1. HRMS (APCI) m/z: [M+Na]⁺ calcd for C₁₁H₁₁BrN₂O₂Na 304.9902; found, 304.9913.

Ethyl [(5-chloro-2-cyanophenyl)amino]acetate (20)

White solid (3.40 g, 72%). R_f (1:4 EtOAc/hexanes): 0.61. IR (ATR) \bar{v}_{max} (cm⁻¹): 2217 (m, C=N), 1733 (s, C=O). ¹H NMR (600 MHz, DMSO-*d*₆): δ 7.53 (d, J = 8.4 Hz, 1H), 6.77 (d, J = 1.8 Hz, 1H), 6.73 (dd, J = 8.4, 1.8 Hz, 1H), 6.63 (t, J = 6.6 Hz, 1H), 4.12 (q, J = 6.6 Hz, 2H), 4.08 (d, J = 6.6 Hz, 2H), 1.20 (t, J = 6.6 Hz, 3H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 170.1, 151.2, 139.5, 134.7, 117.1, 116.6, 111.3, 93.6, 60.6, 44.0, 14.1. HRMS (APCI) *m*/*z*: [M+H]⁺ calcd for C₁₁H₁₂ClN₂O₂ 239.0587; found, 239.0583.

General procedure for the preparation of bromine-substituted ethyl glycinates (13 and 23)

Using a method used to brominate other anilines,² to a stirring suspension of the appropriate ethyl glycinate **10** or **20** (7.60 mmol) in AcOH (16 mL) was added ammonium bromide (780 mg, 8.00 mmol) then 30% H_2O_2 (820 µL, 8.00 mmol) dropwise over 5 min and the mixture was then stirred at room temperature (24 h). The mixture was diluted with water and cooled in an ice bath and the resulting solid collected by filtration to give the corresponding ethyl glycinate **13** or **23** with yields in the range of 76–81%.

Ethyl [(4-bromo-3-chloro-2-cyanophenyl)amino]acetate (13)

White solid (1.80 g, 76%). R_f (1:4 EtOAc/hexanes): 0.36. IR (ATR) \bar{v}_{max} (cm⁻¹): 2217 (m, C=N), 1730 (s, C=O). ¹H NMR (600 MHz, DMSO-*d*₆): δ 7.68 (d, J = 9.2 Hz, 1H), 6.82 (t, J = 5.8 Hz, 1H), 6.65 (d, J = 9.2 Hz, 1H), 4.13 (q, J = 7.0 Hz, 2H), 4.09 (d, J = 6.0 Hz, 2H), 1.20 (t, J = 7.0 Hz, 3H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 169.8, 151.5, 138.0, 135.1, 114.8, 112.4, 106.8, 96.5, 60.7, 44.2, 14.1. HRMS (APCI) *m*/*z*: [M+Na]⁺ calcd for C₁₁H₁₀BrClN₂O₂Na 338.9512; found, 338.9513. Anal. calcd for C₁₁H₁₀BrClN₂O₂: C, 41.60; H, 3.17; N, 8.82; found: C, 41.68; H, 3.19; N, 8.89.

Ethyl [(4-bromo-5-chloro-2-cyanophenyl)amino]acetate (23)

White solid (2.00 g, 81%). R_f (1:4 EtOAc/hexanes): 0.36. IR (ATR) \bar{v}_{max} (cm⁻¹): 2220 (m, C=N), 1734 (s, C=O). ¹H NMR (600 MHz, DMSO-*d*₆): δ 7.95 (s, 1H), 7.01 (s, 1H), 6.76 (t, *J* = 6.0 Hz, 1H), 4.13 (q, *J* = 7.2 Hz, 2H), 4.09 (d, *J* = 6.0 Hz, 2H), 1.20 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 169.9, 150.3, 139.4, 137.0, 115.9, 113.2, 106.2, 95.4, 60.7, 44.1, 14.1. HRMS (APCI) *m*/*z*: [M+H]⁺ calcd for C₁₁H₁₁BrClN₂O₂ 316.9692; found, 316.9686. Anal. calcd for C₁₁H₁₀BrClN₂O₂: C, 41.60; H, 3.17; N, 8.82; found: C, 41.63; H, 3.27; N, 8.87.

General procedure for the preparation of dicarboxylic acids (9, 18, 24 and 25)

To a 30% w/w KOH solution (25 mL) was added the appropriate ethyl glycinate **13**, **17**, **20** or **23** (5.0 mmol) and the mixture was stirred at 120 °C (2 h). The mixture was then diluted with H_2O (5 mL) and the solution was heated at 120 °C (12 h). The reaction was diluted with 2 M HCl (75 mL) and cooled in an ice bath. The resulting precipitate was collected by filtration to give the corresponding dicarboxylic acid **9**, **18**, **24** or **25** with yields in the range of 89–95%.

3-Bromo-6-[(carboxymethyl)amino]-2-chlorobenzoic acid (9)

Pale green solid (1.40 g, 89%). R_f (8:6:1 CHCl₃/EtOAc/AcOH): 0.14. IR (ATR) $\bar{\nu}_{max}$ (cm⁻¹): 1680 (s, C=O), 1646 (s, C=O). ¹H NMR (600 MHz, DMSO-*d*₆): δ 13.2 (br s, 1H), 7.53 (d, *J* = 9.0 Hz, 1H), 6.49 (d, *J* = 9.0 Hz, 1H), 6.01 (br s, 1H), 3.89 (s, 2H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 171.7, 166.9, 145.7, 134.5, 130.3, 120.1, 111.9, 107.6, 44.4. HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₉H₈BrClNO₄ 307.9325; found, 307.9332.

5-Bromo-2-[(carboxymethyl)amino]benzoic acid (18)

Pale green solid (1.30 g, 92%). R_f (8:6:1 CHCl₃/EtOAc/AcOH): 0.39. IR (ATR) \bar{v}_{max} (cm⁻¹): 1717 (s, C=O). ¹H NMR (600 MHz, DMSO- d_6): δ 8.12 (br s, 1H), 7.86 (d, J = 2.4 Hz, 1H), 7.48 (dd, J = 9.0, 2.4 Hz, 1H), 6.59 (d, J = 9.0 Hz, 1H), 3.99 (s, 2H). ¹³C NMR (150 MHz, DMSO- d_6): δ 171.5, 168.5, 149.1, 136.7, 133.4, 114.2, 112.2, 105.2, 44.2. HRMS (APCI) m/z: [M+H]⁺ calcd for C₉H₉BrNO₄ 273.9715; found, 273.9717.

2-[(Carboxymethyl)amino]-4-chlorobenzoic acid (24)

Pale green solid (1.00 g, 92%). R_f (8:6:1 CHCl₃/EtOAc/AcOH): 0.42. IR (ATR) \bar{v}_{max} (cm⁻¹): 1706 (s, C=O). ¹H NMR (600 MHz, DMSO-*d*₆): δ 12.8 (br s, 1H), 8.25 (br s, 1H), 7.79 (d, *J* = 8.4 Hz, 1H), 6.65 (d, *J* = 2.4 Hz, 1H), 6.62 (dd, *J* = 8.4, 2.4 Hz, 1H), 4.02 (s, 2H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 171.5, 169.1, 150.9, 139.2, 133.4, 114.7, 111.1, 109.5, 44.2. HRMS (APCI) *m*/*z*: [M+H]⁺ calcd for C₉H₉ClNO₄ 230.0220; found, 230.0219.

5-Bromo-2-[(carboxymethyl)amino]-4-chlorobenzoic acid (25)

Pale green solid (1.50 g, 95%). R_f (8:6:1 CHCl₃/EtOAc/AcOH): 0.36. IR (ATR) $\bar{\nu}_{max}$ (cm⁻¹): 1716 (s, C=O), 1649 (s, C=O). ¹H NMR (600 MHz, DMSO-*d*₆): δ 8.20 (br s, 1H), 8.00 (s, 1H), 6.88 (s, 1H), 4.03 (s, 2H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 171.3, 168.0, 149.8, 138.8, 135.7, 113.4, 111.4, 104.7, 44.2. HRMS (APCI) *m*/*z*: [M+H]⁺ calcd for C₉H₈BrClNO₄ 307.9325; found, 307.9304.

General procedure for the preparation of *N*-acetylindoxyl acetates (14, 19, 26 and 27)

Following a modified procedure,³ to a stirring suspension of the appropriate dicarboxylic acid **9**, **18**, **24** or **25** (8.00 mmol) in $Ac_2O(10 \text{ mL})$ was added sodium acetate (32 mmol) and the mixture was then stirred at reflux (1 h). The mixture was then cooled and poured into of ice/water (ca 35 g) and cooled in an ice bath. The resulting precipitate was collected by filtration to give the corresponding indoxyl acetate **14**, **19**, **26** or **27** with yields in the range of 86–91%.

1-Acetyl-5-bromo-4-chloro-1*H*-indol-3-yl acetate (14)

White solid (2.30 g, 86%). R_f (1:4 EtOAc/hexanes): 0.24. IR (ATR) \bar{v}_{max} (cm⁻¹): 1770 (s, C=O), 1712 (s, C=O). ¹H NMR (600 MHz, DMSO-*d*₆): δ 8.27 (d, *J* = 9.0 Hz, 1H), 8.04 (s, 1H), 7.69 (d, *J* = 9.0 Hz, 1H), 2.62 (s, 3H), 2.37 (s, 3H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 169.6, 169.4, 133.0, 131.4, 130.0, 123.0, 122.5, 119.8, 117.3, 116.5, 23.7, 20.5. HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₁₂H₁₀BrClNO₃ 329.9533; found, 329.9544.

1-Acetyl-5-bromo-1*H*-indol-3-yl acetate (19)

White solid (2.10 g, 91%). R_f (1:4 EtOAc/hexanes): 0.33. IR (ATR) $\bar{\nu}_{max}$ (cm⁻¹): 1753 (s, C=O), 1713 (s, C=O). ¹H NMR (600 MHz, DMSO- d_6): δ 8.29 (d, J = 8.0 Hz, 1H), 7.94 (s, 1H), 7.77 (d, J = 1.8 Hz, 1H), 7.53 (dd, J = 8.0, 1.8 Hz, 1H), 2.61 (s, 3H), 2.38 (s, 3H). ¹³C NMR (150 MHz, DMSO- d_6): δ 169.5, 168.4, 132.5, 131.4, 128.2, 125.6, 120.5, 117.9, 117.5, 116.0, 23.6, 20.5. HRMS (APCI) m/z: [M+H]⁺ calcd for C₁₂H₁₁BrNO₃ 295.9922; found, 295.9941.

1-Acetyl-6-chloro-1*H*-indol-3-yl acetate (26)

White solid (1.70 g, 87%). R_f (1:4 EtOAc/hexanes): 0.32. IR (ATR) \bar{v}_{max} (cm⁻¹): 1756 (s, C=O), 1703 (s, C=O). ¹H NMR (600 MHz, DMSO- d_6): δ 8.37 (d, J = 1.8 Hz, 1H), 7.93 (s, 1H), 7.55 (d, J = 8.4 Hz, 1H), 7.36 (dd, J = 8.4, 1.8 Hz, 1H), 2.62 (s, 3H), 2.38 (s, 3H). ¹³C NMR (150 MHz, DMSO- d_6): δ 169.7, 168.2, 133.1, 132.7, 130.2, 123.8, 122.5, 119.4, 116.7, 115.8, 23.6, 20.5. HRMS (APCI) m/z: [M+H]⁺ calcd for C₁₂H₁₁ClNO₃ 252.0427; found, 252.0448.

1-Acetyl-5-bromo-6-chloro-1*H*-indol-3-yl acetate (27)

White solid (2.30 g, 88%). R_f (1:4 EtOAc/hexanes): 0.26. IR (ATR) \bar{v}_{max} (cm⁻¹): 1757 (s, C=O), 1710 (s, C=O). ¹H NMR (600 MHz, DMSO- d_6): δ 8.53 (s, 1H), 8.01 (s, 1H), 8.00 (s, 1H), 2.62 (s, 3H), 2.38 (s, 3H). ¹³C NMR (150 MHz, DMSO- d_6): δ 169.7, 168.3, 132.1, 131.8, 129.7, 124.2, 122.7, 118.3, 117.3, 116.1, 23.6, 20.5. HRMS (APCI) m/z: [M+H]⁺ calcd for C₁₂H₁₀BrClNO₃ 329.9533; found, 329.9557.

General procedure for the preparation of N-acetylindoxyls (1-4)

To a solution of sulfuric acid (80% w/w, 5 mL) was added the appropriate indoxyl acetate **14**, **19**, **26** or **27** (200 mg) and the mixture was stirred at room temperature (45 min). The mixture was then poured into ice/water (ca 10 g) and cooled in an ice bath. The resulting solid was collected by filtration to give the corresponding *N*-acetylindoxyl **1**, **2**, **3** or **4** with yields in the range of 84–89%.

N-Acetyl-5-bromo-4-chloroindoxyl (IUPAC name: 1-Acetyl-5-bromo-4-chloroindolin-3-one) (1)

White solid (150 mg, 86%). R_f (2:3 EtOAc/hexanes): 0.26. IR (ATR) \bar{v}_{max} (cm⁻¹): 1715 (s, C=O), 1682 (s, C=O). ¹H NMR (600 MHz, CDCl₃): δ 8.39 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 8.4 Hz, 1H), 4.35 (s, 2H), 2.31 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 190.6, 168.1, 154.0, 140.8, 131.7, 122.7, 118.9, 117.7, 56.4, 24.3. HRMS (APCI) m/z: [M+Na]⁺ calcd for C₁₀H₇BrClNO₂Na 309.9246; found, 309.9251.

1-Acetyl-5-bromoindolin-3-one (2)

White solid (152 mg, 89%). R_f (2:3 EtOAc/hexanes): 0.25. IR (ATR) \bar{v}_{max} (cm⁻¹): 1714 (s, C=O), 1671 (s, C=O). ¹H NMR (600 MHz, CDCl₃): δ 8.45 (d, J = 9.0 Hz, 1H), 7.83 (br s, 1H), 7.72 (dd, J = 9.0, 2.4 Hz, 1H), 4.31 (s, 2H), 2.31 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 193.1, 168.0, 152.4, 139.8, 126.5, 126.3, 120.2, 117.3, 56.2, 24.1. HRMS (APCI) m/z: [M+Na]⁺ calcd for C₁₀H₈BrNO₂Na 275.9636; found, 275.9629.

1-Acetyl-6-chloroindolin-3-one (3)

White solid (140 mg, 84%). R_f (2:3 EtOAc/hexanes): 0.26. IR (ATR) \bar{v}_{max} (cm⁻¹): 1720 (s, C=O), 1667 (s, C=O). ¹H NMR (600 MHz, CDCl₃): δ 8.60 (br s, 1H), 7.65 (d, J = 7.8 Hz, 1H), 7.18 (dd, J = 7.8, 1.8 Hz, 1H), 4.30 (s, 2H), 2.31 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 193.2, 168.2, 154.1, 143.9, 124.9, 124.5, 123.2, 118.8, 56.3, 24.2. HRMS (APCI) m/z: [M+Na]⁺ calcd for C₁₀H₈CINO₂Na 232.0141; found, 232.0149.

1-Acetyl-5-bromo-6-chloroindolin-3-one (4)

White solid (154 mg, 88%). R_f (2:3 EtOAc/hexanes): 0.26. IR (ATR) \bar{v}_{max} (cm⁻¹): 1718 (s, C=O), 1668 (s, C=O). ¹H NMR (600 MHz, CDCl₃): δ 8.75 (s, 1H), 7.97 (s, 1H), 4.32 (s, 2H), 2.32 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 192.0, 168.1, 152.3, 143.5, 128.0, 124.6, 120.3, 118.0, 56.3, 24.1. HRMS (APCI) *m/z*: [M+Na]⁺ calcd for C₁₀H₇BrClNO₂Na 309.9246; found, 309.9243.

F

ĊI

11

N

¹H NMR (600 MHz, CDCl₃)

210 200 190 180) 170 160 15	50 140 130 120 1	10 100 90 80	70 60 50 40	30 20 10 0 ppm

¹³C NMR (150 MHz, CDCl₃)

210 200 190 180 17	70 160 150 1	40 130 120	110 100	 70 60	50 40 30) 20 10 ppm

¹³C NMR (150 MHz, CDCl₃)

¹H NMR (600 MHz, CDCl₃)

210 200	190 180	170 160	150 140	130 120	110	100 9	0 80	70 6	0 50	40	30 20	10	ppm

¹³C NMR (150 MHz, CDCl₃)

H _N

10

ĊΙ

¹H NMR (500 MHz, DMSO-*d*₆)

		17

¹³C NMR (125 MHz, DMSO-*d*₆)

¹H NMR (600 MHz, DMSO-*d*₆)

¹³ C NMI	R (150	MHz, D	MSO-a	/6)												EtO	O N	H N 20	CI
		an en de mot en total			nghu ya kuyang ya kuy									 -eth-ony-original					
210	200	 190	180	170	160	150	140	130	120	110	 100	 90	 70	 50	40	30	20	 10	ppm

¹H NMR (600 MHz, DMSO-*d*₆)

N

,⊂l

`Br

¹H NMR (600 MHz, DMSO-*d*₆)

¹H NMR (600 MHz, DMSO-*d*₆)

¹³ C NM	R (150	MHz, D	MSO-a	16)														HO	O HO	HN DD 18	Br
									aleysta anna ta factora				An 1944 1944								
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

210) 200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm
nga Panan di mang Panan ang Pangah																				adaanhampay qootaan	un gathard ann a
				I					I												
																			() 24	
																		ΗO	HO		Ŭ
¹³ C N	IMR (150) MHz, C	DMSO-a	d ₆)															0	H	

	¹³ C NM	R (150	MHz, [DMSO-a	d ₆)								Ac T AcO	N 19	Br
······						 			 	 	 	 			

¹H NMR (600 MHz, DMSO-*d*₆)

26

Ac

¹H NMR (600 MHz, CDCl₃)

¹³ C NMR (150 MHz,	CDCI ₃)										Br
					(mark - 100 m)		den en e					

References

- [1] G. A. Olah and T. Keumi, Synthesis, 1979, 112.
- [2] S. J. Kulkarni, K. V. Raghavan, K. V. V. K. Mohan, N. Narender and P. Srinivasu, Synth. Commun., 2004, 34, 2143.
- [3] J. C. Rodríguez-Domínguez, A. Balbuzano-Deus, M. A. López-López and G. Kirsch, J. Heterocycl. Chem., 2007, 44, 273.