Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

A Unified Lead-Oriented Synthesis of Over Fifty Molecular Scaffolds

Richard G. Doveston, Paolo Tosatti, Mark Dow, Daniel J. Foley, Ho Yin Li, Amanda J. Campbell, David House, Ian Churcher, Stephen P. Marsden* and Adam Nelson*

Supporting Information

Contents

Supplementary data for Schemes 3 and 4. Synthesis of the 52 scaffolds, arranged by cyclisation precursor.	2-4
Comments associated with scope and limitations of the reaction toolkit.	4
Exemplar scaffold decoration.	4-5
Virtual Library Enumeration.	5-7
Lead-likeness Assessment.	7-19
Novelty Assessment.	20
Diversity Assessment.	20-21
Experimental (arranged according to Scheme S1).	22-60
References.	61
NMR spectra and HPLC traces (arranged according to Scheme S1).	62-217
	Supplementary data for Schemes 3 and 4. Synthesis of the 52 scaffolds, arranged by cyclisation precursor. Comments associated with scope and limitations of the reaction toolkit. Exemplar scaffold decoration. Virtual Library Enumeration. Lead-likeness Assessment. Novelty Assessment. Diversity Assessment. Experimental (arranged according to Scheme S1). References. NMR spectra and HPLC traces (arranged according to Scheme S1).

Scheme S1. Synthesis of the 52 scaffolds arranged by cyclisation precursor. Cyclic cyclisation precursors are also considered to be distinct scaffolds (14, 15, 22, 23).

Typical methods (see Experimental Section for full details including any deviation from typical methods):

A: Aryl bromide (1.2 eq.), 5 mol% Pd(OAc)₂, 10 mol% DPE-Phos, Cs₂CO₃ (2.5 eq.), 1,4-dioxane, 105 °C;

B: i) NsCl (1.2 eq.), NEt₃ (2.0 eq.), DMAP (0.1 eq.), rt, then TBAF (1.2 eq.), AcOH (1.2 eq.), THF, rt; ii) NIS (1.5 eq.), MeCN, 65 °C; iii) ArSH (1.5 eq.), DBU (2.5 eq.), MeCN, rt; iv) *m*CPBA (4.0 eq.), CH₂Cl₂, rt; v) PhSH (1.2 eq.), DBU (1.5 eq.), MeCN, rt;

C1: CH₂Cl₂/TFA, 0 °C \rightarrow rt, 3 h then CDI (1.5 eq.), DBU (4.0 eq.), THF, 50 °C;

C2: CDI (4.5 eq.), DMF, 110 °C;

C3: CDI (1.5 eq.), DBU (2.5 eq.), THF, 50 °C;

D1: Chloroacetyl chloride (1.5 eq.), NEt₃ (5.0 eq.), CH₂Cl₂, 0 °C \rightarrow rt, 6 h then NaH (2.0 eq.), NaI (1.0 eq.), THF, rt;

D2: i) TMSCl (1.1 eq.), NEt₃ (3.0 eq.), CH₂Cl₂, 0 °C \rightarrow rt, 2 h then bromoacetyl bromide (1.5 eq.), 2 h then20% AcOH (aq), rt; ii) 35% NaOH (aq) (5.0 eq.), Bu₄NSO₄ (0.5 eq.), CH₂Cl₂, 0 °C \rightarrow rt;

D3/E2: i) Bromoacetyl bromide (1.1 eq.), DIPEA (1.2 eq.), CH_2Cl_2 , 0°C \rightarrow rt; ii) 5 mol% Grubbs II, CH_2Cl_2 , 45 °C; iii) NaH (2.0 eq.), THF, rt;

D4: Bromoacetyl bromide (1.0 eq.), NEt₃ (1.1 eq.), CHCl₃, $-45 \text{ °C} \rightarrow \text{rt}$, 1 h then NEt₃ (72.0 eq.), rt, 16 h.

E1: 5 mol% Grubbs II, CH₂Cl₂, 45 °C;

F1: CH₂Cl₂/TFA, 0 °C \rightarrow rt, then K₂CO₃ (6.0 equiv), CH₂Cl₂, H₂O, rt;

F2: CH₂Cl₂/TFA, 0 °C \rightarrow rt, then NaOtBu (1.0 eq.), THF, reflux;

F3: H₂, 10% Pd/C (0.1 eq.), ethylenediamine (1.0 eq.), MeOH, rt, then Cs₂CO₃ (10.0 eq.), DMF, 110 °C;

TBDPS = tert-butyldiphenylsilyl; Ns = 2- or 4-nitrobenzenesulfonyl (see Experimental Section for details); DMAP = 4dimethylaminopyridine; TBAF = tetra-*n*-butylammonium fluoride; DBU = 1,8-diazabicycloundec-7-ene; *m*CPBA = *m*chloroperoxybenzoic acid; DPE-Phos = bis-[2-(diphenylphosphino)phenyl]ether; TFA = trifluoroacetic acid; CDI = carbonyl diimidazole.

S2. <u>Scope and Limitations</u>

Method A: In other studies, we found that substrates bearing a remote *o*-nitrobenzenesulfonyl (Ns) protecting group did not undergo aminoarylation as expected. For example, an allylic *o*-nitrobenzenesulfonamide underwent rearrangement to the linear alkene (Scheme S2, example A). In other cases where the group was more remote, no reaction was observed (for example, see Scheme S2, example B). The carboxybenzyl (Cbz) protecting group was widely tolerated for this transformation, although lower yields were observed in the case of Cbz-protected ureas owing to instability under the reaction conditions.

Scheme S2. Limitations of aminoarylation, Method A.

S3. Exemplar Scaffold Decoration

To confirm the validity of the library analysis, we demonstrated experimentally that *N*-deprotection and decoration reactions were viable. Furthermore we showed that scaffold decoration was possible to:

Prepare exemplar compounds from the virtual library with and without protecting groups in place (Scheme S3, S23, S24 and S26).

Prepare lead-like compounds following two decorations where scaffold synthesis involved a reaction (aminoarylation) with a potentially variable reactant (Scheme S3, S21). Such scaffolds were actually only decorated once in the enumeration of the virtual library.

 Scheme S3.
 Exemplar scaffold diversifications. Reagents and conditions - i: a) H₂, ethylene diamine (1.0 eq),10% Pd/C (20 mol%), MeOH, rt, 18 h; b), MeCHO (3.0 eq), AcOH (1.0 eq),NaBH(OAc)₃ (3.0 eq),MeOH/THF, rt, 3 h; ii: 1:3 TFA/CH₂Cl₂, rt, 18 h; iii: EtNCO (1.2 eq), NEt₃ (5.0 eq), CH₂Cl₂,0 °C→rt, 18 h; iv:a) 1:3 TFA/CH₂Cl₂,rt, 18 h; b) AcCl (1.5 eq), DIPEA (5.0 eq), CH₂Cl₂,0 °C→rt, 18 h.

S4. <u>Virtual Library Enumeration</u>

The virtual library was enumerated and manipulated using Accelrys Pipeline Pilot version 8.5 (Pipeline Pilot v8.5.0.200, Accelrys[®] Software Inc., 2011). The enumeration process is illustrated in Figure S1 and was based upon the 52 scaffolds in Scheme S1, removal of protecting groups, the manipulations shown in Scheme S4, the decorating reactions shown in Scheme S5 and the 59 capping groups shown in Figure S2. Underivatised and mono-derivatised scaffolds were retained in the final virtual library. For scaffolds whose synthesis involved a variable reactant (e.g. aminoarylation) only a single decoration was performed.

Figure S1. Overview of the process for the enumeration of the virtual library.

Scheme S4. Functional group manipulations of scaffolds (Manipulation 1) and final compounds (Manipulation 2).

Scheme S5. Decoration reactions exploited in the enumeration of the virtual library.

Figure S2. Capping reagents exploited in the enumeration of the virtual library.

S5. <u>Lead-likeness Assessment</u>

AlogP and number of heavy atoms were calculated using the tools within Pipeline Pilot. The fraction of sp³-hybridised carbon atoms (Fsp³) was calculated using Dotmatics Vortex (Vortex v2013.12.25046). The data were visualized and analysed using Vortex.

The structural filtering was performed by interrogating two sets of SMARTS definitions with each of the final compounds using the substructure search tool within Pipeline Pilot. The first set contained 240 definitions (Table S1) as compiled by Shoichet, Simeonev *et al.* and used at the NIH Chemical Genomics Centre.^[1] The second set contained 36 definitions (Table S2) and are examples from the 'GSKB' filter as described by Churcher *et al.*^[2] In addition, the structural element of the high throughput screening filter embedded in Pipeline Pilot was also used that comprised the filters for undesirable functionality outlined in Table S3.

Data from our lead-likeness assessment of both the ZINC database of compounds 'available now'^[3] and our virtual library (as summarised in Figure 1, main text) are provided in Tables S4, S5 and S6. The distribution of the molecular properties of the virtual library based upon each scaffold is shown in Figure S3.

Filter	SMARTS		
2,3,4-trihydroxyphenyl	c([OH])c([OH])c([OH])		
2,4,5-trihydroxyphenyl	c([OH])c([OH])cc([OH])		
2halo pyrazine 3EWG	[#7;R1]1[#6]([F,C1,Br,I])[#6]([\$(S(=O)(=O)),\$(C(F)(F)(F)),\$(C#N),\$(N(=O)(=O)),\$([N+](=O)[O-1),\$(C=O)])[#7][#6]]		
	[#7][#6]([\$(C+O)], \$(C+O)], \$(N(=O)(=O)), \$(N(=O)(=O)(=O)), \$(N(=O)(=O)(=O)), \$(N(=O)(=O)(=O)), \$(N(=O)(=O)(=O)), \$(N(=O)(=O)(=O)), \$(N(=O)(=O)(=O)), \$(N(=O)(=O)(=O)), \$(N(=O)(=O)(=O)(=O)), \$(N(=O)(=O)(=O)(=O)), \$(N(=O)(=O)(=O)), \$(N(=O)(=O)(=O)), \$(N(=O)(=O)(=O)), \$(N(=O)(=O)(=O)(=O)), \$(N(=O)(=O)(=O)(=O)), \$(N(=O)(=O)(=O)(=O)), \$(N(=O)(=O)(=O)(=O)(=O)(=O)(=O)(=O)(=O)(=O)		
2halo_pyrazine_5EWG	[], S(C=O)][#6; !S(c-N)]1 $[#7;R1]1[#6]([F,C1,Br,I])[#6]([$(S(=O)(=O)), $(C(F)(F)(F)), $(C#N), $(N(=O)(=O)), $([N+](=O)[O-D)]]$		
2halo_pyridazine_3EWG]),\$(C=O)])[#6][#6][#7]1		
2halo_pyridazine_5EWG	#/,N1j1[#0][(F,C1,D1,1])[#0][#0][#0][(\$(5(=0)(=0)),\$(C(F)(F)(F)),\$(C#N),\$(N(=0)(=0)),\$([N+J(=0)[0-),\$(C=0)])[#7]]		
2halo_pyridine_3EWG	[#7;R1]1[#6;!(s(c=O)]([F,C1,Br,I])[#6]([((S(c=O)(=O)),(C(F)(F)(F)),(C(#N),(N(=O)(=O)),((N+](=O)[O-1),(C=O)])[#6;!(s(c-N))][#6][#6;!(s(c-N))]1		
2halo_pyridine_5EWG	$ [\#7;R1]1[\#6;!$(c=O)]([F,Cl,Br,I])[\#6][\#6;!$(c-N)][\#6]([$(S(=O)(=O)),$(C(F)(F)(F)),$(C#N),$(N(=O)(=O)),$([N+](=O)[O-]),$(C=O)]][\#6;!$(c=O);!$(c-N)]1 } $		
2halo_pyrimidine_5EWG	[#7;R1]1[#6]([F,C1,Br,I])[#7][#6][#6]([\$(S(=O)(=O)),\$(C(F)(F)(F)),\$(C#N),\$(N(=O)(=O)),\$([N+](=O)[O-1),\$(C=O)])[#6]]		
2-Halopyridine	[F,Cl,Br]-c1n[c,n][c,n][c,n][c,n]1		
3halo_pyridazine_2EWG	[#7;R1]1[#6]([\$(S(=O)(=O)),\$(C(F)(F)(F)),\$(C#N),\$(N(=O)(=O)),\$([N+](=O)[O-1),\$(C=O)])[#6]([F,Cl,Br,I])[#6][#7]1		
3halo pyridazine 4EWG	[#7;R1]1[#6][#6]([F,C1,Br,I])[#6]([\$(S(=O)(=O)),\$(C(F)(F)(F)),\$(C#N),\$(N(=O)(=O)),\$([N+](=O)[O-1),\$(C=O)])[#6][#7]1		
4 puridono 3 5 EWC	$[\#7,\#8,\#16]1-[\#6;H]\sim [\#6]([\$(S(=O)(=O)),\$(C(F)(F)(F)),\$(C\#N),\$(N(=O)(=O)),\$([N+](=O)[O-1),\$(C=O)]), [\#6](\#S(=O)(=O)),\$(C(F)(F)(F)),\$(C\#N),\$(N(=O)(=O)),\$([N+](=O)[O-1),\$(C=O)]), [\#6](\#S(=O)(=O)),\$(C(F)(F)(F)),\$(C\#N),\$(N(=O)(=O)),\$([N+](=O)[O-1),\$(C=O)]), [\#6](\#S(=O)(=O)), \$(C(F)(F)(F)), \$(C\#N),\$(N(=O)(=O)),\$([N+](=O)[O-1), \$(C=O)]), [\#6](\#S(=O)(=O)), \$(C(F)(F)(F)), \$(C\#N),\$(N(=O)(=O)), \$(C(F)(F)(F)), \$(C\#N),\$(N(=O)(=O)), \$(C(F)(F)(F)), \$(C\#N),\$(F)(=O)(=O)), \$(C(F)(F)(F)), \$(C\#N),\ast(C\#N),\$(C\#N),\ast(C\#N),\$(C\#N),\ast(C\#N),$		
4_pyridolle_5_5_EwG	$]j,3(C=0)]j^{-}[\#0](=0)^{-}[\#0]([3(3(=0)(=0)),3(C(\Gamma)(\Gamma)(\Gamma)),3(C=W),3(U=0)(=0)),3([V+1(=0)(=0),3(U=0)),3(U=0)(=0),3(U=0)$		
4halo_pyridine_3EWG	$[n_{1}, K_{1}]_{1} = [n_{2}, k_{1}]_{1} = [n_{2}, k_{2}]_{1} = [n_{1}, k_{2}]_{1} = [n_{2}, k_{2}]_{1} = [n_{2}, k_{1}]_{1} = [n_{2}, k_{2}]_{1} = [n_{2},$		
4halo_pyrimidine_2_6EWG	[#/]1[#6]([\$(S(=O)(=O)),\$(C(F)(F)),\$(C#N),\$(N(=O)(=O)),\$([N+](=O)[O-]),\$(C=O)])[#7;R1][#6]([F,Cl,Br,I])[#6][#6]1([\$(S(=O)(=O)),\$(C(F)(F)),\$(C#N),\$(N(=O)(=O)),\$([N+](=O)[O-]),\$(C=O)])		
4halo pyrimidine 5EWG	[#7]1[#6][#7;R1][#6]([F,Cl,Br,I])[#6]([\$(S(=O)(=O)),\$(C(F)(F)(F)),\$(C#N),\$(N(=O)(=O)),\$([N+](=O)[O-1),\$(C=O)]][#6]1		
acetal	[#6]-O[CH1](-[#6])O[#6]		
acid_halide	[S,C](=[O,S])[F,Br,Cl,I]		
acrylate	[CH2]=[C;!\$(C-N);!\$(C-O)]C(=O)		
activated_4mem_ring	[#6]1~[\$(C(=O)),\$(S(=O))]~[O,S,N]~[\$(C(=O)),\$(S(=O))]1		
activated_acetylene	[\$(S(=O)(=O)),\$(C(F)(F)(F)),\$(C#N),\$(N(=O)(=O)),\$([N+](=O)[O-]),\$(C(=O))]C#[C;!\$(C-N);!\$(C-n)]		
activated_diazo	$\label{eq:rescaled} \begin{split} & [N;!R]([\$(S(=O)(=O)),\$(C(F)(F)),\$(C\#N),\$(N(=O)(=O)),\$([N+](=O)[O-]),\$(C(=O))]) \\ & [),\$(C(=O))]) = [N;!R]([\$(S(=O)(=O)),\$(C(F)(F)),\$(C\#N),\$(N(=O)(=O)),\$([N+](=O)[O-]),\$(C(=O))]) \end{split}$		
activated_S#O_3_ring	C1~[O,S]~[C,N,O,S]1[a,N,O,S]		
activated_vinyl_ester	O=COC=[\$(C(S(=O)(=O))),\$(C(C(F)(F)(F))),\$(C(C#N)),\$(C(N(=O)(=O))),\$(C([N+](=O)[O-])),\$(C(C(=O)));!\$(C(N))]		
activated vinyl sulfonate	O(-S(=O)(=O))C=[\$(C(S(=O)(=O))),\$(C(C(F)(F)(F))),\$(C(C#N)),\$(C(N(=O)(=O))),\$(C([N+](=O)[O-D)),\$(C((N+))]] = 0 = 0		
acvelic imide	[], j, j(c, (c, (-v))), , j(c, (v))] [] C c][C c][C '[B](=0)[N'B][C '[B](=0)[C c]]		
acyl 123 triazole	[#7:R111~[#7:R1]~[#7:R11(-C(=O))~[#6]~[#6]1		
acyl_134_triazole	[#7]1~[#7]~[#6]~[#7](-C(=O)!!N])~[#6]1		
acyl_activated_NO	O=C(-[!N])0[\$([#7;+]),\$(N(C=[O,S,N])(C=[O,S,N]))]		
acyl_cyanide	C(=O)-C#N		
acyl_imidazole	[C;!(C-N)](=O)[#7]1[#6;H1,([#6]([*;!R]))][#7][#6;H1,([#6]([*;!R]))][#6;H1,([#6]([*;!R]))]1		
acyl_pyrazole	[C;!(C-N)](=O)[#7]1[#7]1[#6;H1,\$([#6]([*;!R]))][#6;H1,\$([#6]([*;!R]))][#6;H1,\$([#6]([*;!R]))]1		
aldehyde			
aliphatic_chain_6	[CD2;R0][CD2;R0][CD2;R0][CD2;R0][CD2;R0]		
alkynyl_michael_acceptor1	[#0]-C#CC(=O)-[#0,#1,#8] [CH11#CC(=O)-[#6,#7,#8]		
allene	[CII]#CC(-0)-[#0,#7,#8] *-C-*		
alpha dicarbonyl			
alpha_dearbonyi	[FC] Br [\$(0(\$(=0)(=0)))]-[CH CH2' !\$(CF2)]-[N n]		
alpha halo carbonyl	C(=Q)([CH, CH2])[C Br, I; Q(S(=Q)(=Q))])		
alpha halo EWG	[\$(C(F)(F)),\$(C#N),\$(N(=Q)(=Q)),\$([N+](=Q)[Q-])]-[CH,CH2]-[CI,Br,I,\$(Q(S(=Q)(=Q)))]		
alpha_halo_heteroatom	[N,n,O,S;!\$(S(=O)(=O))]-[CH,CH2;!\$(CF2)][F,CI,Br,I,\$(O(S(=O)(=O)))]		
alpha_halo_heteroatom_tert	[N,n,O,S;!\$(S(=O)(=O))]-C([Cl,Br,I,\$(O(S(=O)(=O)))])(C)(C)		
anhydride	[((C=0)),((C=S))]-[0,S]-[((C=0)),((C=S)),((C=N;R])),((C=N(-[C;X4])))]		
aromatic_azide c	N=[N+]=[N-]		
aryl_phosphonate	P(=O)-[O;!R]-a		
aryl_thiocarbonyl	a-[S;X2;R]-[C;!R](=O)		
azide	$\frac{[0](N+[N+]-[N+]),0[(N-]-[N+]-N)]}{[0](N-1),0[(N-1)-N-1]}$		
azinume_utazinne	[U,I]]~[U,I]]~[V] [N]-[N][][N]		
azo arvl	$c[N \cdot R \cdot +] = [N \cdot R \cdot +] - c$		
azo filter1	[N:!R]=[N:!R]-[N]=[*]		
azo filter2	[N;!\$(N-S(=O)(=O));!\$(N-C=O)]-[N;!r3;!\$(N-S(=O)(=O));!\$(N-C=O)]-[N;!\$(N-S(=O)(=O));!\$(N-C=O)]		
azo_filter3	[N;!R]-[N;!R]		
azo_filter4	a-N=N-[N;H2]		

azoalkanal	[N;R0]=[N;R0]CC=O
azocyanamide	[N;R0]=[N;R0]C#N
bad_boron	[B-,BH2,BH3,\$(B(F)(F))]
bad_cations	[C+,F+,Cl+,Br+,I+,Se+]
b-carbonyl_quaternary_nitrogen	C(=0)CC[N+,n+]
benzhydrol	[UH1]-U-c1ccccc1-c2ccccc2
benzylic guaternary nitrogen	C(IN;:+])rcc(c2ccc([N;:+])cc2)cc1
beta lactam	$C_1(-0) \sim [\#_6] \sim [\#_6] \times 1$
beta_lactone	
	$C1(=0) \sim [\#6] $
betalactam_EWG]),\$(C(=O][C,c,O&D2])])
	O=[C,S]Oc1aaa([\$(S(=O)(=O)),\$(C(F)(F)(F)),\$(C#N),\$(N(=O)(=O)),\$([N+](=O)[O-D)],\$([N+](=O)(=O)(=O)],\$([N+](=O)(=O)(=O)],\$([N+](=O)(=O)(=O)],\$([N+](=O)(=O)(=O)(=O)],\$([N+](=O)(=O)(=O)(=O)(=O)(=O)(=O)(=O)(=O)(=O)
]), $C(=0)0$, $C(=0)N$])aa([$S(=0)(=0)$), $C(F)(F)(F)$), $C(=N)$, $N(=0)(=0)$, $N(=0)(=0)$.
bis_activated_aryl_ester	$]), \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
bis_keto_olefin	C(=O)[\$([C&H1]),\$(C-F),\$(C-CI),\$(C-Br),\$(C-I)]=[\$([C&H1]),\$(C-F),\$(C-CI),\$(C-Br),\$(C-I)]C(=O)C
boron_warnead	$[U, 0] \sim [\pi^2]$
carbazide	$\frac{a_1(a_2a_3(a_3a_3a_3a_3)a_3(a_4a_3a_3a_4)a_2)a_3a_3a_1}{O_{-}*N_{-}[N_{+}]_{-}[N_{-}]}$
carbodiimide isothiocyanate	$\frac{\nabla - \Lambda - [\nu \tau] - [\nu \tau]}{\nabla - [\nu \tau]}$
carbonyl halide	O=C[F,C], Br, I]
chloramidine	[C1]C([C&R0])=N
	[\$([0,S,#7:R1:r9.r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9.r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r1
	1,r12,r13,r14,r15,r16,r17,r18][0,S,#7;R1;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r
	17,r18][CH,CH2,r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][O,S,#7;R1;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18]],\$([O,S,#7;R1
	;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r16]]
	15,r16,r17,r18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][O,S,#7;R1;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,C
	H2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r14,r15,r16,r14,r14,r15,r16,r14,r14,r15,r16,r14,r14,r15,r16,r14,r14,r15,r16,r14,r14,r15,r16,r14,r14,r14,r15,r14,r14,r15,r14,r14,r14,r14,r14,r15,r14,r14,r14,r14,r14,r14,r14,r14,r14,r14
	4,r15,r16,r17,r18][0,S,#7;R1;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18]),\$([0,S,#7;R1;r9,r10,r12,r13,r14,r15,r16,r17,r18]),\$([0,S,#7;R1;r9,r10,r12,r12,r13,r14,r15,r16,r12,r12,r14,r12,r12,r13,r14,r15,r14,r12,r14,r15,r14,r12,r14,r14,r12,r14,r12,r14,r12,r14,r12,r14,r14,r12,r14,r12,r14,r12,r14,r12,r14,r12,r14,r12,r14,r12,r14,r12,r14,r12,r14,r12,r14,r12,r14,r12,r14,r14,r14,r14,r14,r14,r14,r14,r14,r14
][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][O,S,#7;R1;r9,r10,r11,r
	12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r
crown_ether	18][CH,CH2;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18][O,S,#7;R1;r9,r10,r11,r12,r13,r14,r15,r16,r17,r18])]
cyanamide	N[CH2]C#N
cyanidin	[OH]c1cc([OH])cc2=[O+]C(=C([OH])Cc21)c3cc([OH])cc([OH])cc3
cyano_phosphonate	P(O[A,a])(O[A,a])(=O)C#N
cyanohydrin	[C;X4](-[OH,NH1,NH2,SH])(-C#N)
cyanophosphonate	P(OCC)(OCC)(=O)C#N
cycloheximide	0=C1CCCC(N1)=0
cytochalasin	0=C1NCC2CCCC21
di_tri_phosphate	P(=0)([OH])OP(=0)[OH]
diamino_sulfide	[N,n]~[S;!R;D2]~[N,n]
diazo_carbonyl	[\$(N=N=C~C=O),\$(N#N-C~C=O)]
diazonium	a[N+]#N
dicarbonyl_sulfonamide	[\$(N(-C(=O))(-C(=O))(-S(=O))),\$(n([#6](=O))([#6](=O))([#16](=O)))]
dihydroxybenzene	
disulfide	SS IG UD VOL (G UD VOL
disulfide_acyclic	[5];R;X2]-[5];R;X2]
disulfonyliminoquinone	S(=0)(=0)N=CTC=CC(=NS(=0)(=0)(C=CT
double_trouble_warhead	NC(C[S]D1)C([N;H1]([0;D1]))=0
epoxide_aziridine_thioepoxide	[CH2]1[U,S,N[C]
four ritriles	
from thicl	
nee_unor	[37] [#7]#8_#1611[#61/[\$(\$(<-O)(-O))_\$([E-C1])_\$(C(E)(E)(E))_\$(C(#N)_\$(N(-O)(-O))_\$([N]_1](-O)(O)_1)_{([N]_1](([N]_1])(([N)_1])_{([N]_1](([N)_1])(([N)_1])_{([N]_1](([N)_1])(([N)_1](([N)_1])_{([N)_1](([N)_1])(([N)_1])_{([N)_1](([N)_1])(([N)_1])(([N)_1])_{([N)_1](([N)_1](([N)_1])(([N
	$[\pi, \pi_0, \pi_1 \cup] [\pi_0] [(\phi(S_1 - O_1 - O_1), \phi([1, C_1]), \phi(C_1 + (I_1 + I_1), \phi(U_1 - O_1 - O_1), \phi([1 + T_1] - O_1]O_1 - (I_1 + T_1), \phi(U_1 - O_1 - O_1), \phi([1 + T_1] - O_1]O_1 - (I_1 + T_1), \phi(U_1 - O_1 - O_1), \phi(U_1 + U_1), \phi(U_1$
halo 5heterocycle bis EWG	$) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	[\$([C:H2]) \$([C&H1:\$(C-F)]) \$([C&H1:\$(C-C)]) \$([C&H1:\$(C-Br)]) \$([C&H1:\$(C-
	$D() \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
halo acrylate	C(=O)))],\$(C(F)(C(=O))),\$(C(C))(C(=O)),\$(C(Br)(C(=O))),\$(C(1)(C(=O))),\$(C(C)(C(=O))),\$(C(c)(C(=O
halo_imino	C(=[#7])([Cl,Br,I,\$(O(S(=O)(=O)))])
	C([Cl,Br,I,\$(O(S(=O)(=O)))]) = C([\$(S(=O)(=O)),\$(C(F)(F)(F)),\$(C#N),\$(N(=O)(=O)),\$([N+](=O)[O-(N+1)])) = C([\$(S(=O)(=O)),\$([N+1)])) = C([N+1),\$([N+1)])) = C([N+1),\$([N+1)]) = C([N+1),\$([N+1)])) = C([N+1),\$([N+1),\$([N+1)])) = C([N+1),\$([N+1),\$([N+1)])) = C([N+1),\$([N+1),\$([N+1),\$([N+1)]))) = C([N+1),\$([N+1),\$([N+1),\$([N+1),\$([N+1),\$([N+1),\$(N+1)
halo_olefin_bis_EWG]), $(C=O)$])([$(S(=O)(=O)),(C(F)(F)(F)),(C#N),(N(=O)(=O)),([N+](=O)(O-]),(C=O)])$)
halo_phenolic_carbonyl	C(=O)Oc1c([Cl,F])[cH1,\$(c[F,Cl])]c([F,Cl])[cH1,\$(c[F,Cl])]c1([F,Cl])
halo_phenolic_sulfonyl	S(=O)Oc1c([Cl,F])[cH1,\$(c[F,Cl])]c([F,Cl])[cH1,\$(c[F,Cl])]c1([F,Cl])
halogen_heteroatom	[!C;lc;!H][F,Cl,Br,I]
hemiacetal	[#6]-O[CH1](-[#6])[OH1]
hetero_silyl	[Si]~[!#6]
heteroaryl_sulfonate	a-S(=O)(=O)-O-[\$([a&!#6]),\$(c[a&!#6]),\$(ccc[a&!#6]),\$(cccc[a&!#6]),\$(ccccc[a&!#6]),\$(ccccc[a&!#6]),\$(ccccc[a&!#6])]
HOBT_ester	O=C(-[!N])O[\$(nnn),\$([#7]-[#7]=[#7])]
hydrazine2	[#7]!@-N!@=C
	[N;X3;!\$(N-S(=O)(=O));!\$(N-C(F)(F)(F));!\$(N-C#N);!\$(N-C(=O));!\$(N-C(=S));!\$(N-C(=N))]-[N;X3;!s(N-C(=N))]-[N;X3;"s(N-C(=N))]-[N;X3;"s(N-C(=N))]-[
hydrazine	S(=O)(=O));!\$(N-C(F)(F)(F));!\$(N-C#N);!\$(N-C(=O));!\$(N-C(=S));!\$(N-C(=N))]
hydrazothiourea	[N;!R]=NC(=S)N
hydroxamate_warhead	C([N;H1]([O;D1]))=O

hyperval_sulfur	[\$([#16&D3]),\$([#16&D4])]=,:[#6]
Imine1	[#6;R0]C([#6;R0])=[NH1]
Imine2	[#6;R0][CH1]=[NH1]
isonitrile	[N+]#[C-]
Lawesson_reagent_derivatives	P(=S)(S)S
linear_polycyclic_aromatic_l	[\$(a 12aaaaa 1 aa 3a(aa(aaaa4)a4a3)a2), \$(a 12aaaaa 1 aa 3a(aaa4a3aaaa4)a2), \$(a 12aaaaa 1 a(aa 5)a3a(aaa4a3a5aaa4)a2)]
linear_polycyclic_aromatic_ll	$[\$(a_{2}a_{3}a_{4}a_{3}a_{4}a_{3}a_{4}a_{4}a_{4}a_{2}),\$(a_{2}a_{3}a_{4}a_{3}a_{4}a_{3}a_{4}a_{4}a_{4}a_{4}a_{4}a_{4}a_{4}a_{4$
malefinide_etc	$[\delta([C,\Pi]),\delta(C(-[\Gamma,CI,DI,I]))]I = [\delta([C,\Pi]),\delta(C(-[\Gamma,CI,DI,I]))]C(=O)[I^{(1)},O,S]C(=O)I$
neduunis_acid_ett	$ \begin{bmatrix} ([Ru]), ([Mg]), ([Rh]), ([Se]), ([Pd]), ([Sc]), ([Bi]), (([Sb]), ([Ag]), ([Ti]), ([Al]), ([Cd]), ([V]), ([In]), ([Cr]), ([Sc]), ([Sc]), ([Bi]), ([Bi]), ([Cr]), ([Cr]), ([Cr]), ([Sc]), ([Sc]), ([Cr]), ($
metal	([Ta]), ([Ca]), ([Ca]), ([Ca]), ([Ca]), ([Ca]), ([As]), ([as
michael_acceptor6	[#6,#7]-&!@[#6](=&!@[CH])-&!@C(=O)-&!@[C,N,O,S]
michael_acceptor5	N#CC(=C)C#N
michael_acceptor_misc	0=C1[0,N]C~[N,C]C1=[C,N]
michael_acceptor_misc2	*~\C=C1/CC2=CC=CC2N1
michael_acceptor_vinyl2	[CH2]=C-Cl=()-[#6,#7,#8]
misc_10_carbon_sb_chain	$[C_{2}^{(k)}, -[C_{2}^{(k)}, -[C_{$
misc_2_free_phos	$\frac{P([0;D1])=0.P([0;D1])=0}{[N_{1}\oplus V_{2}\oplus $
mise 2 sulfonic acid	$[C_{c}]S(=O)(=O)[O_{D}] [C_{c}]S(=O)(=O)[O_{D}] $
mise 3 COOH	C(=0)[0;D1],C(=0)[0;D1],C(=0)[0;D1]
misc_3_iodine	[#53].[#53].
	$[N:]^{k}(N(= N, 0, S, C])):]^{k}(N(S(=O)(=O))):]^{k}(N(C(F)(F)(F))):]^{k}(N(C\#N)):]^{k}(N(C(=O))):]^{k}(N(C(=S))):]^{k}(N(C(=N))):]^{k}(N((=N)))$
	#C));1\$(N-
	$c)].[N;!$(N(=[N,O,S,C]));!$(N(S(=O)(=O)));!$(N(C(F)(F)(F)));!$(N(C#N));!$(N(C(=O)));!$(N(C(=S)));!$(N(C(=N)));!}$(N(C(=N)));!$
	c)].[N;\\$(N(=[N,O,S,C])); \\$(N(S(=O)(=O))); \\$(N(C(F)(F)(F))); \\$(N(C#N)); \\$(N(C(=O))); \\$(N(C(=S))); \\$(N(C(=N))); \[(N(C(=N))); \(N(C(=N))); \(N
mise 4 basic N	$ c)].[N;!$(N(=[N,O,S,C]));!$(N(S(=O)(=O)));!$(N(C(F)(F)(F)));!$(N(C#N));!$(N(C(=O)));!$(N(C(=S)));!$(N(C(=N)));!}$(N(C(=N)));!$(N(C(=N)));!}$(N(C(=N)));!}$
	[\$([N+](=0)][O-]),\$(N(=0)=O)].[\$([N+](=0)[O-]),\$(N(=0)=O)].
misc_4_nitro]],3(N(=0)=0)] =(0,D)11 =(0,D)1 =(0,D)1 =(0,D)1
mise_5_phenone_OH	
mise_7_unphute_011	
	[CH2,\$(CF2);R0][CH2,\$
misc_8_CF2_or_CH2	R0][CH2,\$(CF2);R0]
monensin	01CCCCC1C2CCC02
monofluoroacetate	[C;H2](F)C(=O)[O,N,S]
nitrate	[#6]-O-[N+](=0)[O-]
nitro_aromatic	(a-[N+](=O)[O-],a-[N+](=O)[O-])
nitrona	C[N+](=0)[0-]
nitrosamine	[C,:K]=[N+][O,D1] N-[N·X2](-O)
nitroso	$[N_{P}(N, X_{2})](=0)$
NO phosphonate	P(=0)0N
ortho hydroiminoquinone	c1c([N:D1])c([N:D1])c[cH1][cH1]1
ortho_hydroquinone	a1c([O,S;D1])c([O,S;D1])a[cH1][cH1]1
ortho_nitrophenyl_carbonyl	[#6]1(-O-[C;!R](=[O,N;!R]))[#6]([\$(N(=O)(=O)),\$([N+](=O)[O-])])[#6][#6][#6][#6][#6][
ortho_quinone	[CH1,\$(C(-[Cl,Br,I]))]1=CC(=[O,N,S;!R])C(=[O,N,S])C=[CH1,\$(C(-[Cl,Br,I]))]1
oxaziridine	C1~[O,S]~N1
oxime	[\$(C=N[0;D1]);!\$(C=[N+])][#6]
oxonium	
P_S_halide	[P,S][F,Cl,Br,I]
para_hydronninoquinone	
para_nyuroquinone	$[\#611/9([-0,-]C,-\mathbb{R}])/[\#611/8([-0,N-]R]))/[\#611/#611/#61([\$(N(=O)(=O))) \$([N+1(=O)(O-1)))]/#611/#611$
para quinone	[CH1.\$(C(-[Cl.Br,I]))]=[CH1.\$(C(-[Cl.Br,I]))[C(=[O.N.S])[CH1.\$(C(-[Cl.Br,I]))]=[CH1.\$(C(-[Cl.Br,I]))][C(=[O.N.S])
paraquat_like	[#6]1[#6][[#6]([#6]2[#6][#7;+][#6][#6]2)[#6][#7;+]1
pentafluorophenylester	C(=O)Oc1c(F)c(F)c(F)c(F)c1(F)
perchloro_cp	C1(Cl)(Cl)C(Cl)=C(Cl)C1(Cl)
perhalo_dicarbonyl_phenyl	c1(C=O)c([Br,Cl,I])c([Br,Cl,I])c([Br,Cl,I])c1(C=O)
perhalo_ketone	O=CC(-[F,Cl,Br,I])(-[F,Cl,Br,I])-[F,Cl,Br,I] - 1-((F, Pa, Cl, II)-((F, Pa, Cl, II)-((F, Pa, Cl, II)-1)((F, P
pernalo_phenyl	C1C([F,Br,Cl,1])C([F,Br,Cl,1])C([F,Br,Cl,1])C([F,Br,Cl,1])C1([F,Br,Cl,1])
	$\frac{[\#\sigma]^{-}[\#\sigma]}{(\pi^{-})^{-}[\pi^{-}]^{-}[\pi^{$
	(1)(-0)(-0)(-0)(-0)(-0)(-0)(-0)(-0)(-0)(-0
phenolate_bis_EWG]),\$(C(=O)O),\$(C(=O)N)]]1
phos_serine_warhead	NC(COP(O)(O)=O)C(O)=O
phos_threonine_warhead	NC(C(C)OP(O)(O)=O)C(O)=O
phos_tyrosine_warhead	NC(Cc1ccc(OP(O)(O)=O)cc1)C(O)=O

phosphite	[c,C]-[P;v3]
phosphonate esters	COP(=O)(=O)[C,c]
phosphonium	[#15++]~[0]
phosphoramide	
phosphoranide	
pnosphorane	C=P
phosphorous_nitrogen_bond	[#15]~[N,n]
phosphorus_phosphorus_bond	P~P
phosphorus sulfur bond	P~S
polyacidic4	[C S P](=O)[OH][C S P](=O)[OH][C S P](=O)[OH]
polyaciane	
poryazoantinacene	
polyazophenanthrene	c12:[c,n]:[c
polyene	C=[C;!R][C;!R]=[C;!R][C;!R]=[C;!R]
polyhalo_phenol_a	c1c([O;D1])c(-[Cl,Br,I])c(-[Cl,Br,I])cc1.c1c([O;D1])c(-[Cl,Br,I])c(-[Cl,Br,I])cc1
polyhalo phenol b	c1c([O;D1])c(-[Cl,Br,I])c(-[Cl,Br,I])c1.c1c([O;D1])c(-[Cl,Br,I])cc(-[Cl,Br,I])c1
polyhalo phenol c	c1c([O:D1])ccc(-[C] Br [D)(-[C] Br [D) + c1c([O:D1])ccc(-[C] Br [D)(-[C] Br [D)])
polyhalo_phenol_d	of (CI Br II) of
polynalo_pnenol_e	c1c([O;D1])ccc(-[CI,Br,I])c(-[CI,Br,I])1.c1c([O;D1])ccc(-[CI,Br,I])c(-[CI,Br,I])1
polysulfide	[S;D2]-[S;D2]-[S;D2]
porphyrin	[#6;r16,r17,r18]~[#6]1~[#6]~[#6]~[#6](~[#6])~[#7]1
primary_halide_sulfate	[CH2][Cl,Br,I,\$(O(S(=O)(=O)[!\$(N);!\$([O&D1])]))]
propiolactone	
guat N acyl	
quat_IN_IN	[N,n;K;+]:@[N,n]
quaternary_C_Cl_I_P_S	[C+,Cl+,I+,P+,S+]
quaternary_nitroxy	C[N+](-[O-])(C)C
	[#6;!\$([#6](-[N,O,S]))]1=[#6;!\$([#6](-[N,O,S]))][#6](=[#6])[#6;!\$([#6](-[N,O,S]))]=[#6;!\$([#6](-
quinone methide	[N,O,S]))][#6]1(=[O,N,S])
rhodanine	C(=C) $SC(=S)$ $SC(=O)$ 1
sacandary halida sulfata	$C(\mathbf{L}_{\mathbf{k}}) = (\mathbf{L}_{\mathbf{k}}) + (\mathbf{L}_{\mathbf{k}$
secondary_nande_sunate	[CH,:3(C-C)][C,D],i,5(C(S(-C)(-C)[:5(14),:3([C&D1])]))]
squalestatin	
sulf_D2_nitrogen	[S;D2](-[N;!\$(N(=C));!\$(N(-S(=O)(=O)));!\$(N(-C(=O)))])
sulf_D2_oxygen_D2	[S;D2][O;D2]
sulf D3 nitrogen	[S:D3](-N)(-[c,C])(-[c,C])
sulfite sulfate ester	
sulfonate	
sulfonium	
sulfonyl_anhydride	[\$(C(=O)),\$(S(=O)(=O))][O,S](S(=O)(=O))
sulfonyl_halide	S(=O)(=O)[F,Cl,Br,I]
sulfonyl_heteroatom	[!!!6]!!!1]!!!11!!!19]O(S(=O)(=O)(-[C,c]))
sulphonyl cyanide	S(=0)(=0)C#N
tertiary balide sulfate	$[C:X_1/[C] B_F I \S(O(S(-O)(-O)[!\S(N)\cdot!\S(IO \& D1]))))/[C] C])/[C] C])/[C] C])$
this hydroxemate	$[c, x_1](-[c_1, y_1, y_2](0, 0] - 0)(-0)[-y_1(x_1, y_2](0, 0) - 0)]$
thio_nydroxaniate	[S, D2]([(\$(N(=C), \$(N(=C))(=O))), \$(N(=C(=O)))])
thio_xanthate	[\$;K]-[C;K](=[\$;K])(-[\$;K])
thioamide	[#6]C([#7H2])=S
thiocarbonate	SC(=O)[O,S]
thiocyanate	SC#N
thioester	[S'R'H0]C(=[S O'R])(['O'!S'!N])
thicketone	
thicketone	
thioi_warnead	NC(C[S;D])C(O)=0
thiopyrylium	c1[S,s;+]cccc1
thiosulfoxide	[C,c][S;X3](~O)-S
thiourea	C([#7H2])([#7H2])=S
tri_phosphoric_esters	([#6]OP(=O)(-*)O[#6].[#6]OP(=O)(-*)O[#6].[#6]OP(=O)(-*)O[#6])
triacyloxime	C(=0)N(C(=0))OC(=0)
triamida	$[\xi(N), (0)), (0)), (0)), (0)), (+-6)(0)), (+-6)(0))]$
triamide	$\begin{bmatrix} y_1(1 - C_1 - O_1) - C_1 - O_1) + y_1(1 - O_1) $
tharyi_phosphille_oxide	
trichloromethyl_ketone	[\$(C(=O));!\$(C-N);!\$(C-O);!\$(C-S)]C(CI)(CI)
triflate	OS(=O)(=O)(C(F)(F)(F))
trifluoroacetate_ester	C(F)(F)(F)C(=O)O
trifluoroacetate_thioester	C(F)(F)(F)C(=O)S
trifluoromethyl ketone	[\$(C(=O));!\$(C-N);!\$(C-O);!\$(C-S)]C(F)(F)(F)
tribalovinyl beteroatom	C([C] Br II)(-[C] Br II) - C([C] Br II)(-[N O S])
trinaiovinyi_neteroatom	$\frac{C([c_1, D_1, j_1])}{[c_1, D_1, j_1] = C([c_1, D_1, j_1])} = \frac{C([c_1, D_1, j_1])}{[c_1, D_2, j_1]} = \frac{C([c_1, D_1, j_1])}{[c_1, D_1, j_1] = C([c_1, D_1, j_1])} = \frac{C([c_1, D_1, j_1])}{[c_1, D_1, j_1] = C([c_1, D_1, j_1])} = \frac{C([c_1, D_1, j_1])}{[c_1, D_1, j_1] = C([c_1, D_1, j_1])} = \frac{C([c_1, D_1, j_1])}{[c_1, D_1, j_1] = C([c_1, D_1, j_1])} = \frac{C([c_1, D_1, j_1])}{[c_1, D_1, j_1] = C([c_1, D_1, j_1])} = \frac{C([c_1, D_1, j_1])}{[c_1, D_1, j_1] = C([c_1, D_1, j_1])} = \frac{C([c_1, D_1, j_1])}{[c_1, D_1, j_1] = C([c_1, D_1, j_1])} = \frac{C([c_1, D_1, j_1])}{[c_1, D_1, j_1] = C([c_1, D_1, j_1])} = \frac{C([c_1, D_1, j_1])}{[c_1, D_1, j_1] = C([c_1, D_1, j_1])} = \frac{C([c_1, D_1, j_1])}{[c_1, D_1, j_1] = C([c_1, D_1, j_1])} = \frac{C([c_1, D_1, j_1])}{[c_1, D_1, j_1] = C([c_1, D_1, j_1])} = \frac{C([c_1, D_1, j_1])}{[c_1, D_1, j_1] = C([c_1, D_1, j_1])} = \frac{C([c_1, D_1, j_1])}{[c_1, D_1, j_1] = C([c_1, D_1, j_1])} = \frac{C([c_1, D_1, j_1])}{[c_1, D_1, j_1] = C([c_1, D_1, j_1])} = \frac{C([c_1, D_1, j_1])}{[c_1, D_1, j_1] = C([c_1, D_1, j_1])} = \frac{C([c_1, D_1, j_1])}{[c_1, D_1, j_1] = C([c_1, D_1, j_1])} = \frac{C([c_1, D_1, j_1])}{[c_1, D_1, j_1] = C([c_1, D_1, j_1])} = \frac{C([c_1, D_1, j_1])}{[c_1, D_1, j_1] = C([c_1, D_1, j_1])} = \frac{C([c_1, D_1, j_1])}{[c_1, D_1, j_1] = C([c_1, D_1, j_1])} = \frac{C([c_1, D_1, j_1])}{[c_1, D_1, j_1] = C([c_1, D_1, j_1])} = \frac{C([c_1, D_1, j_1])}{[c_1, D_1, j_1]} = C($
	$[\phi(1)dad([\phi(N-O)(-O)),\phi([N+](-O)(O-]))]d([\phi(N-O)(-O)),\phi([N+](-O)(O-]))]d([\phi(N-O)(-O)),\phi([N+](-O)(O-]))]d([\phi(N-O)(-O)),\phi([N+](-O)(O-]))]d([\phi(N-O)(-O)),\phi([N+](-O)(O-]))]d([\phi(N-O)(-O)),\phi([N+](-O)(O-])))d([\phi(N-O)(-O)),\phi([N+](-O)(O-])))d([\phi(N-O)(-O)),\phi([N+](-O)(O-])))d([\phi(N-O)(-O)),\phi([N+](-O)(O-])))d([\phi(N-O)(-O)),\phi([N+](-O)(O-])))d([\phi(N-O)(-O)),\phi([N+](-O)(O-])))d([\phi(N-O)(-O)),\phi([N+](-O)(O-])))d([\phi(N-O)(-O)),\phi([N+](-O)(O-])))d([\phi(N-O)(-O)),\phi([N+](-O)(O-])))d([\phi(N-O)(-O)),\phi([N+](-O)(O-])))d([\phi(N-O)(-O)),\phi([N+](-O)(O-])))d([\phi(N-O)(-O)),\phi([N+](-O)(-O)))d([\phi(N-O)(-O)),\phi([N+](-O)(-O)))d([\phi(N-O)(-O)),\phi([N+](-O)(-O)))d([\phi(N-O)(-O)))d([\phi(N-O)(-O)),\phi([N+](-O)(-O)))d([\phi(N-O)(-O)),\phi([N+](-O)(-O)))d([\phi(N-O)(-O)),\phi([N+](-O)(-O)))d([\phi(N-O)(-O)(-O)))d([\phi(N-O)(-O)(-O)))d([\phi(N-O)(-O)(-O)))d([\phi(N-O)(-O)(-O)))d([\phi(N-O)(-O)(-O)))d([\phi(N-O)(-O)(-O)))d([\phi(N-O)(-O)(-O)))d([\phi(N-O)(-O)(-O)))d([\phi(N-O)(-O)(-O)))d([\phi(N-O)(-O)(-O)(-O)))d([\phi(N-O)(-O)(-O)(-O)))d([\phi(N-O)(-O)(-O)(-O)(-O)))d([\phi(N-O)(-O)(-O)(-O)(-O)))d([\phi(N-O)(-O)(-O)(-O)(-O)(-O)(-O)(-O)))d([\phi(N-O)(-O)(-O)(-O)(-O)(-O)(-O)))d([\phi(N-O)(-O)(-O)(-O)(-O)(-O)(-O)(-O)))d([\phi(N-O)(-O)(-O)(-O)(-O)(-O)(-O)(-O)))d([\phi(N-O)(-O)(-O)(-O)(-O)(-O)(-O)(-O)(-O)(-O)))d([\phi(N-O)(-O)(-O)(-O)(-O)(-O)(-O)(-O)(-O)(-O)($
	[])]), s(a1aa([s(N(=O)(=O)), s([N+](=O)(O-])))a([s(N(=O)(=O)), s([N+](=O)(O-])))aa([s(N(=O)(=O)), s([N+](=O)(O-])))aa([s(N(=O)(=O)(=O))))aa([s(N(=O)(=O)(=O))))aa([s(N(=O)(=O)(=O))))aa([s(N(=O)(=O)(=O))))aa([s(N(=O)(=O)(=O))))aa([s(N(=O)(=O)(=O))))aa([s(N(=O)(=O)(=O))))aa([s(N(=O)(=O)(=O)))aa([s(N(=O)(=O)(=O)))aa([s(N(=O)(=O)(=O)))aa([s(N(=O)(=O)(=O))))aa([s(N(=O)(=O)(=O)))aa([s(N(=O)(=O)(=O)))aa([s(N(=O)(=O)(=O)))aa([s(N(=O)(=O)(=O)(=O)))aa([s(N(=O)(=O)(=O)(=O)))aa([s(N(=O)(=O)(=O)(=O)))aa([s(N(=O)(=O)(=O)(=O)(=O)))aa([s(N(=O)(=O)(=O)(=O)(=O)(=O)))aa([s(N(=O)(=O)(=O)(=O)(=O)))aa([s(N(=O)(=O)(=O)(=O)))aa([s(N(=O)(=O)(=O)(=O)(=O)))aa([s(N(=O)(=O)(=O)(=O)))aa([s(N(=O)(=O)(=O)(=O)(=O)))aa([s(N(=O)(=O)(=O)(=O)(=O)(=O)))aa([s(N(=O)(=O)(=O)(=O)(=O)(=O)(=O)))aa([s(N(=O)(=O)(=O)(=O)(=O)(=O)(=O)))aa([s(N(=O)(=O)(=O)(=O)(=O)(=O)(=O)(=O)))aa([s(N(=O)(=O)(=O)(=O)(=O)(=O)(=O)(=O)(=O)(=O)
	$])])), \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
trinitro_aromatic	
trinitromethane_derivative	C([\$([N+](=O)[O-]),\$(N(=O)=O)])([\$([N+](=O)[O-]),\$(N(=O)=O)])([\$([N+](=O)[O-]),\$(N(=O)=O)])
	[\$(O=[C,S]Oc1a([\$(S(=O)(=O)),F,\$(C(F)(F)),\$(C#N),\$(N(=O)(=O)),\$([N+](=O)[O-
	1) $(C(=0)0) (C(=0)N))a(((((((=0))(=0)))) F ((C(F)(F))F)) (C(\#N)) (N(=0)(=0))) (((N+1)(=0)(0-1))) ((((N+1)(=0)(0-1)))) ((((N+1)(=0)(0-1)))) ((((N+1)(=0)(0-1)))) ((((N+1)(=0)(0-1)))) (((((N+1)(=0)(0-1))))) (((((((((((((((((((((((((((((((($
	$1) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
	$ \int S(C(-O)O) S(C(-O)O) D(a) S(O-(C S)O-(a)(S(C(-O)(-O)) F S(C(F)(F)(F)) S(C(F)(-O)(-O)) S(D) (a) (a) (b) (b) (a) (b)$
	$\int \frac{\partial f(x)}{\partial x} = \int \frac{\partial f(x)}{\partial x} \int $
	$\int \phi(C_{-} - O_{-}) \phi(C_{-} - O_{-}) \phi(D_{-} - O_{-}) \phi($
this activated and	$\int_{\mathcal{A}} \frac{\partial f(x)}{\partial x} = \int_{\mathcal{A}} \frac{\partial f(x)}{\partial x} \int_{\mathcal{A}} \frac{\partial f(x)}{\partial x} = \int_{\mathcal{A}} \frac{\partial f(x)}{\partial x} $
uis_acuvateu_aryi_ester	」

]), (C(=0)O), (C(=O)N)]) aa([(S(=O)(=O)), F, (C(F)(F)), (C#N), (N(=O)(=O)), ([N+](=O)[O-D)), ((N+)(=O)(O-D)), ((N+)(O-D)), ((N+)(O-D)), ((N+)(O-D)), ((N+)(O-D)), ((N+)(O-D)), ((N+)(O-D))), ((N+)(O-D)), ((N+)(O-D))), ((N+)(O-D)), ((N+)(O-D))), ((N+)(O-D))), ((N+)(O-D)), ((N+)(O-D))), ((N+)(O-D)))), ((N+)(O-D)))), ((N+)(O-D)))))))))))))))))))))))))))))))))))
]), (C(=O)O), (C(=O)N)])a([(S(=O)(=O)), F, (C(F)(F)(F)), (C#N), (N(=O)(=O)), ([N+](=O)[O-D)), ([N+]((O-D)[O-D)), ([N+]((O-D)[O-D))), ([N+]((O-D)[O
]), (C(=O)O), (C(=O)N)]) a 1), (O=[C,S]Oc1a([\$(S(=O)(=O)),F,\$(C(F)(F)(F)),\$(C#N),\$(N(=O)(=O)),\$([N+](=O)[O-O(F)(F)(F)),\$(C+N),\$(N(=O)(=O)),\$([N+](=O)[O-O(F)(F)(F)),\$(C+N),\$(N(=O)(=O)),\$([N+](=O)[O-O(F)(F)(F)),\$(C+N),\$(N(=O)(=O)),\$([N+](=O)[O-O(F)(F)(F)),\$(C+N),\$(N(=O)(=O)),\$([N+](=O)[O-O(F)(F)(F)(F)),\$(C+N),\$(N(=O)(=O)),\$([N+](=O)[O-O(F)(F)(F)(F)(F)),\$(C+N),\$(N(=O)(=O)),\$([N+](=O)[O-O(F)(F)(F)(F)(F)(F)(F)(F)(F)(F)(F)(F)(F)(
]), $(C(=O)O), (C(=O)N)$])aa([$(S(=O)(=O)), F, (C(F)(F)(F)), (C\#N), (N(=O)(=O)), ([N+](=O)[O-D)), ([N+]((O-D))), ([$
]), $(C(=O)O), (C(=O)N)$])aa([$(S(=O)(=O)), F, (C(F)(F)(F)), (C\#N), (N(=O)(=O)), ([N+](=O)[O-D)), ([N+]((O-D))), ([$
]),\$(C(=O)O),\$(C(=O)N)])1)]
	[[CH;!R];!(C-N)] = C([((S(=0)(=0)), (C(F)(F)(F)), (C#N), (N(=0)(=0)), ([N+](=0)[O-N](N+1)])))
trisub_bis_act_olefin]), (C(=O))])([(S(S=O)(=O)), (C(F)(F)(F)), (C#N), (N(=O)(=O)), ([N+](=O)[O-]), (C(=O))]))))))))))))))))))))))))))))))))))
unacceptable_atoms1	[!#6;!#7;!#8;!#16;!#1;!#3;!#9;!#11;!#12;!#15;!#17;!#19;!#20;!#35]
unacceptable_atoms2	[!#6;!#7;!#8;!#16;!#1;!#3;!#9;!#11;!#12;!#15;!#17;!#19;!#20;!#35;!#53]
	[C;!R]([\$(S(=O)(=O)),\$(C(F)(F)),\$(C#N),\$(N(=O)(=O)),\$([N+](=O)[O-(N+1)])))
]), $(C=O)$])([$(S(=O)(=O)), (C(F)(F)), (C#N), (N(=O)(=O)), ([N+](=O)[O-D)), ([N+](=O)(=O)), ([N+](=O)[O-D)), ([N+](=O)(=O)), ([N+](=O)(=O)(=O)), ([N+](=O)(=O)), ([N+](=O)(=O)), ([N+](=O)(=O$
vinyl_carbonyl_EWG]), $(C=O)$]=[C;!R]([C;!R](=O))([!\$([#8]);!\$([#7])])
vinyl_sulfone	O=S([#6]=[#6])([#6]=[#6])=O
vinyloxazole	[N,C]=CC1=COC=N1
2,3,4-trihydroxyphenyl	c([OH])c([OH])c([OH])

 Table S1. Undesirable functionality SMARTS definitions utilised by the NIH.^[1]

Filter	SMARTS
thiocarbonyl	[c,C]=[S;X1]
termalkyne	[CH]#C
quinonepara	O=[#6]1[#6]~[#6][#6](=O)[#6]~[#6]1
nonpeptidic_macrocycl	[!R0!r3!r4!r5!r6!r7!r8!\$([N;!H0,\$(N1[CH2][CH2][CH2][CH1]1)][CH]C=0)!\$([CH]([N;!H0,\$(N1[CH2][CH2][CH1]1)])C=
е	O)!\$(C(=O)[CH][N;!H0,\$(N1[CH2][CH2][CH1]1)])]
nitrogen_oxygen_bond	*-[n,N]-[O;H0;R0]
methyl_ester_x2	[\$([CH3]OC=O)].[\$([CH3]OC=O)]
imide	O=C([#6])NC(=O)[#6]
exocyclic_double_bond	
_toC	[R;#7,#8,#16,#6X3][R]=!@C
ethyl_ester_x2	[\$([CH2](OC=O)[CH3])][CH3].[\$([CH2](OC=O)[CH3])][CH3]
ester_deep_in_mol	*[#6]C(=O)[O;R0][#6;\$(*(OC=O)**),\$(*(OC=O)(*)*)]
enolether	C=!@C[OD2]
conjugated_C=C	C=[C;R0][C;R0]=C
benzyl_ester	[\$([CH2](OC=O)c1[cH][cH][cH][cH]]cH][cH][cH][cH][cH][cH]
aromatic_tricyclic1	c1ccc3c(c1)[C;!\$(C=O)]c2cccc23
allyl_ester	[\$([CH2](OC=O)[CH]=[CH2])][CH]=[CH2]
alkylNandNonC	N[CX4]!@N
alkCl	[C][Cl!\$(ClC(Cl)(Cl))]
alkBr	CBr
acyclic_sulphur_micha	
el_acceptor	[C!\$(*[Nv3X3])]=!@[C!\$(*[Nv3X3])][S!\$(*[Nv3X3])]=O
acyclic_imine	[C!\$(*(=N)[N,n])]=!@[Nv3!\$(*O)]
acyclic_hydrazine	[Nv3X3!\$(*(C=O)NC=O)]-!@[Nv3X3!\$(*(C=O)NC=O)]
acetyl_x2	[CH3]C(=O)O.[CH3]C(=O)O
acetal	[OX2;\$(OC[OX2])][C;\$(C1(O)CNCCO1);\$(C1(O)(CO)OC(CO)C(O)C10);\$(C1(O)OC(CO)C(O)C(O)C10)][OX2][!a]
OCO_protecting_group	[O;R0][C;X4][O;R0]
N-SO_group	N[S;!\$(S(=O)(=O))]=O
C=N=O_gp	C=N=O
C(=O)CC(=O)_gp	[c,C]C(=O)[C!H0!R]C(=O)[C,c]
4_fused_ring_sys	[R2][R2][R2][R2][R2]
C#C	C#C.C#C
C#C-c_gp	cC#[C!H1]
3_mem_ring_with_het	[S,O,N;r3]
acylcarbamate	0=[S,C]NC(=0)0
anyNO	[Nv3,n]=O
phenol_x2	[OH][c;\$(c1ccccc1)].[OH][c;\$(c1ccccc1)]
formamide	[#7;!\$(N[OH])][CH1]=O
benzyl_halide	[CX4](a)[F,Cl,Br,I;!\$(FC(F)F)]

 Table S2. Undesirable functionality SMARTS definitions that comprise the 'GSKB' filter.^[2]

Filter			
Acyl halide	Disulfide		
Aldehyde	Hydrazine (terminal)		
Alkyl halide	Isocyanate		
Anhydride	Isothiocyanate		
Diazo	Peroxide		
Dicarbonyl	Quaternary ammonium		

Table S3. Undesirable functionality filters used in the 'HTS Filter' embedded in Pipeline Pilot.

	ZINC Database (9046036)		Random 1% of ZINC Database (90911)		Virtual Library (19530)	
Filter	Successive Filtering	Parallel Filtering	Successive Filtering	Parallel Filtering	Successive Filtering	Parallel Filtering
Fail 14 ≤ nHA ≤ 26	4395739	4395739 (48%)	43971	43971 (48%)	5104	5104 (26%)
Fail −1 ≤ AlogP ≤ 3	1768807	4478982 (49%)	17828	44746 (49%)	2905	3643 (19%)
Fail Structural	819652	2805505 (31%)	8180	28147 (31%)	53	74 (0.4%)
Pass All	2061838 (23%)	n/a	20932 (23%)	n/a	11468 (59%)	n/a

 Table S4. Lead-likeness assessment data. The data shown in Figure 1, Panels A and B (main text) was obtained by successive filtering by the number of heavy atoms, lipophilicity and structural filters. For comparison, data obtained from parallel filtering of all compounds using each filter in isolation is also shown.

Scaffold	Scaffold Number of Final Number of Lead-like		% Lead-like Compounds	
Scanola	Compounds	Compounds	70 Head-like Compounds	
14	684	471	69	
15	1692	817	48	
22	336	224	67	
23	642	493	77	
24	75	31	41	
25	67	45	67	
26	90	68	76	
27	51	20	39	
28	43	27	63	
29	2094	1547	74	
30	684	396	58	
31	684	372	54	
32	306	214	70	
33	1692	366	22	
34	306	121	40	
35	1156	992	86	
36	1156	1004	87	
37	1143	558	49	
38	90	79	88	
39	43	32	74	
40	34	10	29	
41	67	20	30	
42	34	10	29	
43	34	14	41	
43	150	121	81	
45	10	6	60	
45	10	8	80	
40	34	33	97	
47	34	27	80	
50	340	75	22	
51	340	75	22	
52	340	14	41	
52	10	14	41	
55 S1	24	10	56	
S1 S2	24	19	56	
<u>52</u> S2	34	19	15	
<u> </u>	42	28	15	
<u>54</u> 85	43	28	03	
<u> </u>	67	19	28	
50	67	29	43	
57	45	2	5	
50	45	21	03	
<u>59</u>	67	5	/	
510	67	4/	/0	
511	10	0	60	
<u>812</u>	1156	941	81	
813	10	<u>b</u>	60	
<u> </u>	1156	1034	89	
<u>815</u>	34	32	94	
<u>\$16</u>	684	396	58	
<u>\$17</u>	1692	447	26	
S18	90	81	90	

Table S5. Number of final compounds derived from each scaffold, together with the number and percentange of compounds that are lead-like
 (i.e. pass all filters).

ALogP

Num_Atoms

17

ALogP

Num_Atoms

Figure S3. Distribution of number of heavy atoms (Num_Atoms) and AlogP for the virtual library based upon each scaffold. The scaffolds shown have undergone virtual deprotection and manipulation 1 in each case; R = H or OH (see Scheme S4 for manipulations after decoration). Compounds that survive successive filtering are shown in green. Compounds that fail successive filtering by number of heavy atoms (red), AlogP (orange) and structural features (purple) are shown as appropriate.

Scaffold or Library	Mean Fsp ³	Scaffold or Library	Mean Fsp ³
ZINC (random 1%, 90911)	0.33	45	0.46
Virtual Library (19530)	0.58	46	0.5
14	0.71	47	0.56
15	0.68	48	0.48
22	0.78	49	0.53
23	0.76	50	0.42
24	0.57	51	0.42
25	0.6	52	0.51
26	0.51	53	0.52
27	0.59	S1	0.54
28	0.59	S2	0.51
29	0.63	S3	0.49
30	0.58	S4	0.51
31	0.61	S5	0.46
32	0.68	S6	0.51
33	0.62	S7	0.58
34	0.7	S8	0.62
35	0.47	S9	0.56
36	0.47	S10	0.57
37	0.56	S11	0.46
38	0.69	S12	0.5
39	0.48	S13	0.4
40	0.46	S14	0.4
41	0.54	S15	0.53
42	0.57	S16	0.58
43	0.54	S17	0.6
44	0.58	S18	0.66

Table S6. Fsp³ data illustrated in Figure 1, Panel C (main text).

S6. <u>Novelty Assessment</u>

For the purposes of the novelty assessment scaffolds were virtually deprotected but did not undergo manipulation 1. In each case, a substructure search was performed against the ZINC database (9046036). Scaffolds that returned substructure hits in either database were searched for in the CAS registry. None of these scaffolds were known.

Scoffold	ZINC	Souffold	ZINC
Scalloid	Substructure Hits	Scallolu	Substructure Hits
14	0	46	0
15	14	47	2
22	0	48	0
23	0	49	0
24	0	50	0
25	0	51	0
26	0	52	0
27	0	53	0
28	0	S1	0
29	0	S2	0
30	0	S 3	0
31	0	S4	0
32	0	S5	0
33	0	S6	0
34	0	S7	0
35	2698	S8	0
36	10	S9	0
37	0	S10	0
38	0	S11	0
39	0	S12	1670
40	0	S13	0
41	0	S14	1364
42	0	S15	970
43	0	S16	0
44	0	S17	9
45	770	S18	0

Table S7. Novelty assessment data.

S7. <u>Scaffold Diversity Assessment</u>

The hierarchical framework analysis applied the 'scaffold tree' approach described by Schuffenhauer and co-workers.^[4] The results are summarized in Figure S4 and the frameworks illustrated in Scheme S5. 42 frameworks were represented at the graph-node-bond level, ultimately related to 13 parental frameworks.

Figure S4. Hierarchical relationship between the 42 distinct molecular frameworks at the graph-node-bond level (black) and the 13 parental frameworks (blue). Daughter frameworks are shown in red and green. The scaffolds based on each graph-node-bond-level framework are indicated.

Figure S5. The 42 distinct molecular frameworks at the graph-node-bond level (black) and the 13 parental frameworks (blue). Daughter frameworks are shown in red and green. The scaffolds which represent each framework are indicated. See Figure S4 for the relationship between scaffolds at each level of hierarchy.

S8. <u>Experimental</u>

General Experimental

All non-aqueous reactions were performed under an atmosphere of nitrogen unless otherwise stated. Water-sensitive reactions were performed in oven-dried glassware, cooled under nitrogen before use. Solvents were removed *in vacuo* using a Büchi rotary evaporator and a Vacuubrand PC2001 Vario diaphragm pump. A Genevac HT-4X or EZ-2 Elite centrifugal evaporator was used for the removal of DMSO where stated. Tetrahydrofuran (THF), CH₂Cl₂, toluene and CH₃CN were dried and purified by means of a Pure Solv MD solvent purification system (Innovative Technology Inc.). Anhydrous *N*,*N*-dimethylformamide (DMF) and 1,4-dioxane was obtained in SureSeal bottles from Sigma-Aldrich. All other solvents used were of chromatography or analytical grade. Petrol refers to petroleum spirit (b.p. 40-60 °C). Commercially available starting materials were obtained from Sigma-Aldrich, Fluka, Acros or Alfa-Aesar and were used without purification unless stated.

Thin layer chromatography (TLC) was carried out on aluminium backed silica (Merck silica gel 60 F_{254}) plates supplied by Merck. Visualisation of the plates was achieved using an ultraviolet lamp ($\lambda_{max} = 254$ nm), KMnO₄, anisaldehyde or ninhydrin. LCMS analysis was generally carried out on an Agilent 1200 series LC system comprising a Bruker HCT Ultra ion trap mass spectrometer. The solvent system used was CH₃CN/H₂O + 0.1% formic acid with a Phenomenex Luna C18 50 × 2 mm 5 micron column.

Flash chromatography was carried out using silica gel 60 (60-63 µm particles) supplied by Merck or using Biotage silica or ISOLUTE C₁₈ pre-packed cartridges on a Flashmaster II or CombiFlash Companion. Strong cation exchange solid phase extraction (SCX-SPE) was carried out using pre-packed Discovery DSC-SCX cartridges supplied by Supleco. Mass-directed HPLC purification was carried out using an Agilent 1260 Infinity HPLC system comprising an Agilent 6120 Quadrupole LC/MS and Agilent G1968D active splitter.

Optical rotation measurements were carried out at the sodium D-line (589 nm) on a Schmidt and Haensch H532 or an Optical Activity AA-1000 polarimeter instrument; concentrations are g/100 mL, temperatures given in °C, optical rotations are given in 10^{-1} degcm²g⁻¹ (units are omitted). Infrared spectra were recorded on a Perkin-Elmer One FT-IR spectrometer with absorption reported in wavenumbers (cm⁻¹). Chiral HPLC was carried out on either an Agilent 1100 or an Agilent Infinity 1290 series HPLC system. Racemic standards were obtained by preparing samples of both enantiomers and then combining in an approx. 1:1 ratio.

High resolution mass spectra (HRMS) were recorded on a Bruker Daltonics micrOTOF or Bruker MaXis Impact spectrometer with electrospray ionisation (ESI) source. Where EI ionisation was required, a Waters/Micromass GCT Premier spectrometer was used.

Proton (¹H) and carbon (¹³C) NMR spectral data were collected on a Bruker Advance 400, 500 or 600, Bruker DPX500 or DPX300 spectrometers. Chemical shifts (δ) are quoted in parts per million (ppm) and referenced to the residual solvent peak. Coupling constants (*J*) are quoted in Hertz (Hz) and splitting patterns reported in an abbreviated manner: app. (apparent), s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). Assignments were made with the aid of COSY, DEPT-135, HMQC, HMBC and NOESY experiments.

Preparation of Allylic Carbonates

2-({[(3E)-5-[(Methoxycarbonyl)oxy]pent-3-en-1-yl]carbamoyl}oxy)-2-methylpropane S23

BocHN OCO₂Me

Pyridine (9.90 mL, 122 mmol) and methyl chloroformate (9.40 mL, 122 mmol) were added to a solution of (*E*)-tert-butyl(5-hydroxypent-3-en-1-yl)carbamate^[5] (22.3 g, 110 mmol) in CH₂Cl₂ (220 mL) at 0 °C (ice). The reaction mixture was allowed to warm to room temperature and stirred for 2 d before being quenched by the addition of saturated aqueous NH₄Cl (200 mL). The phases were separated and the aqueous phase extracted with CH₂Cl₂ (2 × 100 mL). The combined organic phase was washed with water (250 mL) and brine (250 mL), dried (MgSO₄), filtered and concentrated *in vacuo*. The crude product was purified by flash column chromatography, eluting with 7:3 petrol–EtOAc to furnish the title compound **S23** (20.18 g, 70%) as a colourless oil, $R_f 0.17$ (4:1 petrol–EtOAc); δ_H (500 MHz, CDCl₃) 5.75 (1 H, dt, *J* 15.1, 6.8, 3-H), 5.65 (1 H, dt, *J* 15.1, 6.2, 4-H), 4.57 (2 H, d, *J* 6.2, 5-H), 3.77 (3 H, s, OCH₃), 3.22-3.14 (2 H, m, 2-H), 2.24 (2 H, app. q, *J* 6.6, 1-H), 1.43 (9 H, s, OC(CH₃)₃); δ_C (75 MHz, CDCl₃) 155.7 (NHCO₂), 155.5 (OCO₂CH₃), 133.2 (4-C), 125.6 (3-C), 79.0 (OC(CH₃)₃), 68.1 (5-C), 54.6 (2-C), 39.4 (1-C), 28.3 (OC(CH₃)₃); v_{max}/cm^{-1} (neat) 3365, 2976, 1746, 1689, 1513, 1442, 1390, 1365, 1246, 1164; *m*/z (ESI) 282 (100%, MNa⁺); Found: MNa⁺, 282.1314. C₁₂H₂₁NO₅ requires *MNa*, 282.1312.

$2-(\{[(2E)-4-[(Methoxycarbonyl)oxy]but-2-en-1-yl]carbamoyl\}oxy)-2-methylpropanecarbamate S24$

The compound was prepared using a previously reported procedure.^[6]

Iridium-Catalysed Allylic Amination (Scheme 2, main text)

 $[Ir(dbcot)Cl]_2$ was prepared according to the method of Crabtree *et al.*^[7] The ligands (*S*,*S*,*aS*)-**10** and (*R*,*R*,*aR*)-**10** were prepared according to the method of Mezzetti *et al.*^[8]

General Procedure 1

nBuNH₂ (0.04 eq) was added to a solution of [Ir(dbcot)Cl]₂ (0.02 eq) and chiral phosphoramidite (0.04 eq) in DMSO (~0.7 M). The mixture was heated at 55 °C until the reaction mixture changed in colour from orange to yellow. The allylic carbonate (1.0 eq) was then added, followed by the amine (1.3 eq) and K₃PO₄ (1.3 eq) if an amine salt was used. The reaction mixture was stirred at 55 °C for the time specified, cooled to room temperature and concentrated *in vacuo* by means of a GeneVac centrifugal evaporator to give a crude product which was purified by SCX solid phase extraction followed by flash column chromatography using the specified eluent.

General Procedure 2

n-PrNH₂ (0.04 eq) was added to a solution of $[Ir(dbot)Cl]_2$ (0.02 eq) and chiral phosphoramidite (0.04 eq) in THF (~0.5 M). The mixture was heated at 55 °C until the reaction mixture changed in colour from orange to yellow. The allylic carbonate (1.0 eq) was then added, followed by the amine (1.3 eq) and K₃PO₄ (1.3 eq) if an amine salt was used. The reaction mixture was stirred at 55 °C for the time specified, cooled to room temperature, concentrated *in vacuo* and purified by flash column chromatography using the specified eluent.

tert-Butyl N-[(3S)-3-({2-[(tert-butyldiphenylsilyl)oxy]ethyl}amino)pent-4-en-1-yl]carbamate 11

According to General Procedure 1, allylic carbonate **\$23** (0.200 g, 0.770 mmol) was combined with (2-aminoethoxy(tertbutyl)diphenylsilane^[9] (0.300 g, 1.00 mmol) and heated for 9 h. Purification by flash column chromatography, eluting with 97:2.7:0.3 CH₂Cl₂ –EtOH–NH₄OH furnished the amine **11** (0.219 g, 59%, 84% *ee*) as a yellow oil, R_f 0.18 (97:2.7:0.3 DCM– EtOH–NH₄OH); $[\alpha]_D^{24}$ +4 (c. 0.69, CHCl₃); δ_H (500 MHz, CDCl₃) 7.66 (4 H, m, Ar 2-H), 7.44-7.36 (6H, m, Ar H), 5.61 (1H, ddd, *J* 16.8, 10.0, 8.0, 4-H), 5.12 (1H, app. d, *J* 10.0, 5-H_A), 5.10 (1H, app. d, *J* 16.8, 5-H_B), 3.79-3.72 (2H, m, CH₂OSi), 3.23 (1H, app. dt, *J* 11.4, 6.1, 1-H_A), 3.14 (1H, app. dt, *J* 11.4, 5.4, 1-H_B), 3.05 (1H, ddd, *J* 8.0, 6.1, 5.4, 3-H), 2.78 (1H, ddd, *J* 11.5, 6.8, 4.5, NHCH_{2A}), 2.61 (1H, app. dt, *J* 11.5, 5.0, NHCH_{2B}), 1.64-1.60 (2H, m, 1-H), 1.43 (9H, s, OC(CH₃)₃), 1.05 (9H, s, SiC(CH₃)₃); δ_C (75 MHz, CDCl₃) 155.9 (NHCO₂), 140.4 (4-C), 135.5 (Ar 2-C), 133.5 (Ar 1-C), 129.6 (Ar 4-C), 127.6 (Ar 3-C), 116.2 (5-C), 79.9 (OC(CH₃)₃), 63.2 (CH₂OSi), 59.9 (3-C), 48.8 (NHCH₂), 37.9 (1-C), 35.2 (2-C), 28.4 (OC(CH₃)₃), 26.8 (SiC(CH₃)₃), 19.2 (SiC(CH₃)₃); v_{max} /cm⁻¹ (neat) 3347, 2931, 1710, 1506, 1472, 1428, 1390, 1365, 1250; *m*/z (ESI) 483 (100%, MH⁺); Found: MH⁺, 483.3050. C₂₈H₄₂N₂O₃Si requires *MH*, 483.3037.

For the purposes of chiral HPLC analysis, the respective benzamide derivative S25 was prepared.

tert-Butyl-N-[(3S)-3-(N-{2-[(tert-butyldiphenylsilyl)oxy]ethyl}-1-phenylformamido)pent-4-en-1-yl]carbamate S25

NEt₃ (0.130 mL, 0.900 mmol) and benzoyl chloride (68.0 μ L, 0.580 mmol) were added to a solution of amine **11** (0.218 g, 0.450 mmol) in CH₂Cl₂ (4.0 mL) at 0 °C (ice). The mixture was allowed to warm to room temperature and then stirred for 18 h before being diluted with CH₂Cl₂ (10 mL), saturated aqueous NH₄Cl (10 mL) added, the phases separated and the aqueous phase extracted with CH₂Cl₂ (3 × 10 mL). The combined organic phase was dried (MgSO₄), filtered and concentrated *in vacuo* to give a crude product which was purified by flash column chromatography, eluting with 3:1 petrol–EtOAc to furnish the amide **S25** (0.132 g, 50%, 84% *ee*) as a colourless viscous oil, R_f 0.35 (7:3 petrol–EtOAc); $[\alpha]_D^{20}$ –21 (*c*. 1.06, CHCl₃), δ_H (500 MHz, MeOD, 333 K) 7.62 (5 H, m, Ar H) 7.44-7.31 (10 H, m, silyloxy Ar-H), 5.88 (1 H, app. br s, 4-H), 5.13 (2 H, m, H-5), 4.32 (1 H, app. br s, 3-H), 3.81 (2 H, app. br s, CH₂OSi), 3.51 (2 H, app. br s, 1-H), 2.95 (2 H, app. br s, NHCH₂), 1.80 (2 H, app. br s, 2-H), 1.40 (9H, s, OC(CH₃)₃), 1.04 (9H, s, SiC(CH₃)₃); δ_C (75 MHz, MeOD, 333 K) 174.8 (NCOPh), 158.2 (NHCO₂), 137.7 (Ar 1-C), 136.7 (4-C) 134.7 (SiAr 1-C), 130.9 (SiAr 4-C), 130.7 (Ar 4-C), 129.7 (SiAr 3-C), 128.9 (Ar 3-C), 128.8 (SiAr 2-C), 127.6 (Ar 2-C), 118.1 (5-C), 80.2 (OC(CH₃)₃), 63.0 (CH₂OSi), 62.9 (3-C), 38.8 (1-C), 33.4 (2-C), 28.9

 $(OC(CH_3)_3)$, 27.5 $(SiC(CH_3)_3)$, 20.0 $(SiC(CH_3)_3)$, (NCH_2) signal not observed – under residual solvent signal; v_{max}/cm^{-1} (neat) 3347, 2932, 1712, 1634, 1515, 1428, 1365, 1250, 1173, 1111; m/z (ESI) 587 (100%, MH⁺); Found: MH⁺, 587.3302. C₃₅H₄₆N₂O₄Si requires *MH*, 587.3299; HPLC: CHIRALPAK[®] OD-H, 5% IPA–hexane over 60 min, 0.3 mL/min; t₁ = 32.27 min (minor), t₂ = 36.70 min (major).

tert-Butyl-N-[(3R)-3-{[(2S)-1-hydroxypropan-2-yl]amino}pent-4-en-1-yl]carbamate 12

According to General Procedure 1, allylic carbonate **S23** (2.00 g, 7.70 mmol) was combined with (*R*)-2-aminopropan-1-ol (0.780 mL, 10.0 mmol) and heated for 18 h. Purification by flash column chromatography, eluting with 92:7:1 CH₂Cl₂ –EtOH– NH₄OH furnished the amine **12** (1.21 g, 61%, *dr* 93:7) as an amorphous colourless solid, R_f 0.19 (92:7:1 CH₂Cl₂ –EtOH– NH₄OH); δ_H (500 MHz, CDCl₃) 5.62 (1 H, ddd, *J* 16.9, 10.3, 8.3, 4-H), 5.10 (1 H, d, *J* 10.3, H-5_A), 5.09 (1 H, d, *J* 16.9, H-5_B), 4.86 (1 H, br s, CO₂N*H*), 3.58 (1 H, dd, *J* 10.8, 3.6, C*H*_AOH), 3.32-3.28 (1 H, m, 1-H_A), 3.24 (1 H, dd, *J* 10.8, 4.9, C*H*_BOH), 3.17-3.10 (2 H, m, 1-H_B, 3-H), 2.85-2.79 (1 H, m, NHC*H*CH₃), 1.66-1.54 (2 H, m, 2-H), 1.44 (9 H, s, OC(C*H*₃)₃), 1.07 (3 H, d, *J* 6.6, CHC*H*₃); δ_C (75 MHz, CDCl₃) 156.1 (NHCO₂), 140.9 (4-C), 115.5 (5-C), 79.2 (OC(CH₃)₃), 64.3 (*C*H₂OH), 57.0 (3-C), 51.1 (NH*C*HCH₃), 37.4 (1-C), 36.1 (2-C), 28.3 (OC(CH₃)₃), 18.6 (CH*C*H₃); υ_{max} /cm⁻¹ (neat) 3374, 2984, 1684, 1528, 1276, 1261, 1172, 1048; *m*/z (ESI) 259 (100%, MH⁺); Found: MH⁺, 259.2018. C₁₃H₂₆N₂O₃ requires *MH*, 259.2016.

tert-Butyl-N-[(3R)-3-[(2-{[(benzyloxy)carbonyl]amino}ethyl)amino]pent-4-en-1-yl]carbamate 13

According to General Procedure 1, allylic carbonate **\$23** (0.450 g, 1.74 mmol) was combined with benzyl-2aminoethylcarbamate^[10] (0.405 g, 2.09 mmol) and heated for 18 h. Purification by flash column chromatography, eluting with 92:7:1 CH₂Cl₂ –EtOH–NH₄OH furnished the amine **13** (0.300 g, 46%, *ee* 84%) as a yellow oil, R_f 0.39 (92:7:1 CH₂Cl₂ –EtOH– NH₄OH); [α]_D²⁴ +0.4 (*c*. 1.59, CHCl₃); $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.37-7.30 (5 H, m, Ar-H), 5.57 (1 H, ddd, *J* 16.6, 10.3, 8.1, 4-H), 5.38 (1 H, br s, BnCO₂NH), 5.13-5.08 (4 H, m, 5-H, CH₂Ph), 4.98 (1 H, br s, *t*BuCO₂NH), 3.28-3.26 (3 H, m, 1-H_A, BnCO₂NHCH₂), 3.13-3.09 (1 H, m, 3-H), 3.05 (1 H, app. dd, *J* 13.6, 6.6, 1-H_B), 2.81-2.76 (1 H, m, NHCH_A), 2.64-2.59 (1 H, m, NHCH_B), 1.64-1.54 (2 H, m, 2-H), 1.42 (9 H, s, OC(CH₃)₃); $\delta_{\rm C}$ (75 MHz, CDCl₃) 156.5 (NHCO₂Bn), 155.9 (NHCO₂*t*Bu), 140.2 (4-C), 136.6 (Ar 1-C), 128.3 (Ar 3-C), 128.0 (Ar 4-C), 127.9 (Ar 2-C), 116.1 (5-C), 79.0 (OC(CH₃)₃), 66.4 (CH₂Ph), 59.2 (3-C), 46.2 (NHCH₂), 40.7 (BnCO₂NHCH₂), 37.6 (1-C), 35.5 (2-C), 28.3 (OC(CH₃)₃); v_{max} /cm⁻¹ (neat) 3332, 2977, 1701, 1527, 1455, 1366, 1254, 1171; *m*/*z* (ESI) 259 (100%, MH⁺); Found: MH⁺, 378.2400. C₂₀H₃₁N₃O₄ requires *MH*, 378.2387. For the purposes of chiral HPLC analysis the respective benzamide derivative **\$26** was prepared.

tert-Butyl-N-[(3R)-3-[N-(2-{[(benzyloxy)carbonyl]amino}ethyl)-1-phenylformamido]pent-4-en-1-yl]carbamate S26

NEt₃ (0.730 mL, 1.30 mmol) and benzoyl chloride (46.0 μ L, 0.390 mmol) were added to a solution of amine **13** (0.100 g, 0.260 mmol) in CH₂Cl₂ (2.6 mL) at 0 °C (ice). The mixture was allowed to warm to room temperature and then stirred for 18 h before being diluted with CH₂Cl₂ (10 mL), saturated aqueous NH₄Cl (10 mL) added, the phases separated and the aqueous phase extracted with CH₂Cl₂ (3 × 10 mL). The combined organic phase was dried (MgSO₄), filtered and concentrated *in vacuo* to give a crude product which was purified by flash column chromatography, eluting with 96:3.6:0.4 CH₂Cl₂ –EtOH–NH₄OH to furnish the amide **S26** (97.0 mg, 77%, 84% *ee*) as a pale yellow oil, R_f 0.28 (95:4.5:0.5 CH₂Cl₂ –EtOH–NH₄OH); [α]_D²⁰ +10.2 (*c*. 2.40, CHCl₃); $\delta_{\rm H}$ (500 MHz, DMSO-d₆, 343 K) 7.43-7.30 (10 H, m, Ar-H), 5.91 (1 H, app. br s, H-4), 5.15 (1 H, app. d, *J* 10.5, 5-H₄), 5.07 (1 H, app. d, *J* 16.9, 5-H_B), 5.02 (2 H, s, CH₂Ph), 4.23 (1 H, app. br s, 3-H), 3.32-3.29 (2 H, m, BnCO₂NHCH₂), 3.21 (2 H, app. br s, 1-H), 2.86 (2 H, app. br s, NHCH₂), 1.83-1.78 (2 H, m, 1-H), 1.37 (9 H, s, OC(CH₃)₃); $\delta_{\rm C}$ (75 MHz, DMSO-d₆, 343 K) 171.0 (NCOPh), 155.6 (NHCO₂tBu), 154.9 (NHCO₂Bn), 136.8 (Ar 1-C), 136.7 (Ar 1-C), 136.5 (4-C), 128.6 (broad, Ar 4-C), 127.8 (app. d, Ar 3-C), 127.2 (app. d, Ar 2-C), 116.2 (5-C), 77.2 (OC(CH₃)₃), 64.9 (CH₂Ph), 31.3 (2-C), 27.8 (OC(CH₃)₃), (1-C), (3-C), (NHCH₂) and (BnCO₂NHCH₂) not observed - rotameric; v_{max}/cm^{-1} (neat) 3327, 2975, 1697, 1618, 1510, 1447, 1412, 1391, 1245; *m*/z (ESI) 587 (100%, MNa⁺); Found: MNa⁺, 504.2476. C₂₇H₃₅N₃O₅ requires *MNa*, 504.2468; HPLC: Daicel Chiralcel AS-H, 5% EtOH–hexane over 60 min, 0.5 mL/min; t₁ = 31.91 min (major), t₂ = 39.64 min (minor).

tert-Butyl-N-[(3S)-3-[(2S)-2-{[(tert-butyldiphenylsilyl)oxy]methyl}pyrrolidin-1-yl]pent-4-en-1-yl]carbamate 14

According to General Procedure 1, allylic carbonate **S23** (2.00 g, 7.7 mmol) was combined with (3.41 g, 10.0 mmol, 1.3 eq) *O*-TBDPS-*S*-prolinol^[11] and heated for 16 h. Purification by flash column chromatography, eluting with 20:79:1 EtOAc-petrol-NEt₃ furnished the amine **14** (2.1 g, 52%, *dr* >95:<5) as a yellow oil, R_f 0.2 (30:70 Et₂O-pentane); δ_H (500 MHz, CDCl₃) 7.67 (4H, d, *J* 6.5, silyloxy Ar H), 7.45-7.36 (6H, m, silyloxy Ar H), 5.74 (1 H, ddd, *J* 17.5, 10.2, 8.5, 4-H), 5.33 (1H, br s, NH), 5.14 (1H, dd, *J* 10.2, 1.4 Hz, 5-H_A), 4.96 (1H, d, *J* 17.5, 5-H_B), 3.59 (1H, dd, *J* 10.0, 4.8, CH_AOSi), 3.45 (1H, dd, *J* 10.0, 7.5, CH_BOSi), 3.24 (1H, dd, *J* 12.9, 6.1, 1-H_A), 3.17 (1H, dd, *J* 15.0, 7.7, 3-H), 3.06-2.98 (1H, m, 1-H_B), 2.90 (1H, br s, pyrrolidine 2-H), 2.84 (1H, br s, pyrrolidine 5-H_A), 2.54 (1H, dd, *J* 15.8, 8.2, pyrrolidine 5-H_B), 1.82-1.42 (6H, m, 2-H_{AB}, pyrrolidine 3-H_{AB} and 4-H_{AB}), 1.40 (9H, s, OC(CH₃)₃), 1.05 (9H, s, SiC(CH₃)₃); δ_C (125 MHz, CDCl₃) 156.1 (NHCO₂), 135.9 (4-C), 135.6 (Ar 2-C), 133.9 (Ar 1-C), 129.6 (Ar 4-C), 127.6 (Ar 3-C), 117.4 (5-C), 78.6 (OC(CH₃)₃), 67.3 (SiOCH₂), 61.9 (NCH), 61.0 (3-C), 46.8 (NCH₂), 39.2 (1-C), 33.3 (2-C), 28.4 (OC(CH₃)₃, 26.9 (SiC(CH₃)₃), 26.8 (CHCH₂), 23.5 (NCH₂CH₂), 19.2 (SiC(CH₃)₃); v_{max}/cm^{-1} (film) 3358, 3071, 3052, 2964, 2932, 2859, 2708, 2305, 1709, 1505, 1428, 1365, 1275, 1262, 1173, 1112; m/z (ESI) 523 (100%, MH⁺); Found: MH⁺, 523.3362. C₃₁H₄₇N₂O₃Si requires *MH*, 523.3350.

Benzyl-4-[(3S)-5-{[(tert-butoxy)carbonyl]amino}pent-1-en-3-yl]piperazine-1-carboxylate 15

According to General Procedure 1, allylic carbonate **S23** (2.00 g, 7.7 mmol) was combined with 1-Z-piperazine (2.2 g, 10.0 mmol) and heated for 16 h. Purification by flash column chromatography, eluting with 30:70 EtOAc–petrol furnished the amine **15** (2.1 g, 68%, *ee* 88%) as a pale yellow oil, R_f 0.19 (Et₂O-pentane); $[\alpha]_D^{20}$ +19.4 (*c* 1.04, CHCl₃); δ_H (500 MHz; CDCl₃) 7.39-7.28 (5H, m, Cbz), 5.69 (1H, ddd, *J* 17.2, 9.8 and 9,4-H), 5.2 (1H, d, *J* 9.8, 5-H_A), 5.12 (2H, s, Cbz), 5.10 (1H, d, *J* 17.2, 5-H_B), 3.55-3.54 (4H, m, 2'-H), 3.32-3.22 (1H, m, 1-H_A), 3.16-3.08 (1H, m, 1-H_A), 2.94-2.88 (1H, m, 3-H), 2.56 (2H, br s, 3'-H_A), 2.39 (2H, br s, 3'-H_B), 1.85-1.77 (1H, m, 2-H_A), 1.63-1.58 (1H, m, 2-H_B), 1.44 (9H, s, OC(CH₃)₃); δ_C (125 MHz; C₆C₆/MeOD) 155.7 (NHCO₂), 154.9 (NHCO₂), 137.5 (4-C), 136.1 (Ar 1-C), 128.5 (Ar 2-C), 128.2 (Ar 3-C), 117.4 (5-C), 78.3 (OC(CH₃)₃), 67.1 (CH₂Ar), 66.3 (pip 3-C), 48.8 (MeOH), 44.3 (pip 2-C), 38.5 (3-C), 31.4 (1-C), 29.9 (2-C), 28.5 (OC(CH₃)₃); v_{max} /cm⁻¹ (film) 3359, 2976, 1703, 1519, 1432, 1365, 1245; *m*/z (ES⁺) 404.3 (100%, MH⁺); found 404.2585, C₂₂H₃₃N₃O₄ requires *MH* 404.2544; HPLC: Chiralcel AD-H, 5% EtOH/hexane over 60 min, 1 ml/min; t₁ = 31.8 min (minor), t₂ = 37.3 min (major).

tert-butyl-N-[(3R)-3-[(prop-2-en-1-yl)amino]pent-4-en-1-yl]carbamate 16

According to General Procedure 2, allylic carbonate **S23** (0.613 g, 2.50 mmol) was combined with allylamine (0.244 mL, 3.25 mmol) and heated for 20 h. Purification by flash column chromatography, eluting with 8:2 \rightarrow 1:9 petrol–EtOAc furnished amine **16** (0.372 g, 62%, *ee* 87%) as a yellow oil, R_f 0.09 (1:1 cyclohexane–EtOAc); $[\alpha]_D^{22}$ –10 (*c*. 1.10, CHCl₃); δ_H (400 MHz, DMSO-d₆) 6.73 (1 H, br. s, BocN*H*), 5.81 (1 H, ddt, *J* 17.2, 10.2, 5.7 Hz, C*H*=CH₂), 5.60–5.48 (1 H, m, C*H*=CH₂), 5.11 (1 H, dq, *J* 17.3, 1.6 Hz, *trans* CH=CH₂), 5.05 (1 H, dq, *J* 13.4, 2.1 Hz, *cis* CH=CH₂), 5.00 (1 H, dd, *J* 10.3, 1.6 Hz, *cis* CH=CH₂), 3.14 (1 H, ddt, *J* 14.5, 5.4, 1.7 Hz, C*H*CH=CH₂), 3.03–2.87 (4 H, m, BocNHCH₂, C*H*₂CH=CH₂), 1.68 (1 H, br. s, N*H*CH₂CH=CH₂), 1.53 (1H, ddt, *J* 12.9, 8.0, 6.5 Hz, NHCH₂CH₂), 1.48–1.40 (1 H, m, NHCH₂CH₂), 1.37 (9 H, s, C(CH₃)₃); δ_C (100 MHz, DMSO-d₆) 155.4 (*C*=O), 141.3 (*C*H=CH₂), 137.8 (*C*H=CH₂), 115.1 (CH=CH₂), 114.8 (CH=CH₂), 77.3 (*C*(CH₃)₃), 58.1 (*C*HCH=CH₂), 48.9 (*C*H₂CH=CH₂), 37.1 (BocNHCH₂), 35.1 (BocNHCH₂CH₂), 28.2 (C(CH₃)₃); v_{max}/cm^{-1} (neat) 3333, 3076, 2977, 2930, 1692, 1643, 1515, 1454, 1391, 1365, 1273, 1249, 1169, 1041, 993, 916, 864, 778; *m*/z (ESI) 241 (100%, MH⁺); Found: MH⁺, 241.1907. C₁₃H₂₅O₂N₂₅ requires *MH*, 241.1911.

For the purposes of chiral HPLC analysis the respective sulfonamide derivative S27 was prepared.

tert-Butyl-N-[(3R)-3-[N-(prop-2-en-1-yl)4-nitrobenzenesulfonamido]pent-4-en-1-yl]carbamate S27

NEt₃ (836 μ l, 6.00 mmol) and 4-nitrobenzene-1-sulfonyl chloride (665 mg, 3.00 mmol) were added to a solution of amine **16** (0.480 g, 2.00 mmol) in CHCl₃ (4.0 mL). The reaction mixture was stirred at room temperature for 3 d, diluted with MeOH (5

mL), concentrated *in vacuo* and then purified by flash chromatography, eluting with 1:3→4:0 MTBE–cyclohexane to furnish sulfonamide **S27** (0.362 g, 43 % yield, *ee* 87%) as a yellow oil, $[\alpha]_D^{22} = +148.4$, (c = 3.20, CHCl₃); δ_H (400 MHz, CDCl₃) 8.35 (2H, d, *J* 8.8, Ar 3-H), 8.02 (2H, d, *J* 8.8, Ar 2-H), 5.79 (1H, dddd, *J* 17.3, 9.9, 7.7, 5.3, CH₂CHCH₂), 5.49 (1H, ddd, *J* 17.3, 10.7, 6.1, 4-H), 4.99-5.25 (5H, m, CO₂NH, 5-H, and CH₂CHCH₂), 4.44-4.52 (1H, m, 3-H), 3.88 (1H, dd, *J* 16.0, 5.0, CH_ACH₂), 3.70 (1H, dd, *J* 16.0, 7.7, CH_BCH₂), 3.35 (1H, dd, *J* 13.5, 6.5, 1-H_A), 3.05 - 3.15 (1H, ddt, *J* 13.5, 8.7, 5.5, 1-H_B), 1.81 - 1.91 (1H, m, 2-H_A), 1.71-1.80 (1H, m, 2-H_B), 1.46 (9H, s, C(CH₃)₃); δ_C (100 MHz, CDCl₃)156.0 (*C*=O), 150.0 (Ar 4-C), 146.6 (Ar 1-C), 134.9 (4-C), 134.8 (CHCH₂), 128.4 (Ar 2-C), 124.3 (Ar 3-C), 115.1 (5-C), 114.8 (CHCH₂), 79.3 (OC(CH₃)₃), 58.1 (2-C), 47.2 (CH₂CHCH₂), 36.8 (1-C), 32.2 (2-C), 28.5 (C(CH₃)₃); υ_{max}/cm^{-1} (neat) 3422, 3104, 2977, 2934, 1702, 1528, 1347, 1268, 1248, 1160, 1088; *m*/z (ESI) 448 (100%, MNa⁺); Found: MNa⁺, 448.1516. C₁₉H₂₇N₃O₆S requires *MNa*, 448.1513. HPLC: CHIRALPAK[®] IA, 5% EtOH/heptane over 30 min, 1 ml/min; t₁ = 24.1 min (major), t₂ = 26.7 min (minor).

tert-Butyl-N-[(3R)-3-[(but-3-en-1-yl)amino]pent-4-en-1-yl]carbamate 17

According to General Procedure 2, allylic carbonate **S23** (0.613 g, 2.50 mmol) was combined with but-3-en-1-amine (0.231 g, 3.25 mmol) and heated for 20 h. Purification by flash column chromatography, eluting with 8:2 \rightarrow 1:9 petrol–EtOAc furnished amine **17** (0.375 g, 59%, *ee* 69%) as a yellow oil, R_f 0.09 (1:1 cyclohexane–EtOAc); $[\alpha]_D^{23}$ –6.1 (*c*. 1.30, CHCl₃); δ_H (400 MHz, CDCl₃) 5.79 (1 H, ddt, *J* 17.0, 10.2, 6.9 Hz, CH=CH₂), 5.67–5.51 (1 H, m, CH=CH₂), 5.15–5.06 (3 H, m, CH=CH₂), 5.04 (1 H, ddt, *J* 10.3, 2.3, 1.3 Hz, *cis* CH=CH₂), 3.24 (1 H, dq, *J* 13.3, 6.4 Hz, BocNHCH₂), 3.15 (1 H, dt, *J* 13.2, 6.4 Hz, BocNHCH₂), 3.06 (1 H, q, *J* 6.8 Hz, CHCH=CH₂), 2.70 (1 H, dt, *J* 11.4, 6.9 Hz, CHNHCH₂), 2.54 (1 H, dt, *J* 11.4, 6.7 Hz, CHNHCH₂), 2.23 (2 H, qt, *J* 7.0, 1.4 Hz, CH₂CH=CH₂), 1.62 (2 H, q, *J* 6.6 Hz, BocNHCH₂CH₂), 1.44 (9 H, s, C(CH₃)₃), δ_C (100 MHz, CDCl₃) 155.9 (*C*=O), 140.5 (*C*H=CH₂), 136.5 (*C*H=CH₂), 116.3 (CH=*C*H₂), 115.9 (CH=*C*H₂), 28.4 (C(CH₃)₃), δ_{max}/cm^{-1} (neat) 3342, 3076, 2976, 2930, 1693, 1640, 1516, 1453, 1391, 1365, 1273, 1247, 1169, 1042; *m/z* (ESI) 277 (100%, MNa⁺); Found: MNa⁺, 277.1886. C₁₄H₂₆N₂O₂ requires *MNa*, 277.1886.

For the purposes of chiral HPLC analysis the respective sulfonamide derivative S28 was prepared.

tert-Butyl-N-[(3R)-3-[N-(but-3-en-1-yl)-4-nitrobenzenesulfonamido]pent-4-en-1-yl]carbamate S28

NEt₃ (836 µl, 6.00 mmol) and 4-nitrobenzene-1-sulfonyl chloride (665 mg, 3.00 mmol) were added to a solution of amine **17** (0.508 g, 2.00 mmol) in CHCl₃ (4.0 mL). The reaction mixture was stirred at room temperature for 3 d, diluted with MeOH (5 mL), concentrated *in vacuo* and then purified by flash chromatography, eluting with 1:3→4:0 MTBE–cyclohexane to furnish sulfonamide **S28** (0.576 g, 66% yield, *ee* 69%) as a yellow oil, $[\alpha]_D^{22} = +166.7$, (c = 3.30, CHCl₃); δ_H (400 MHz, CDCl₃) 8.36 (2H, d, *J* 8.8, Ar 3-H), 8.04 (2H, d, *J* 8.8, Ar 2-H), 5.70 (1H, app. ddt, *J* 17.1, 10.3, 5.4, CH₂CHCH₂), 5.41 (1H, ddd, *J* 17.1, 10.8, 5.4, 4-H), 5.00-5.14 (5H, m, CO₂NH, 5-H, and CH₂CHCH₂), 4.43 (1H, dt, *J* 9.5, 5.4, 3-H), 3.39 (1H, dd, *J* 13.1, 6.5, 1-H_A), 3.23-3.02 (3H, m, 1-H_B, NCH₂CH₂), 2.55-2.44 (1 H, m, 2-H_A), 2.38-2.28 (1H, m, 2-H_B), 1.96-1.85 (1H, m, CH_ACHCH₂),

1.76-1.67 (1H, m, CH_BCHCH_2), 1.46 (9H, s, $C(CH_3)_3$); δ_C (100 MHz, $CDCl_3$) 156.0 (*C*=O), 150.0 (Ar 4-C), 146.3 (Ar 1-C), 134.8 (4-C), 134.2 (*C*HCH_2), 128.4 (Ar 2-C), 124.4 (Ar 3-C), 118.9 (5-C), 117.5 (*C*HCH_2), 79.4 (*OC*(CH_3)_3), 57.9 (3-C), 44.4 (*NCH*_2), 36.9 (1-C), 35.6 (2-C), 32.4 (*C*H_2CHCH_2), 28.5 (*C*(*C*H_3)_3); v_{max}/cm^{-1} (neat) 3419, 3104, 2977, 2934, 1703, 1528, 1452, 1347, 1308, 1269, 1427, 1160, 1087; *m*/*z* (ESI) 462 (100%, MNa⁺); Found: MNa⁺, 462.1672. $C_{20}H_{29}N_3O_6S$ requires *MNa*, 462.1669. HPLC: CHIRALPAK[®] AD-H, 10% EtOH/heptane over 30 min, 1 ml/min; t₁ = 12.4 min (major), t₂ = 10.5 min (minor).

tert-Butyl-N-[(2S)-2-[(prop-2-en-1-yl)amino]but-3-en-1-yl]carbamate 18

According to General Procedure 2, allylic carbonate **S24** (0.648 g, 2.50 mmol) was combined with allylamine (0.244 mL, 3.25 mmol) and heated for 20 h. Purification by flash chromatography, eluting with 8:2 \rightarrow 1:9 petrol–EtOAc) furnished amine **18** (0.350 g, 62%, *ee* 86%) as a yellow oil, R_f 0.09 (1:1 cyclohexane–EtOAc); $[\alpha]_D^{22}$ –10 (*c* 1.1, CHCl₃); δ_H (400 MHz, *DMSO-d*₆) 6.73 (1 H, br. s, BocN*H*), 5.81 (1 H, ddt, *J* 17.2, 10.2, 5.7 Hz, C*H*=CH₂), 5.60–5.48 (1 H, m, C*H*=CH₂), 5.11 (1 H, dq, *J* 17.3, 1.6 Hz, *trans* CH=CH₂), 5.05 (1 H, dq, *J* 13.4, 2.1 Hz, *cis* CH=CH₂), 5.00 (1 H, dd, *J* 10.3, 1.6 Hz, *cis* CH=CH₂), 3.14 (1 H, ddt, *J* 14.5, 5.4, 1.7 Hz, C*H*CH=CH₂), 3.03–2.87 (4 H, m, BocNHCH₂, C*H*₂CH=CH₂), 1.68 (1 H, br. s, N*H*CH₂CH=CH₂), 1.53 (1H, ddt, *J* 12.9, 8.0, 6.5 Hz, NHCH₂CH₂), 1.48–1.40 (1 H, m, NHCH₂CH₂), 1.37 (9 H, s, C(CH₃)₃); δ_C (100 MHz, *DMSO-d*₆) 155.4 (*C*=O), 141.3 (*C*H=CH₂), 137.8 (*C*H=CH₂), 115.1 (CH=*C*H₂), 114.8 (CH=CH₂), 77.3 (*C*(CH₃)₃), 58.1 (*C*HCH=CH₂), 48.9 (*C*H₂CH=CH₂), 37.1 (BocNHCH₂), 35.1 (BocNHCH₂CH₂CH₂), 28.2 (C(CH₃)₃); υ_{max} /cm⁻¹ (neat) 3333, 3076, 2977, 2930, 1692, 1643, 1515, 1454, 1391, 1365, 1273, 1249, 1169, 1041, 993, 916, 864, 778; *m*/z (ESI) 241 (100%, MH⁺); Found: MH⁺, 241.1907. C₁₃H₂₅O₂N₂ requires *MH*, 241.1911.

For the purposes of chiral HPLC analysis the respective sulfonamide derivative S29 was prepared.

tert-Butyl-N-[(2S)-2-[N-(prop-2-en-1-yl)4-nitrobenzenesulfonamido]but-3-en-1-yl]carbamate S29

NEt₃ (92.0 µL, 0.660 mmol) and 4-nitrobenzene-1-sulfonyl chloride (73.0 mg, 0.330 mmol) were added to a solution of amine **18** (50.0 mg, 0.220 mmol) in CHCl₃ (2.2 mL). The reaction mixture was stirred at room temperature for 4 h after which the reaction mixture was concentrated *in vacuo* and purified by flash chromatography, eluting with 0:1 \rightarrow 1:3 MTBE– cyclohexane) to furnish sulfonamide **S29** (51.0 mg, 56 %, *ee* 86%) as a yellow oil, $[\alpha]_D^{19} = +35.3$, (c = 2.55, CHCl₃); δ_H (400 MHz, CDCl₃) 8.34 (d, *J* = 8.8 Hz, 2H, H₁₅), 8.02 (d, *J* = 8.8 Hz, 2H, H₁₄), 5.77 (dddd, *J* = 17.2, 10.0, 7.3, 5.6 Hz, 1H, H₁₁), 5.57 (ddd, *J* = 17.2, 10.5, 6.3 Hz, 1H, H₇), 5.05 - 5.29 (m, 4H, H₈ and H₁₂), 4.80 (br. s., 1H, H₄), 4.51 (dd, *J* = 15.4, 6.6 Hz, 1H, H₆), 3.96 (dd, *J* = 16.2, 5.6 Hz, 1H, 5-CH_AH_B), 3.75 (dd, *J* = 16.0, 7.5 Hz, 1H, 5-CH_AH_B), 3.36 - 3.46 (m, 1H, 10-CH_AH_B), 3.23 - 3.34 (m, 1H, 10-CH_AH_B), 1.45 (s, 9H, H₁); δ_C (100 MHz, CDCl₃) 155.8 (C₃), 149.9 (C₁₆), 146.7 (C₁₃), 134.4 (C₇), 132.8 (C₁₁), 128.5 (C₁₄), 124.3 (C₁₅), 120.0 (C₈), 119.0 (C₁₂), 79.8 (C₂), 60.2 (C₆), 47.7 (C₁₀), 42.0 (C₅), 28.4 (C₁); v_{max}/cm^{-1} (neat) 3410, 2978, 2933, 1703, 1606, 1528, 1347, 1308, 1250, 1158, 1088, 1009; *m*/z (ESI) 450 (100%, MK⁺); Found: MK⁺, 450.1087. C₁₈H₂₅N₃O₆S requires *MK*, 450.1096. HPLC: CHIRALPAK[®] IC, 20% EtOH/heptane over 30 min, 1 ml/min; t₁ = 14.6 min (major), t₂ = 16.3 min (minor).

tert-Butyl-N-[(2S)-2-[(but-3-en-1-yl)amino]but-3-en-1-yl]carbamate 19

According to General Procedure 2, allylic carbonate **S24** (0.648 g, 2.50 mmol) was combined with but-3-en-1-amine (0.231 g, 3.25 mmol) and heated for 20 h. Purification by flash chromatography, eluting with 8:2 \rightarrow 1:9 petrol–EtOAc) furnished amine **18** (0.324 g, 54%, *ee* 81%) as a yellow oil, R_f 0.12 (1:1 cyclohexane–EtOAc); $[\alpha]_D^{23}$ –2.7 (*c* 1.6, CHCl₃); δ_H (400 MHz, CDCl₃) 5.78 (1 H, ddt, *J*=17.1, 10.2, 6.8 Hz, C*H*=CH₂), 5.70–5.55 (1 H, m, C*H*=CH₂), 5.23–5.14 (2 H, m, CH=CH₂), 5.12–5.01 (2 H, m, CH=CH₂), 4.86 (1 H, br. s, BocN*H*), 3.23–3.02 (4 H, m, N*H*C*H*CH=CH₂, C*H*₂CH=CH₂), 2.71 (1 H, dt, *J* 11.4, 7.0 Hz, BocNHC*H*₂), 2.58 (1 H, dt, *J* 11.4, 6.6 Hz, BocNHC*H*₂), 2.23 (2 H, qd, *J* 7.0, 1.3 Hz, C*H*₂CH=CH₂), 1.45 (9 H, C(C*H*₃)₃); δ_C (100 MHz, CDCl₃) 156.2 (*C*=O), 138.7 (*C*H=CH₂), 136.5 (*C*H=CH₂), 117.2 (CH=*C*H₂), 116.5 (CH=*C*H₂), 79.3 (*C*(CH₃)₃), 61.0 (*C*HCH=CH₂), 55.4 (NHCH₂CH₂), 46.2 (BocNH*C*H₂), 34.5 (*C*H₂CH=CH₂), 28.6 (C(*C*H₃)₃); υ_{max} /cm⁻¹ (neat) 3341, 3077, 2977, 2929, 1695, 1641, 1501, 1455, 1391, 1365, 1270, 1249, 1167, 1043; *m*/z (ESI) 450 (100%, MH⁺); Found: MH⁺, 241.1909. C₁₃H₂₄N₂O₂ requires *MH*, 241.1910.

For the purposes of chiral HPLC analysis the respective sulfonamide derivative S30 was prepared.

tert-Butyl-N-[(2S)-2-[N-(but-3-en-1-yl)4-nitrobenzenesulfonamido]but-3-en-1-yl]carbamate S30

NEt₃ (87.0 µL, 0.620 mmol) and 4-nitrobenzene-1-sulfonyl chloride (69.0 mg, 0.310 mmol) were added to a solution of amine **19** (50.0 mg, 0.210 mmol) in CHCl₃ (2.2 mL). The reaction mixture was stirred at room temperature for 4 h after which the reaction mixture was concentrated *in vacuo* and purified by flash chromatography, eluting with 0:1 \rightarrow 1:3 MTBE– cyclohexane) to furnish sulfonamide **S30** (82.0 mg, 93%, *ee* 88%) as a yellow oil, $[\alpha]_D^{19} = +30.8$, (c = 4.10, CHCl₃); δ_H (400 MHz, CDCl₃) 8.35 (d, *J* = 8.8 Hz, 2H, H₁₆), 8.03 (d, *J* = 8.6 Hz, 2H, H₁₅), 5.70 (ddt, *J* = 17.2, 10.4, 6.8 Hz, 1H, H₁₂), 5.52 (ddd, *J* = 17.2, 10.6, 6.3 Hz, 1H, H₇), 5.04-5.21 (m, 4H, H₈ and H₁₃), 4.85 (br. s., 1H, H₄), 4.42 (dd, *J* = 15.2, 6.3 Hz, 1H, H₆), 3.41-3.51 (m, 1H, 5-CH_AH_B), 3.22-3.31 (m, 2H, 5-CH_AH_B and 10-CH_AH_B), 3.10 - 3.20 (m, 1H, 10-CH_AH_B), 2.28 - 2.50 (m, 2H, H₁₁), 1.45 (s, 9H, H₁); δ_C (100 MHz, CDCl₃) 155.8 (C₃), 150.0 (C₁₇), 146.4 (C₁₄), 134.2 (C₁₂), 132.8 (C₇), 128.5 (C₁₅), 124.3 (C₁₆), 120.0 (C₈), 117.7 (C₁₃), 79.8 (C₃), 60.2 (C₆), 45.0 (C₁₀), 42.2 (C₅), 35.1 (C₁₁), 28.4 (C₁); w_{max}/cm⁻¹ (neat) 3412, 3105, 2978, 2933, 1706, 1528, 1347, 1309, 1249, 1157, 1088; *m/z* (ESI) 464 (100%, MK⁺); Found: MK⁺, 464.1242. C₁₉H₂₇N₃O₆S requires *MK*, 464.1252. HPLC: CHIRALPAK[®] AD, 10% EtOH/heptane over 30 min, 1 ml/min; t₁ = 11.4 min (major), t₂ = 13.8 min (minor).

tert-Butyl-N-[(2S)-2-{[2-(2-nitrobenzenesulfonamido)ethyl]amino}but-3-en-1-yl]carbamate 20

According to General Procedure 1, allylic carbonate **S24** (245 mg, 1.00 mmol) was combined with *N*-(2-aminoethyl)-2nitrobenzenesulfonamide hydrochloride^[12] (366 mg, 1.30 mmol) and K_3PO_4 (276 mg, 1.30 mmol) and heated for 20 h. The reaction mixture was not concentrated - direct purification by reverse phase chromatohraphy (C_{18}) eluting with 5%-40% MeCN–H₂O–1% formic acid) furnished the amine **20** (254 mg, 61 %, 79% *ee*) as a yellow oil, $[\alpha]_D^{21}$ +0.80 (c = 5.50, CDCl₃); δ_H (400 MHz, CDCl₃) 8.06-8.13 (1 H, m, Ar H-5), 7.80-7.86 (1 H, m, Ar H-6), 7.70-7.76 (2 H, m, Ar H-4, Ar H-3), 5.47 (1 H, ddd, *J* 17.5, 10.1, 7.3 Hz, 4-H), 5.05-5.12 (2-H, m, 5-H), 4.85 (1 H, br s, *t*BuCO₂N*H*), 3.07-3.15 (3 H, m, NHCH₂ and 1-H_A), 2.95-3.04 (2 H, m, 2-H and 1-H_B), 2.72-2.81 (1 H, m, *CH*_ANHSO₂), 2.60-2.68 (m, 1H, *CH*_BNHSO₂), 1.41 (9 H, s, OC(*CH*₃)₃); δ_C (100 MHz, CDCl₃) 156.0 (NHCO₂*t*Bu), 148.1 (Ar 2-C), 138.0 (Ar 5-C), 133.5 (Ar 4-C), 133.4 (Ar 1-C), 132.6 (Ar 6-C), 130.9 (4-C), 125.2 (Ar 3-C), 117.5 (5-C), 79.3 (OC(*CH*₃)₃), 60.7 (2-C), 45.3, 44.4, 43.5 (1-C, NHCH₂ or *C*H₂NHSO₂), 28.3 (OC(*CH*₃)₃); v_{max}/cm^{-1} (neat): 3325, 3094, 2977, 2931, 1692, 1593, 1539, 1442, 1392, 1363, 1340, 1248, 1161, 1124; *m/z* (ESI) 415 (100%, MH⁺); Found: MH⁺, 415.1656. C₁₇H₂₆N₄O₆S requires *MH*, 415.1646). HPLC: CHIRALPAK[®] IA, 40% EtOH/heptane over 15 min, 1 ml/min; t₁ = 6.15 min (major), t₂ = 8.45 min (minor).

Methyl-(2S)-2-{[(2S)-1-{[(tert-butoxy)carbonyl]amino}but-3-en-2-yl]amino}-3-hydroxypropanoate 21

The compound was prepared from allylic carbonate S24 using a previously reported procedure.^[6]

Methyl-(2S)-1-[(2R)-1-{[(tert-butoxy)carbonyl]amino}but-3-en-2-yl]pyrrolidine-2-carboxylate 22

According to General Procedure 1, allylic carbonate **S24** (0.122 g, 0.500 mmol) was combined with L-Pro-OMe•HCl (0.107 g, 0.650 mmol) and K₃PO₄ (0.138 g, 0.650 mmol) and heated for 24 h. Purification by flash chromatography, eluting with 1:1 \rightarrow 2:8 cyclohexane–EtOAc) furnished amine **22** (0.103 g, 69%, *dr* 92:8) as a pale yellow oil, *R*_f 0.32 (2:8 cyclohexane–EtOAc); $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.76 (1H, ddd, *J* = 17.1, 10.4, 7.7 Hz, C*H*=CH₂), 5.31 (1H, br. s, BocN*H*), 5.22 (1H, dd, *J* = 10.4, 1.7 Hz, *cis*-CH=CH₂), 5.15 (1H, dd, *J* = 17.2, 1.7 Hz, *trans*-CH=CH₂), 3.69 (3H, s, CO₂CH₃), 3.48 (1H, dt, *J* = 9.1, 5.0 Hz, CHCO₂CH₃), 3.28–3.09 (3H, m, BocNHCH₂, CHCH=CH₂), 2.94 (1H, ddd, *J* = 8.8, 7.3, 3.7 Hz, CHNCH₂), 2.65 (1H, q, *J* = 7.9 Hz, CHNCH₂), 2.11–1.97 (1H, m, NCHCH₂CH₂), 1.95–1.68 (3H, m, CHNCH₂, CHNCH₂CH₂), 1.43 (9H, s, C(CH₃)₃); $\delta_{\rm C}$ (100 MHz, CDCl₃) 175.3 (CO₂CH₃), 156.2 (CO₂*t*Bu), 134.1 (CH=CH₂), 119.2 (CH=CH₂), 79.0 (*C*(CH₃)₃), 62.9 (CHCO₂CH₃), 62.6 (CHCH=CH₂), 51.9 (CO₂CH₃), 46.8 (CHNCH₂), 43.0 (BocNHCH₂), 29.7 (NCHCH₂CH₂), 28.6 (C(CH₃)₃), 23.9 (NCHCH₂CH₂); ν_{max}/cm^{-1} (neat): 3392, 2976, 1705, 1499, 1390, 1365, 1246, 1166; *m*/*z* (ESI) 299 (100%, MH⁺); Found: MH⁺, 299.1967. C₁₅H₂₇N₂O₄ requires *MH*, 299.1971).

Methyl-(2S)-1-[(3S)-5-{[(tert-butoxy)carbonyl]amino}pent-1-en-3-yl]pyrrolidine-2-carboxylate 23

According to General Procedure 1, allylic carbonate **S23** (0.129 g, 0.500 mmol) was combined with L-Pro-OMe+HCl (0.107 g, 0.650 mmol) and K₃PO₄ (0.138 g, 0.650 mmol) and heated for 24 h. Purification by flash chromatography, eluting with 1:1 \rightarrow 2:8 cyclohexane–EtOAc) furnished amine **22** (0.112 g, 72%, *dr* >95:<5) as a pale yellow oil, *R*_f 0.37 (2:8 cyclohexane–EtOAc); $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.74 (1H, ddd, *J* = 17.3, 10.2, 8.6 Hz, C*H*=CH₂), 5.66 (1H, br. s, BocN*H*), 5.18 (1H, dd, *J* = 31

10.3, 1.8 Hz, *cis*-CH=CH₂), 5.06 (1H, ddd, J = 17.2, 1.9, 0.8 Hz, *trans*-CH=CH₂), 3.71 (3H, s, CO₂CH₃), 3.44 (1H, dd, J = 9.0, 5.7 Hz, CHCO₂CH₃), 3.30–3.15 (3H, m, BocNHCH₂, CHCH=CH₂), 2.92 (1H, ddd, J = 8.7, 7.2, 3.6 Hz, CHNCH₂), 2.60 (1H, q, J = 8.1 Hz, CHNCH₂), 2.09–1.96 (1H, m, NCH₂CH₂CH₂), 1.93–1.56 (5H, m, BocNHCH₂CH₂, NCH₂CH₂CH₂, NCH₂CH₂CH₂), 1.42 (9H, s, C(CH₃)₃); δ_{C} (100 MHz, CDCl₃) 175.5 (CO₂CH₃), 156.4 (CO₂*t*Bu), 135.2 (CH=CH₂), 118.2 (CH=CH₂), 78.6 (C(CH₃)₃), 62.2 (CHCO₂CH₃), 60.8 (CHCH=CH₂), 51.9 (CO₂CH₃), 45.8 (CHNCH₂), 38.1 (BocNHCH₂), 33.0 (BocNHCH₂CH₂), 29.6 (NCH₂CH₂CH₂), 28.6 (C(CH₃)₃), 23.8 (NCH₂CH₂CH₂); υ_{max} /cm⁻¹ (neat): 3365, 2975, 1737, 1710, 1512, 1441, 1391, 1365, 1268, 1246, 116; *m*/*z* (ESI) 313 (100%, MH⁺); Found: MH⁺, 313.2115. C₁₆H₂₉N₂O₄ requires *MH*, 313.2127).

Scaffold Preparation (Schemes 3 and 4 (main text) and Scheme S1)

Experimental details for all scaffolds are organised in accordance with Scheme S1. Any deviation from the general procedures is specified.

General Procedure A

A solution of the respective alkene (1.0 eq) and aryl bromide (1.2 eq) in 1,4-dioxane (0.17 M) was added to a mixture of $Pd(OAc)_2$ (0.05 eq), DPE-Phos (0.10 eq) and $CsCO_3$ (2.5 eq) in a sealed tube under an atmosphere of nitrogen. The reaction mixture was heated to 105 °C until consumption of the alkene was observed by TLC and LCMS, and then diluted with EtOAc and filtered. The filtrate was washed with saturated aqueous NH₄Cl and the aqueous phase twice back extracted with EtOAc. The combined organic phase was dried (MgSO₄), filtered and concentrated *in vacuo* to give a crude product which was purified as specified.

Procedure B – See experimental details for preparation of 28.

General Procedure C1

TFA was added to a solution of the respective carbamate (1.0 eq) in CH_2Cl_2 (0.1 M) at 0 °C (ice) such that the final ratio of TFA: CH_2Cl_2 was 1:3 unless otherwise stated. The mixture was stirred at room temperature until complete consumption of the carbamate was observed by TLC, and then concentrated *in vacuo*. The crude product was dissolved in THF (0.2 M) and to this was added CDI (1.5 eq) and DBU (4.0 eq). The mixture was heated at 50 °C for 18 h before concentration *in vacuo* to give a crude product which was purified as specified.

General Procedure C2

CDI (4.5 eq) was added to a solution of the amine (1.0 eq) in DMF (0.13 M) and the mixture was heated at 110 °C until complete conversion to the desired urea was observed. The reaction mixture was then concentrated *in vacuo* and purified by SCX solid phase extraction.

General Procedure C3

CDI (1.5 eq) and DBU (2.5 eq) were added to a solution of the aminoalcohol (1.0 eq) in THF (0.2 M) and the mixture stirred at 50 °C until complete conversion to the desired urea/carbamate was observed. The reaction mixture was then concentrated *in vacuo* and the material obtained purified by SCX solid phase extraction.

General Procedure D1

NEt₃ (5.0 eq) and chloroacetyl chloride or freshly procured bromoacetyl bromide (1.2 eq) were added to a solution of the respective amine (1.0 eq) in CH₂Cl₂ (0.1 M) at 0 °C (ice). The reaction mixture was stirred at room temperature until complete consumption of the amine was observed and then diluted with CH₂Cl₂ and saturated aqueous NH₄Cl. The phases were separated and the aqueous phase extracted with CH₂Cl₂ (2 ×). The combined organic phase was dried (MgSO₄), filtered and concentrated *in vacuo*. The crude material was dissolved in THF (0.07 M) and cooled to 0 °C (ice) before NaH (60% dispersion, 2.0 eq) and NaI (1.0 eq, when chloroacetyl chloride was used) were added. The mixture was stirred at room temperature for 18 h before the addition of sufficient water to quench the reaction mixture and then concentrated *in vacuo*. The resulting crude product was purified by flash column chromatography using the eluent specified.

General Procedure D2

NEt₃ (2.0 eq) and TMSCl (1.5 eq) were added to a solution of the alcohol (1.0 eq) in CH₂Cl₂ (0.2 M) at room temperature. The reaction mixture was stirred until complete consumption of the alcohol was observed, before being cooled to 0 °C (ice) at which point further NEt₃ (2.0 eq) followed by newly procured bromoacetyl bromide (1.5 eq) were added. After 15 min the reaction mixture was warmed to room temperature and stirred until consumption of the intermediate amine was observed. 50% aqueous AcOH (10.0 eq) was then added to the reaction mixture which was stirred at room temperature for 18 h before being concentrated *in vacuo*. The crude material was dissolved in CH₂Cl₂ (0.6 M) and cooled to 0 °C (ice). To this was added *n*Bu₄NSO₄ (0.5 eq) followed by sufficient 35% aqueous NaOH such that the ratio of CH₂CL₂–35% aq. NaOH was 1:1. After 3 h the reaction mixture was diluted with water and CH₂Cl₂, the phases separated and the aqueous phase extracted with CH₂Cl₂ (2 ×). The combined organic phase was dried (MgSO₄), filtered and concentrated *in vacuo* to give a crude product that was purified by flash column chromatography using the eluent specified.

General Procedure D3/E2

i) NEt₃ or DIPEA (1.2 eq) followed by bromoacetyl bromide or chloroacetyl chloride (1.1 eq) was added to a solution of the respective amine (1.0 eq) in CH₂Cl₂ (0.1 M) at 0 °C (ice). The reaction mixture was stirred at room temperature until complete consumption of the amine was observed and then diluted with CH₂Cl₂ and saturated aqueous NH₄Cl. The phases were separated and the aqueous phase extracted with CH₂Cl₂ (2 ×). The combined organic phase was dried (MgSO₄), filtered and concentrated *in vacuo* to give a crude product that was used immediately.

ii) The crude product was used according to General Procedure E1 and the reaction mixture was worked-up as specified to give a crude product that was used immediately.

iii) NaH (60% dispersion in oil, 2.0 eq) and NaI (1.0 eq, where chloroacetyl chloride was used only) were added to a solution of the crude product in THF (0.1 M) at room temperature. The reaction mixture was stirred at room temperature until complete conversion to product was observed, quenched by the addition of a minimum volume of water and concentrated *in vacuo* to give a crude product that was purified as specified.

General Procedure D4

NEt₃ (1.0 eq) and freshly procured bromoacetyl bromide (1.0 eq) were added to a solution of the respective amine (1.0 eq) in CH_2Cl_2 (0.05 M) at 0 °C (ice). The reaction mixture was stirred at room temperature until complete consumption of the amine was observed and then further NEt₃ (72 eq) was added. The reaction mixture was stirred at room temperature for 16 h then diluted with CH_2Cl_2 and saturated aqueous NH₄Cl. The phases were separated and the aqueous phase extracted with CH_2Cl_2 (2

 \times). The combined organic phase was dried (MgSO₄), filtered and concentrated *in vacuo*. The resulting crude product was purified as specified.

General Procedure E1

A solution of Grubbs Second Generation Catalyst (0.05 eq) in de-gassed CH_2Cl_2 (2.5 mM) was added dropwise over 15 min to a refluxing solution of the respective dialkene (1.0 eq) in de-gassed CH_2Cl_2 (0.03 M). The reaction mixture was then heated at reflux until complete consumption of the dialkene was observed, cooled to room temperature and then purified or used directly as specified.

General Procedure F1

TFA was added to a solution of the respective carbamate (1.0 eq) in CH_2Cl_2 (0.1 M) at 0 °C (ice) such that the final ratio of TFA: CH_2Cl_2 was 1:4. The mixture was stirred at room temperature until complete consumption of the carbamate was observed by TLC, and then concentrated *in vacuo*. The crude product was dissolved in 4:1 CH_2Cl_2 -water (0.05 M) and to this was added K_2CO_3 (6.0 eq). The reaction mixture was stirred vigorously at room temperature until consumption of the intermediate amine was observed by TLC, and then diluted with CH_2Cl_2 and water, the phases separated and the aqueous phase extracted with CH_2Cl_2 (3 ×). The combined organic phase was dried (MgSO₄), filtered and concentrated *in vacuo* to give a crude product that was purified by flash column chromatography using the eluent specified.

General Procedure F2

TFA was added to a solution of the respective carbamate (1.0 eq) in CH_2Cl_2 (0.1 M) at 0 °C (ice) such that the final ratio of TFA: CH_2Cl_2 was 1:1. The mixture was stirred at room temperature until complete consumption of the carbamate was observed by TLC, and then concentrated *in vacuo*. The crude product was then dissolved in THF (0.1 M) and Na₂CO₃ (2.0 eq) was added. The reaction mixture was heated at reflux for 30 min, then cooled to room temperature, filtered and concentrated *in vacuo*. The resulting crude product was purified as specified.

General Procedure F3

10% Pd/C (0.2 eq Pd) and ethylene diamine (1.0 eq) were added to a solution of the respective Cbz-carbamate (1.0 eq) in MeOH (0.05 M). The reaction vessel was evacuated and purged with H_2 and this process repeated 5 times. The mixture was then stirred under an atmosphere of H_2 for 18 h before being filtered and concentrated *in vacuo* to give a crude product that was passed through a plug of SiO₂. The crude product was then dissolved in DMF (0.1 M) and to this was added Cs₂CO₃ (10.0 eq). The reaction mixture was heated at 110 °C for 8 h, filtered and concentrated *in vacuo* to give a crude product that was purified by flash column chromatography using the eluent specified.

tert-Butyl-(2*R*,3*S*)-3-(9,9-dimethyl-3-oxo-1,8,8-triphenyl-2,7-dioxa-4-aza-8-siladecan-4-yl)-2-{[2-(methoxycarbonyl)phenyl]methyl}pyrrolidine-1-carboxylate 26

NaHCO₃ (0.174 g, 2.07 mmol) followed by CbzCl (0.232 mL, 2.07 mmol) were added to a biphasic mixture of amine 11 (0.500 g, 1.03 mmol) in CHCl₃ (6.00 mL) and water (2.00 mL). The reaction mixture was stirred vigorously for 20 h and then diluted with CH₂Cl₂ (20 mL) and water (20 mL), the phases separated and the aqueous phase extracted with CH₂Cl₂ (2 \times 20 mL). The combined organic phase was dried (MgSO₄), filtered and concentrated in vacuo to give a crude product that was purified by flash column chromatography, eluting with 85:15 petrol-EtOAc to furnish a dicarbamate (0.556 g) that was used immediately. Then, according to General Procedure A, the dicarbamate (0.300 g, 0.480 mmol) was combined with methyl-2bromobenzoate (82.0 μL, 0.580 mmol), Pd(OAc)₂ (5.40 mg, 24.0 μmol), DPE-Phos (26.0 mg, 48.0 μmol) and Cs₂CO₃ (0.391 g, 1.20 mmol) and heated for 16 h. The crude product was purified by flash column chromatography, eluting with 85:15 petrol-EtOAc to furnish the pyrrolidine 26 (0.258 g, 51%, d.r. >95:5 trans:cis) as a colourless oil, $R_f 0.30$ (4:1 petrol-EtOAc); δ_H (500 MHz, DMSO, 353 K) 7.75 (1 H, d, J 7.6, Me-benzoate Ar 3-H), 7.58-7.56 (4 H, m, Si-Ar 2-H), 7.45-7.20 (14 H, m, Ar-H), 4.95 (2 H, app. s, OCH₂Ar), 4.24 (1 H, ddd, J 7.3, 4.9, 3.0, 3-H), 4.17 (1 H, app. dt, J 7.3, 7.0, 3.0, 2-H), 3.76 (3 H, s, CO₂CH₃), 3.66 (2 H, app. t, J 6.6, CH₂OSi), 3.63-3.58 (1 H, m, 5-H_A), 3.27-3.08 (5 H, m, 5-H_B, NCH₂, ArCH₂), 2.07-1.99 (1 H, m, 4-H_A), 1.91-1.85 (1 H, m, 4-H_B), 1.23 (9 H, s, OC(CH₃)₃), 0.98 (9 H, s, SiC(CH₃)₃); δ_C (125 MHz, DMSO, 353 K) 166.9 (CO₂CH₃), 154.4 (NHCO₂), 152.7 (NCO₂CH₂Ph), 138.6 (Me-benzoate Ar 1-C), 136.2 (Cbz Ar 1-C), 134.4 (SiAr 4-C), 132.7 (SiAr 1-C), 131.1 (Ar-C), 131.0 (Ar-C), 129.9 (Me-benzoate Ar 2-C), 129.4 (Ar-C), 129.2 (Ar-C), 127.7 (Ar-C), 127.2 (Ar-C), 127.1 (Ar-C), 126.8 (Ar-C), 125.7 (Ar-C), 78.6 and 77.8 (OC(CH₃)₃), 65.7 (OCH₂Ar), 61.8 (2-C), 61.7 (3-C), 61.6 (CH₂OSi), 51.1 (CO₂CH₃), 45.9 (NCH₂), 43.8 (5-C), 36.5 (ArCH₂), 27.9 (4-C), 27.4 (OC(CH₃)₃), 26.1 (SiC(CH₃)₃), 18.1 (SiC(CH₃)₃); v_{max}/cm^{-1} (neat) 2955, 1693, 1454, 1392, 1261, 1168, 1113; m/z (ESI) 773 (100%, MNa⁺); Found: MNa⁺, 773.3613. C₄₄H₅₄N₂O₇Si requires *MNa*, 773.3592.

Benzyl-*N*-[(1*S*,10a*R*)-5-oxo-1*H*,2*H*,3*H*,5*H*,10*H*,10a*H*-pyrrolo[1,2-b]isoquinolin-1-yl]-*N*-{2-[(*tert*-butyldiphenylsilyl)oxy]ethyl}carbamate 50

According to general procedure F1 ester **26** (0.200 g, 0.260 mmol) gave a crude product that was purified by flash column chromatography, eluting with 6:4 petrol–EtOAc to furnish the lactam **50** (0.124 g, 77%) as a colourless film, R_f 0.31 (1:1 petrol–EtOAc); δ_H (500 MHz, MeOD, 333 K) 7.90 (1 H, d, *J* 7.6, Me-benzoate Ar 2-H), 7.60-7.57 (4 H, m, SiAr 2-H), 7.42-7.26 (13 H, m, Ar-H), 7.06 (1 H, d, *J* 6.6, Me-benzoate Ar 5-H), 5.17-5.10 (2 H, m, OCH₂Ar), 4.38 (1 H, app. dd, *J* 18.5, 9.3, pyrollo 3-H), 3.86-3.66 (4 H, m, CH₂OSi, pyrrolo 2-H, pyrollo 5- H_A), 3.57-3.48 (2 H, m, pyrollo 5- H_B , NCH_A), 3.39 (1 H, app.

dt, *J* 13.5, 6.2, NC*H*_B), 2.88-2.85 (1 H, m, ArC*H*_B), 2.77-2.72 (1 H, m, ArC*H*_A), 2.06-2.04 (2 H, m, pyrollo 4-H), 0.99 (9 H, s, SiC(C*H*₃)₃); $\delta_{\rm C}$ (125 MHz, MeOD, 333 K) 165.6 (ArCO), 157.9 (NCO₂CH₂Ph), 138.8 (Me-benzoate Ar 1-C), 137.8 (Cbz Ar 1-C), 136.7 (SiAr 2-C), 136.6 (Ar-C), 134.6 (SiAr 1-C), 133.2 (Ar-C), 131.0 (Ar-C), 130.8 (Me-benzoate Ar 6-C), 129.6 (Ar-C), 129.3 (Ar-C), 128.9 (Ar-C), 128.8 (Ar-C), 128.7 (Ar-C), 128.2 (Me-benzoate Ar 2-C), 68.8 (OCH₂Ar), 63.8 (broad, pyrollo 3-C and CH₂OSi), 58.5 (pyrollo 2-C), 47.7 (NCH₂), 43.4 (pyrollo 5-C), 34.2 (ArCH₂), 27.5 (SiC(CH₃)₃), 26.8 (pyrollo 4-C), 20.0 (Si*C*(CH₃)₃); ν_{max} /cm⁻¹ (neat) 2957, 1701, 1654, 1464, 1427, 1345, 1276, 1141, 1111; *m*/*z* (ESI) 619 (100%, MH⁺); Found: MH⁺, 619.3009. C₃₈H₄₂N₂O₄Si requires *MH*, 619.2987.

tert-Butyl-(3R,7S)-8-(2-hydroxyethyl)-9-oxo-4,8-diazatricyclo[8.4.0.0³,⁷]tetradeca-1(10),11,13-triene-4-carboxylate 51

According to General Procedure F3, ester **26** (0.180 g, 0.24 mmol) gave a crude product that was purified by flash column chromatography, eluting with 95:4.5:0.5 DCM–EtOH–NH₃OH furnished the azepine **51** (0.032 g, 38%) as a colourless waxy solid, R_f 0.12 (95:4.5:0.5 DCM–EtOH–NH₃OH); δ_H (500 MHz, MeOD, 333 K) 7.68 (1 H, dd, *J* 7.6, 1.0, Ar 11-H), 7.41 (1 H, app. td, *J* 7.5, 1.4, Ar 12-H), 7.34 (1 H, app. td, *J* 7.6, 1.0, Ar 13-H), 7.15 (1 H, d, *J* 7.5, Ar 14-H), 4.02 (1 H, ddd, *J* 10.6, 8.5, 2.2, 3-H), 3.88-3.79 (2 H, m, 7-H and CH_AOH), 3.77-3.71 (2 H, m, CH_AOH and NCH_A), 3.68 (1 H, app. dd, *J* 11.0, 8.6, 5-H_A), 3.58 (1 H, ddd, *J* 13.6, 6.9, 5.5, NCH_B), 3.49 (1 H, app. d, *J* 16.7, 2-H_A), 3.27 (1 H, dd, *J* 16.7, 8.5, 2-H_B), 3.20 (1 H, app. dd, *J* 11.0, 5.8, 5-H_B), 2.23 (1 H, app. dtd, *J* 12.1, 11.1, 8.6, 6-H_A), 2.02 (1 H, app. dt, *J* 11.1, 5.8, 6-H_B), 1.52 (9 H, s, OC(CH₃)₃); δ_C (125 MHz, MeOD, 333 K) 172.6 (9-C), 157.1 (NCO₂), 138.1 (10-C), 136.7 (1-C), 132.3 (12-C), 131.0 (11-C), 130.9 (14-C), 128.1 (13-C), 81.6 (OC(CH₃)₃), 63.5 (3-C), 61.8 (7-C), 61.5 (CH₂OH), 47.2 (5-C), 46.1 (NCH₂), 36.9 (2-C), 28.9 (OC(CH₃)₃), 27.3 (6-C); v_{max}/cm^{-1} (neat) 3423, 2974, 1692, 1622, 1396, 1340, 1126; *m*/z (ESI) 347 (100%, MH⁺); Found: MH⁺, 347.1971. C₁₉H₂₇N₂O₄ requires *MH*, 347.1965.

tert-Butyl-N-{2-[(2R,3S)-2-{[(4-methyl-4H-1,2,4-triazol-3-yl)sulfonyl]methyl}morpholin-3-yl]ethyl}carbamate 29

Procedure B:

i) NEt₃ (1.13 mL, 8.10 mmol), 4-nitrobenzensulfonyl chloride (1.08 g, 4.86 mmol) and 4-dimethylaminopyridine (49.0 mg, 0.405 mmol) were added to a solution of amine **11** in CH₂Cl₂ (30.0 mL). The reaction mixture was heated to 40 °C for 16 h before being diluted with CH₂Cl₂ (30 mL), saturated aqueous NH₄Cl (30 mL) added, the phases separated, and the aqueous phase extracted with CH₂Cl₂ (2 × 30 mL). The combined organic phase was dried (MgSO₄), filtered and concentrated *in vacuo* to give a crude product which was immediately dissolved in THF (30.0 mL) and AcOH (0.280 mL, 4.86 mmol) followed by TBAF (1 M in THF, 4.86 mL, 4.86 mmol) added at 0 °C (ice). The reaction mixture was allowed to warm to room temperature and then stirred for 2 h before being diluted with CH₂Cl₂ (2 × 30 mL). The combined organic, saturated aqueous NH₄Cl (30 mL) added, the phases separated, and the aqueous phase extracted with CH₂Cl₂ (2 × 30 mL). The combined organic phase was dried (MgSO₄), filtered to warm to room temperature and then stirred for 2 h before being diluted with CH₂Cl₂ (2 × 30 mL). The combined organic phase was dried aqueous NH₄Cl (30 mL) added, the phases separated, and the aqueous phase extracted with CH₂Cl₂ (2 × 30 mL). The combined organic phase was dried (MgSO₄), filtered
and concentrated *in vacuo* to give a crude product which was purified by flash column chromatography, eluting with 96:3.6:0.4 DCM–EtOH–NH₄OH to furnish a primary alcohol (1.37 g, 78%) which was used immediately.

ii) NIS (1.07 g, 4.76 mmol) was added to a solution of the primary alcohol (1.36 g, 3.17 mmol) in CH₃CN (40.0 mL). The reaction mixture was heated to 65 °C for 2 h, cooled to room temperature and saturated aqueous Na₂S₂O₃ (40 mL) and CH₂Cl₂ (30 mL) added. The aqueous phase was extracted with CH₂Cl₂ (2 × 30 mL) and the combined organic phase dried (MgSO₄), filtered and concentrated *in vacuo* to give a crude product which was purified by flash column chromatography, eluting with 7:3 petrol–EtOAc) to furnish a morpholine (1.12 g, 64%, 56:44 *dr* (trans:cis)) which was used immediately.

iii) DBU (0.650 mL, 4.38 mmol) and 4-methyl-4*H*-1,2,4-triazole-3-thiol (0.303 g, 2.63 mmol) were added to a solution of the morpholine (0.974 g, 1.75 mmol) in CH₃CN (19.0 mL). The reaction mixture was stirred at room temperature for 18 h before being concentrated *in vacuo* and purified by SCX solid phase extraction to furnish the product (0.777 g, 82%). The diastereomers were then separated by flash column chromatography, eluting with 96:3.6:0.4 DCM–EtOH– NH₄OH) to furnish *cis*- (0.266 g, 28%) and *trans*- (0.314, 33%) diastereomers.

iv) *m*CPBA (77% purity, 0.399 g, 2.30 mmol) was added to a solution of the *trans*-diastereomer (0.314 g, 0.570 mmol) in CH₂Cl₂ (3.50 mL). The reaction mixture was stirred at room temperature for 18 h before being diluted with CH₂Cl₂ (10 mL), washed with saturated aqueous Na₂S₂O₃ (10 mL) and saturated aqueous NaHCO₃ (10 mL). The organic phase was dried (MgSO₄), filtered and concentrated *in vacuo*. The crude product was dissolved in CH₃CN (5.00 mL) and thiophenol (70.0 μ L, 0.680 mmol) followed by DBU (128 μ L, 0.86 mmol) added. The mixture was stirred at room temperature for 18 h before being concentrated *in vacuo* to give a crude product which was purified by SCX solid phase extraction to furnish the morpholine **28** (0.176 g, 79%, 13% over the 4 steps) as a yellow waxy solid, *R*_f 0.44 (85:13.5:1.5 DCM–EtOH–NH₄OH); [α]_D²² +22 (*c*. 1.08, CHCl₃). $\delta_{\rm H}$ (500 MHz, CDCl₃) 8.18 (1 H, s, Ar 3-H), 4.95 (1 H, br s, CO₂NH), 4.35 (1 H, app. dt, *J* 10.3, 2.4, 2-H), 4.11 (1 H, dd, *J* 15.1, 10.3, SO₂CH_A), 3.95 (3 H, s, NCH₃), 3.52 (1 H, dd, *J* 15.1, 2.4, SO₂CH_B), 3.61-3.57 (1 H, m, 6-H_A), 3.42-3.38 (1 H, m, 6-H_B), 2.99 (1 H, app. dt, *J* 10.3, 3-H), 3.34-3.27 (1 H, m, CO₂NHCH_B), 3.18 (1 H, ddd, *J* 11.1, 9.8, 5.3, CO₂NHCH_A), 2.89 (1 H, ddd, *J* 12.3, 6.3, 3.3, 5-H_A), 2.73-2.70 (1 H, m, 5-H_B), 1.71 (1 H, app. ddd, *J* 18.8, 10.3, 5.0, CO₂NHCH₂CH_A), 1.43 (10 H, app. br s, CO₂NHCH₂CH_B and OC(CH₃)₃); $\delta_{\rm C}$ (75 MHz, CDCl₃) 156.3 (NHCO₂), 151.7 (Ar 5-C), 146.6 (Ar 3-C), 79.4 (OC(CH₃)₃), 72.2 (2-C), 6.3.7 (6-C), 55.1 (SO₂CH₂), 53.0 (3-C), 41.9 (5-C), 36.8 (CO₂NHCH₂), 33.1 (NCH₃), 28.3 (OC(CH₃)₃ and CO₂NHCH₂CH₂); v_{max}/cm⁻¹ (neat) 3377, 2976, 1692, 1515, 1453, 1366, 1335, 1285, 1250, 1177, 1137, 1101; *m*/z (ESI) 390 (100%, MH⁺); Found: MH⁺, 390.1805. C₁₅H₂₈N₅O₅S requires *MH*, 390.1806.

(1R,9aS)-1-{[(4-Methyl-4H-1,2,4-triazol-3-yl)sulfonyl]methyl}-octahydropyrimido[4,3-c]morpholin-6-one 44

According to General Procedure C1 morpholine **29** (0.156 g, 0.400 mmol) gave a crude product that was purified by SCX solid phase extraction followed by flash column chromatography, eluting with 95:5 CH₂Cl₂–saturated methanolic NH₃ to furnish urea **44** (0.065 g, 51%) as a colourless waxy solid, R_f 0.31 (95:5 CH₂Cl₂–saturated methanolic NH₃); $[\alpha]_D^{28}$ +55 (*c*. 0.190, CH₃OH)_i δ_H (500 MHz, MeOD) 8.65 (1 H, s, Ar 3-H), 4.46 (1 H, ddd, *J* 11.2, 3.8, 2.7, 1-H), 4.36 (1 H, dd, *J* 15.0, 11.2, SO₂CH_A), 3.98 (3 H, s, NCH₃), 3.97-3.94 (1 H, m, 3-H_A), 3.74 (1 H, dd, *J* 15.0, 2.7, SO₂CH_B), 3.75-3.72 (1 H, m, H-9a), 3.40 (1 H, app. dt, *J* 12.1, 3.2, 3-H_B), 3.32-3.28 (1 H, under MeOD signal, 4-H_A), 3.22-3.19 (2 H, m, 8-H), 2.83 (1 H, ddd, *J* 13.2, 3.8)

12.1, 4.1, 4-H_B), 1.98 (1 H, ddd, *J* 13.4, 9.1, 4.1, 9-H_A), 1.74 (1 H, ddd, *J* 13.4, 9.5, 5.6, 9-H_B); $\delta_{\rm C}$ (125 MHz, MeOD) 159.3 (6-C), 153.5 (Ar 5-C), 149.1 (Ar 3-C), 71.1 (1-C), 60.6 (3-C), 56.8 (9a-C), 53.6 (SO₂CH₂), 43.3 (4-C), 38.8 (8-C), 34.0 (NCH₃), 25.1 (9-C); $\nu_{\rm max}/\rm{cm}^{-1}$ (neat) 3317, 2935, 1642, 1499, 1331, 1288, 1171. 1136; *m*/*z* (ESI) 316 (100%, MH⁺); Found: MH⁺, 316.1070. C₁₁H₁₈N₅O₄S requires *MH*, 316.1074.

tert-Butyl-N-[(3R)-3-[(4R)-4-methyl-2-oxo-1,3-oxazolidin-3-yl]pent-4-en-1-yl]carbamate 32

According to General Procedure C3, aminoalcohol **12** (1.00 g, 3.87 mmol) furnished cyclic carbamate **32** (0.909 g, 83%, >95:5 d.r.) as a colourless oil, $R_f 0.4$ (1:1 petrol–EtOAc); δ_H (500 MHz, CDCl₃) 5.94 (1 H, ddd, *J* 17.2, 10.4, 6.5, 4-H), 5.32-5.28 (2 H, m, 5-H), 5.23-5.16 (1 H, m, CO₂N*H*), 4.38 (1 H, app. t, *J* 8.4, oxazolidine 3-H_A), 4.31-4.27 (1 H, m, 3-H), 4.00-3.92 (1 H, m, oxazolidine 4-H), 3.85-3.82 (1 H, m, oxazolidine 3-H_B), 3.38 (1 H, br s, 1-H_A), 3.04 (1 H, app. dq, *J* 13.8, 7.0, 1-H_B), 1.87 (2 H, app. dd, *J* 13.5, 7.0, 2-H), 1.43 (9 H, s, OC(*CH*₃)₃), 1.27 (3 H, d, *J* 6.1, oxazolidine *CH*₃); δ_C (75 MHz, CDCl₃), 158.3 (oxazolidine 1-C), 155.9 (*CO*₂NH), 134.8 (4-C), 118.6 (5-C), 79.0 (O*C*(CH₃)₃), 69.1 (oxazolidine 3-C), 53.3 (3-C), 50.8 (oxazolidine 4-C), 36.8 (1-C), 33.0 (2-C), 28.3 (OC(*CH*₃)₃), 20.3 oxazolidine *CH*₃); ν_{max}/cm^{-1} (neat) 3359, 2981, 1738, 1515, 1415, 1367, 1275, 1260, 1170; *m*/*z* (ESI) 307 (100%, MNa⁺); Found: MNa⁺, 307.1623. C₁₄H₂₄N₂O₄ requires *MNa*, 307.1628.

tert-Butyl-(2S,3R)-3-[(4R)-4-methyl-2-oxo-1,3-oxazolidin-3-yl]-2-(pyrimidin-5-ylmethyl)pyrrolidine-1-carboxylate S1

According to General Procedure A, cyclic carbamate **32** (0.150 g, 0.530 mmol) and 5-bromopyrimidine (0.100 g, 0.630 mmol) gave a crude product that was purified by flash column chromatography, eluting with 93:6:1 CH₂Cl₂–EtOH–NH₃OH to furnish pyrrolidine **S1** (0.192 g, 90% (based on 86% purity), >95:5 *dr*) as a colourless oil. A sample was further purified by massdirected preparative HPLC (XBridge Prep C18 5µm OBD, 50-95% MeOH–water with 0.1% HCOOH) for the purposes of analysis, R_f 0.28 (93:6:1 CH₂Cl₂–EtOH–NH₃OH); δ_H (500 MHz, MeOD, 333 K) 9.02 (1 H, s, Ar 2-H), 8.68 (2 H, s, Ar 4-H), 4.39 (1 H, app. br s, pyrrolidine 2-H), 4.31 (1 H, dd, *J* 8.5, 7.8, oxazolidine 3-H_a), 3.97 (1 H, ddd, *J* 7.1, 6.0, 4.3, pyrrolidine 3-H), 3.94-3.88 (1 H, m, oxazolidine 4-H), 3.83 (1 H, dd, *J* 8.5, 7.3, oxazolidine 3-H_B), 3.73 (1 H, app. br s, pyrrolidine 5-H_B), 3.03 (1 H, dd, *J* 13.5, 7.3, ArCH_A), 2.97 (1 H, dd, *J* 13.5, 5.8, ArCH_B), 2.18 (1 H, app. br s, pyrrolidine 5-H_B), 3.03 (1 H, dd, *J* 13.5, 7.3, ArCH_A), 2.97 (1 H, dd, *J* 13.5, 5.8, ArCH_B), 2.18 (1 H, app. br s, pyrrolidine 4-H_A), 2.06 (1 H, app. ddt, *J* 13.2, 8.0, 6.8, pyrrolidine 4-H_B), 1.41 (9 H, s, OC(CH₃)₃), 1.21 (3 H, d, *J* 6.1, oxazolidine CH₃); δ_C (125 MHz, MeOD, 333 K), 159.8 (oxazolidine 1-C), 159.0 (Ar 4-C), 157.6 (Ar 2-C), 156.1 (CO₂NH), 133.5 (Ar 5-C), 81.6 (OC(CH₃)₃), 70.9 (oxazolidine 3-C), 61.6 (broad, pyrrolidine 2-C), 59.3 (broad, pyrrolidine 3-C), 52.8 (oxazolidine 4-C), 46.2 (broad, pyrrolidine 5-C), 34.4 (broad, ArCH₂), 29.2 (broad, pyrrolidine 4-C), 28.2 (OC(CH₃)₃), 19.8 oxazolidine CH₃); υ_{max}/cm^{-1} (neat) 2974, 1747, 1695, 1562, 1480, 1410, 1234, 1168, 1123, 1046; *m/z* (ESI) 307 (100%, MH⁺); Found: MH⁺, 363.2031. C₁₈H₂₆N₄O₄ requires *MH*, 363.2031. tert-Butyl-(2S,3R)-2-[(4-cyanophenyl)methyl]-3-[(4R)-4-methyl-2-oxo-1,3-oxazolidin-3-yl]pyrrolidine-1-carboxylate 40

According to General Procedure A, cyclic carbamate **32** (0.133 g, 0.460 mmol) and 4-bromobenzonitrile (0.102 g, 0.560 mmol) gave a crude product that was purified by flash column chromatography, eluting with 96:3.6:0.4 CH₂Cl₂–EtOH–NH₃OH to furnish pyrrolidine **40** (0.142 g, 76% (based on 95% purity), >95:5 *dr*) as a colourless oil. A sample was further purified by mass-directed preparative HPLC (XBridge Prep C18 5µm OBD, 50-95% MeOH–water with 0.1% HCOOH) for the purposes of analysis, R_f 0.38 (95:4.5:0.5 CH₂Cl₂–EtOH–NH₃OH); δ_H (500 MHz, MeOD, 333 K) 7.64 (2 H, d, *J* 8.0, Ar 3-H), 7.44 (2 H, d, *J* 8.0, Ar 2-H), 4.37 (1 H, app. br s, pyrrolidine 2-H), 4.21-4.16 (1 H, m, oxazolidine 3-H_A), 4.00-3.95 (1 H, m, pyrrolidine 3-H), 3.81-3.75 (2 H, m, oxazolidine 4-H, oxazolidine 3-HB), 3.72-3.67 (1 H, m, pyrrolidine 5-HA), 3.19-3.13 (2 H, m, pyrrolidine 5-HB, ArCHA), 2.94 (1 H, dd, J 13.4, 7.9, ArCHB), 2.11 (1 H, app. br s, pyrrolidine 4-HA), 2.02-1.96 (1 H, m, pyrrolidine 4-HB), 1.45 (9 H, s, OC(CH3)3), 1.12 (3 H, d, J 6.0, oxazolidine CH3); δC (125 MHz, MeOD, 333 K), 156.1 (CO2NH), 145.2 (Ar 1-C), 133.3 (Ar 3-C), 131.9 (Ar 2-C), 119.7 (C≡N), 111.6 (Ar 1-C), 81.5 (OC(CH3)3), 7.08 (oxazolidine 3-C), 52.9 (oxazolidine 4-C), 46.2 (broad, pyrrolidine 5-C), 40.0 (broad, ArCH2), 29.6 (broad, pyrrolidine 4-C), 28.8 (OC(CH3)3), 19.7 oxazolidine CH3); umax/cm−1 (neat) 2975, 2227, 1747, 1694, 1608, 1403, 1366, 1232, 1169, 1122, 1040; m/z (ESI) 408 (100%, MNa+); Found: MNa+, 408.1898. C21H27N3O4 requires MNa, 408.1894.

tert-Butyl-(2S,3R)-3-[(4R)-4-methyl-2-oxo-1,3-oxazolidin-3-yl]-2-(pyridin-3-ylmethyl)pyrrolidine-1-carboxylate S2

According to General Procedure A, cyclic carbamate **32** (0.150 g, 0.530 mmol) and 3-bromopyridine (61.0 μ L, 0.630 mmol) gave a crude product that was purified by flash column chromatography, eluting with 95:4.5:0.5 CH₂Cl₂–EtOH–NH₃OH to furnish pyrrolidine **S2** (0.140 g, 66% (based on 90% purity), >95:5 d.r.) as a colourless oil. A sample was further purified by mass-directed preparative HPLC (XBridge Prep C18 5 μ m OBD, 5-95% MeOH–water with 0.1% HCOOH) for the purposes of analysis, R_f 0.20 (95:4.5:0.5 CH₂Cl₂–EtOH–NH₃OH); δ_H (500 MHz, MeOD, 333 K) 8.47 (1 H, br s, Ar 2-H), 8.43 (1 H, br s, Ar 4-H), 7.75 (1 H, d, *J* 7.7, Ar 6-H), 7.38 (1 H, dd, *J* 7.6, 5.0, Ar 5-H), 4.38 (1 H, app. br s, pyrrolidine 2-H), 4.24 (1 H, dd, *J* 8.4, 7.6, oxazolidine 3-H_A), 3.97 (1 H, ddd, *J* 6.9, 6.3, 4.3, pyrrolidine 3-H), 3.87-3.81 (1 H, m, oxazolidine 4-H), 3.78 (1 H, dd, *J* 13.5, 4.5, ArCH_A), 2.96 (1 H, dd, *J* 13.5, 7.6, ArCH_B), 2.16-2.09 (1 H, m, pyrrolidine 4-H_A), 2.01 (1 H, app. ddt, *J* 13.2, 8.1, 6.9, pyrrolidine 4-H_B), 1.44 (9 H, s, OC(CH₃)₃), 1.14 (3 H, d, *J* 6.1, oxazolidine CH₃); δ_C (125 MHz, MeOD, 333 K), 159.7 (oxazolidine 1-C), 156.1 (CO₂NH), 151.2 (Ar 2-C), 148.4 (Ar 6-C), 139.4 (Ar 4-C), 135.5 (Ar 3-C), 125.1 (Ar 5-C), 81.5 (OC(CH₃)₃), 70.8 (oxazolidine 3-C), 61.7 (broad, pyrrolidine 2-C), 59.2 (broad, pyrrolidine 3-C), 52.9 (oxazolidine 4-C), 46.2 (broad, pyrrolidine 5-C), 37.4 (broad, ArCH₂), 29.5 (broad, pyrrolidine 4-C), 28.8 (OC(CH₃)₃), 19.7 (oxazolidine CH₃);

 v_{max}/cm^{-1} (neat) 2975, 1746, 1693, 1479, 1402, 1366, 1231, 1170, 1124, 1044; *m/z* (ESI) 362 (100%, MH⁺); Found: MH⁺, 362.2079. C₁₉H₂₇N₃O₄ requires *MH*, 362.2074.

tert-Butyl-N-[(3R)-3-[(3R)-3-methyl-5-oxomorpholin-4-yl]pent-4-en-1-yl]carbamate 34

According to General Procedure D2, aminoalcohol **12** (0.500 g, 1.93 mmol) gave a crude product that was purified by flash column chromatography, eluting with 6:4 EtOAc–petrol to furnish the ketomorpholine **34** (0.368 g, 64%, >95:5 *dr*) as a colourless oil, R_f 0.18 (1:1 petrol–EtOAc); δ_H (500 MHz, CDCl₃) 5.98 (1 H, ddd, *J* 17.2, 10.4, 6.4, H-4), 5.28 (1 H, app. d, *J* 10.4, H-5_A), 5.27 (1 H, app. d, *J* 17.2, H-5_B), 5.14 (1 H, br s, CO₂N*H*), 4.59-4.57 (1 H, m, 3-H), 4.23 (1 H, dd, *J* 16.8, 9.3, morpholine 6-H_A), 4.14 (1 H, d, *J* 16.8, morpholine 6-H_B), 3.77-3.65 (2 H, m, morpholine 2-H), 3.52-3.50 (1 H, m, morpholine 3-H), 3.29 (1 H, app. dt, *J* 11.5, 5.2, 1-H_A), 3.01 (1 H, ddd, *J* 11.5, 8.1, 6.0, 1-H_B), 2.00 (1 H, app. ddt, *J* 11.6, 9.1, 5.2, 2-H_A), 1.96-1.88 (1 H, m, 1-H_B), 1.43 (9 H, s, OC(CH₃)₃), 1.32 (3 H, d, *J* 6.5, morpholine CH₃); δ_C (125 MHz, CDCl₃), 166.9 (morpholine 5-C), 155.8 (CO₂NH), 135.7 (4-C), 118.1 (5-C), 78.2 (OC(CH₃)₃), 69.4 (morpholine 2-C), 67.5 (morpholine 6-C), 56.4 (3-C), 50.4 (morpholine 3-C), 37.0 (1-C), 32.0 (2-C), 28.2 (OC(CH₃)₃), 18.8 (morpholine CH₃); v_{max}/cm^{-1} (neat) 3334, 2977, 1709, 1643, 1524, 1366, 1275, 1171; *m*/z (ESI) 299 (100%, MH⁺); Found: MH⁺, 299.1973. C₁₅H₂₆N₂O₄ requires *MH*, 299.1965.

tert-Butyl-(2S,3R)-3-[(3R)-3-methyl-5-oxomorpholin-4-yl]-2-(pyrimidin-5-ylmethyl)pyrrolidine-1-carboxylate 42

According to general procedure A ketomorpholine **34** (0.150 g, 0.500 mmol) and 5-bromopyrimidine (96.0 mg, 0.600 mmol) gave a crude product that was purified by flash column chromatography, eluting with 95:4.5:0.5 CH₂Cl₂–EtOH–NH₃OH to furnish pyrrolidine **42** (0.180 g, 84% (based on 87% purity), >95:5 *dr*) as a colourless film. A sample was further purified by mass-directed preparative HPLC (XBridge Prep C18 5µm OBD, 50-95% MeOH–water with 0.1% HCOOH) for the purposes of analysis, $R_{\rm f}$ 0.30 (93:6:1 CH₂Cl₂–EtOH–NH₃OH); $\delta_{\rm H}$ (500 MHz, MeOD, 333 K) 9.10 (1 H, s, Ar 2-H), 8.69 (2 H, s, Ar 4-H), 4.50 (1 H, br s, pyrrolidine 3-H), 4.19-4.15 (1 H, m, pyrrolidine 2-H), 4.15 (1 H, d, *J* 16.9, morpholine 6-H_A), 3.03 (1 H, d, *J* 16.9, morpholine 6-H_B), 3.78 (1 H, br s, pyrrolidine 5-H_A), 3.71 (1 H, dd, *J* 11.6, 1.7, morpholine 2-H_A), 3.63 (1 H, dd, *J* 11.6, 2.5, morpholine 2-H_B), 3.52-3.48 (1 H, m, morpholine 3-H), 3.14-3.00 (2 H, m, pyrrolidine 5-H_B and ArCH_A), 2.94 (1 H, dd, *J* 13.9, 5.3, ArCH_B), 2.10-2.08 (2 H, m, pyrrolidine 4-H), 1.41 (9 H, s, OC(CH₃)₃), 1.30 (3 H, d, *J* 6.4, morpholine CH₃); $\delta_{\rm C}$ (125 MHz, MeOD, 333 K), 169.6 (morpholine 5-C), 159.1 (Ar 2-C), 157.6 (Ar 4-C), 156.1 (CO₂NH), 133.4 (Ar 1-C), 81.6 (OC(CH₃)₃), 70.5 (morpholine 2-C), 68.3 (morpholine 6-C), 62.0 (broad, pyrrolidine 2-C), 60.2 (broad, pyrrolidine 3-C), 51.3 (morpholine 3-C), 46.6 (pyrrolidine 5-C), 34.3 (broad, ArCH₂), 28.7 (OC(CH₃)₃, and pyrrolidine 4-C), 19.7 (morpholine CH₃); ν_{max}/cm^{-1} (neat) 2978, 1694, 1651, 1562, 1409, 1367, 1286, 1152, 1124, 1048; *m*/z (ESI) 377 (100%, MH⁺); Found: MH⁺, 377.2190. C₁₉H₂₈N₄O₄ requires *MH*, 377.2183.

tert-Butyl-(2S, 3R)-2-[(4-cyanophenyl)methyl]-3-[(3R)-3-methyl-5-oxomorpholin-4-yl]pyrrolidine-1-carboxylate S3-2-[(4-cyanophenyl)methyl]-3-[(3R)-3-methyl-5-oxomorpholin-4-yl]pyrrolidine-1-carboxylate S3-2-[(4-cyanophenyl)methyl]-3-[(3R)-3-methyl-5-oxomorpholin-4-yl]pyrrolidine-1-carboxylate S3-2-[(4-cyanophenyl)methyl]-3-[(3R)-3-methyl-5-oxomorpholin-4-yl]pyrrolidine-1-carboxylate S3-2-[(4-cyanophenyl)methyl]-3-[(3R)-3-methyl-5-oxomorpholin-4-yl]pyrrolidine-1-carboxylate S3-2-[(4-cyanophenyl)methyl]-3-[(

According to General Procedure A, ketomorpholine **34** (0.153 g, 0.510 mmol) and 4-bromobenzonitrile (0.112 g, 0.620 mmol) gave a crude product that was purified by flash column chromatography, eluting with 96:3.6:0.4 CH₂Cl₂–EtOH–NH₃OH to furnish pyrrolidine **S3** (0.159 g, 63% (based on 80% purity), >95:5 *dr*) as a colourless waxy solid. A sample was further purified by mass-directed preparative HPLC (XBridge Prep C18 5µm OBD, 50-95% MeOH–water with 0.1% HCOOH) for the purposes of analysis, R_{t} 0.25 (96:3.6:0.4 CH₂Cl₂–EtOH–NH₃OH); δ_{H} (500 MHz, MeOD, 333 K) 7.64 (2 H, d, *J* 8.0, Ar 3-H), 7.45 (2 H, d, *J* 8.0, Ar 2-H), 4.45 (1 H, br s – under signal for residual water, pyrrolidine 3-H), 4.21-4.18 (1 H, m, pyrrolidine 2-H), 4.10 (1 H, d, *J* 16.9, morpholine 6-H_A), 3.95 (1 H, d, *J* 16.9, morpholine 6-H_B), 3.73 (1 H, app. br s, pyrrolidine 5-HA), 3.64 (1 H, dd, J 11.6, 1.3, morpholine 2-HA), 3.51 (1 H, dd, J 11.6, 1.9, morpholine 2-HB), 3.43-3.39 (1 H, m, morpholine 3-H), 1.45 (9 H, s, OC(CH3)3), 1.20 (3 H, d, J 6.4, morpholine CH3); δC (125 MHz, MeOD, 333 K), 169.4 (morpholine 5-C), 156.0 (CO2NH), 145.2 (Ar 1-C), 133.2 (Ar 3-C), 132.0 (Ar 2-C), 119.8 (C≡N), 111.5 (Ar 4-C), 81.4 (OC(CH3)3), 70.4 (morpholine 2-C), 68.4 (morpholine 6-C), 62.5 (broad, pyrrolidine 2-C), 60.6 (broad, pyrrolidine 3-C), 51.6 (morpholine 3-C), 46.5 (pyrrolidine 5-C), 40.0 (broad, ArCH2), 29.2 (broad, pyrrolidine 4-C), 28.8 (OC(CH3)3), 19.4 (morpholine 2-H); g_{11} , g_{12} , g_{12} , g_{12} , g_{13} ,

tert-Butyl-(2S,3R)-3-[(3R)-3-methyl-5-oxomorpholin-4-yl]-2-(pyridin-3-ylmethyl)pyrrolidine-1-carboxylate 43

According to General Procedure A, ketomorpholine **34** (0.159 g, 0.570 mmol) and 3-bromopyridine (66.0 µL, 0.680 mmol) gave a crude product that was purified by flash column chromatography, eluting with 95:4.5:0.5 CH₂Cl₂–EtOH–NH₃OH to furnish pyrrolidine **43** (0.150 g, 61% (based on 87% purity), >95:5 *dr*) as a colourless oil. A sample was further purified by mass-directed preparative HPLC (XBridge Prep C18 5µm OBD, 5-95% MeOH–water with 0.1% HCOOH) for the purposes of analysis, $R_f 0.17$ (95:4.5:0.5 CH₂Cl₂–EtOH–NH₃OH); δ_H (500 MHz, MeOD, 333 K) 8.45 (1 H, s, Ar 2-H), 8.41 (1 H, app. br s, Ar 6-H), 7.75 (1 H, d, *J* 7.4, Ar 6-H), 7.36 (1 H, dd, *J* 7.4, 4.9, Ar 5-H), 4.46 (1 H, br s – under signal for residual water, pyrrolidine 3-H), 4.21-4.17 (1 H, m, pyrrolidine 2-H), 4.11 (1 H, d, *J* 16.9, morpholine 6-H_A), 3.98 (1 H, d, *J* 16.9, morpholine 6-H_B), 3.74 (1 H, app. br s, pyrrolidine 5-H_A), 3.65 (1 H, dd, *J* 11.6, 1.6, morpholine 2-H_A), 3.54 (1 H, dd, *J* 11.6, 2.4, morpholine 2-H_B), 3.46-3.42 (1 H, m, morpholine 3-H), 3.05-3.01 (3 H, m, pyrrolidine 5-H_B and ArCH₂), 2.05-2.02 (2 H, m, pyrrolidine 4-H), 1.44 (9 H, s, OC(CH₃)₃), 1.23 (3 H, d, *J* 6.4, morpholine CH₃); δ_C (125 MHz, MeOD, 333 K), 169.5 (Morpholine 5-C), 156.1 (CO₂NH), 151.3 (Ar 2-C), 148.3 (Ar 6-C), 139.5 (Ar 3-C), 135.6 (1-C), 125.1 (Ar 5-C), 81.5 (OC(CH₃)₃), 70.5 (morpholine 2-C), 68.4 (morpholine 6-C), 62.0 (broad, pyrrolidine 2-C), 60.5 (broad, pyrrolidine 3-C), 51.6 (morpholine 3-C), 46.6 (pyrrolidine 5-C), 37.0 (broad, ArCH₂), 28.8 (OC(CH₃)₃), 28.5 (pyrrolidine 4-C), 19.5 (morpholine 4-C), 19.5 (morpholine 5-C), 19.5 (morpholine 5-C), 37.0 (broad, ArCH₂), 28.8 (OC(CH₃)₃), 28.5 (pyrrolidine 4-C), 19.5 (morpholine 4-C), 19.5 (morpholine 5-C), 46.6 (pyrrolidine 5-C), 37.0 (broad, ArCH₂), 28.8 (OC(CH₃)₃), 28.5 (pyrrolidine 4-C), 19.5 (morpholine 4-C), 19.5 (morpholin

*C*H₃); v_{max}/cm^{-1} (neat) 2976, 1688, 1652, 1426, 1402, 1367, 1166, 1123; *m/z* (ESI) 376 (100%, MH⁺); Found: MH⁺, 376.2236. C₂₀H₂₉N₃O₄ requires *MH*, 376.2231.

Benzyl-3-[(3R)-5-{[(tert-butoxy)carbonyl]amino}pent-1-en-3-yl]-2-oxoimidazolidine-1-carboxylate 31

According to General Procedure C2 amine **13** (0.569 g, 1.51 mmol) furnished urea **31** (0.453 g, 74%) as a colourless oil, R_f 0.29 (1:1 petrol–EtOAc); $[\alpha]_D^{26}$ +65 (*c*. 0.36, CHCl₃); δ_H (500 MHz, MeOD, 333 K) 7.42-7.28 (5 H, m, Ar-H), 5.83 (1 H, ddd, *J* 17.5, 10.3, 6.1, 2-H), 5.24-5.20 (4 H, m, 1-H, OCH₂Ar), 4.45-4.40 (1 H, m, 3-H), 3.87-3.83 (2 H, m, imidazolidine 4-H), 3.43-3.34 (2 H, m, imidazolidine 5-H), 3.11 (1 H, app. dt, *J* 13.3, 6.6, 5-H_A), 3.01 (1 H, app. dt, *J* 13.3, 7.3, 5-H_B), 1.85-1.80 (2 H, m, 4-H), 1.42 (OC(CH₃)₃); δ_C (125 MHz, MeOD, 333 K) 158.3 (CO₂NH), 155.8 (imidazolidine 2-C), 153.4 (ArCH₂OCO₂), 137.4 (Ar 1-C), 136.4 (2-C), 129.6 (Ar-C), 129.3 (Ar-C), 129.2 (Ar-C), 117.9 (1-C), 80.2 (OC(CH₃)₃); υ_{max} /cm⁻¹ (neat) 3362, 2975, 1774, 1701, 1509, 1389, 1250, 1165; *m*/*z* (ESI) 426 (100%, MNa⁺); Found: MNa⁺, 426.2004. C₂₁H₂₉N₃O₅ requires *MNa*, 426.2000.

Benzyl-3-[(2*S*,3*R*)-1-[(*tert*-butoxy)carbonyl]-2-(pyrimidin-5-ylmethyl)pyrrolidin-3-yl]-2-oxoimidazolidine-1-carboxylate S4

According to General Procedure A, urea **31** (0.100 g, 0.248 mmol) and 5-bromopyrimidine (47.0 mg, 0.297 mmol) gave a crude product that was purified by flash column chromatography, eluting with 93.25:6:0.75 DCM–EtOH–NH₃OH to furnish pyrrolidine **S4** (0.046 g, 37% (based upon 81% purity), >95:5 *dr*) as a colourless film. A sample was further purified by massdirected preparative HPLC (XBridge Prep C18 5µm OBD, 50-95% MeOH–water with 0.1% HCOOH) for the purposes of analysis, $R_f 0.27$ (93.25:6:0.75 DCM–EtOH–NH₃OH); δ_H (500 MHz, MeOD, 333 K) 8.99 (1 H, s, Ar 2-H), 8.69 (2 H, s, Ar 4-H), 7.41-7.30 (5 H, m, Ar-H), 5.23 (2 H, s, OCH₂Ar), 4.32 (1 H, app. td, *J* 6.0, 4.2, pyrrolidine 3-H), 4.09 (1 H, app. td, *J* 5.9, 4.4, pyrrolidine 2-H), 3.84-3.74 (2 H, m, imidazolidine 4-H), 3.66 (1 H, app. dt, *J* 10.9, 8.2, pyrrolidine 5-H_A), 3.42 (1 H, ddd, *J* 9.4, 8.6, 6.6, imidazolidine 5-H_A), 2.95 (1 H, dd, *J* 9.4, 6.2, imidazolidine 5-H_A), 3.22-3.15 (1 H, m, pyrrolidine 5-H_B), 3.05 (1 H, dd, *J* 13.6, 5.9, ArCH_B), 2.11 (1 H, app. br s, pyrrolidine 4-H_A), 2.02 (1 H, ddd, *J* 13.6, 8.2, 6.2, pyrrolidine 4-H_B), 1.40 (OC(CH₃)₃); δ_C (125 MHz, MeOD, 333 K) 159.0 (Ar 4-C), 157.6 (Ar 2-C), 156.0 (*f*BuCO₂N), 155.6 (imidazolidine 2-C), 153.3 (ArCH₂OCO₂), 137.3 (Cbz Ar 1-C), 133.3 (Ar 5-C), 129.6 (Cbz Ar-C), 129.4 (Cbz Ar-C), 129.2 (Cbz Ar-C), 81.8 (OC(CH₃)₃), 68.8 (OCH₂Ar), 57.8 (broad, pyrrolidine 3-C), 55.9 (broad, pyrrolidine 2-C), 46.2 (pyrrolidine 5-C), 42.2 (imidazolidine 4-C), 39.3 (imidazolidine 5-C), 34.0 (broad, ArCH₂), 28.7 (OC(CH₃)₃), 27.6 (pyrrolidine 4-C); v_{max}/cm^{-1} (neat) 2974, 1775, 1684, 1362, 1259, 1212; *m*/z (ESI) 504 (100%, MNa⁺); Found: MNa⁺, 504.2223. C₂sH₃N₃O₅ requires *MNa*, 504.2217. Benzyl-3-[(2S,3R)-1-[(tert-butoxy)carbonyl]-2-(pyridin-3-ylmethyl)pyrrolidin-3-yl]-2-oxoimidazolidine-1-carboxylate 39

According to General Procedure A, urea **31** (0.149 g, 0.370 mmol) and 3-bromopyridine (43.0 µL, 0.440 mmol) gave a crude product that was purified by flash column chromatography, eluting with 95:4.5:0.5 DCM–EtOH–NH₃OH to furnish pyrrolidine **39** (0.085 g, 45% (based upon 96% purity), >95:5 *dr*) as a colourless film. A sample was further purified by mass-directed preparative HPLC (XBridge Prep C18 5µm OBD, 5-95% MeOH–water with 0.1% HCOOH) for the purposes of analysis, $R_{\rm f}$ 0.20 (93.25:6:0.75 DCM–EtOH–NH₃OH); $\delta_{\rm H}$ (500 MHz, MeOD, 333 K) 8.45 (2 H, br s, Ar 2-H, Ar 6-H), 7.74 (1 H, d, *J* 7.4, Ar 4-H), 7.40-7.30 (6 H, Cbz Ar-H, Ar 5-H), 5.22 (2 H, s, OCH₂Ar), 4.34 (1 H, app. td, *J* 6.3, 4.4, pyrrolidine 3-H), 4.08 (1 H, app. dt, *J* 6.3, 4.9, pyrrolidine 2-H), 3.77 (1 H, app. td, *J* 10.0, 6.0, imidazolidine 4-H_A), 3.69 (1 H, app. td, *J* 10.0, 6.6, imidazolidine 5-H_B), 3.19-3.09 (1 H, m, pyrrolidine 5-H_B), 3.00 (1 H, app. br s, ArCH₂), 2.06-1.93 (2 H, m, 4-H), 1.43 (OC(CH₃)₃); $\delta_{\rm C}$ (125 MHz, MeOD, 333 K) 155.9 (*t*BuCO₂N and imidazolidine 2-C) , 153.3 (ArCH₂OCO₂), 151.0 (Ar 2-C), 148.1 (Ar 6-C), 139.5 (Ar 4-C), 137.3 (Cbz Ar 1-C), 129.7 (Ar 3-C), 129.6 (Cbz Ar-C), 129.3 (Cbz Ar-C), 129.2 (Cbz Ar-C), 125.2 (Ar 5-C), 81.6 (OC(CH₃)₃), 68.8 (OCH₂Ar), 61.9 (broad, pyrrolidine 3-C), 57.9 (broad, pyrrolidine 2-C), 46.2 (pyrrolidine 5-C), 42.1 (imidazolidine 4-C), 39.3 (imidazolidine 5-C), 34.0 (broad, ArCH₂), 28.8 (OC(CH₃)₃), 27.7 (pyrrolidine 4-C); v_{max}/cm^{-1} (neat) 2974, 1775, 1684, 1387, 1362, 1259, 1164, 1114; *m/z* (ESI) 503 (100%, MNa⁺); Found: MNa⁺, 503.2270. C₂₆H₃₂N₅O₅ requires *MNa*, 503.2265.

Benzyl-4-[(3R)-5-{[(tert-butoxy)carbonyl]amino}pent-1-en-3-yl]-3-oxopiperazine-1-carboxylate 33

According to General Procedure D1, amine **13** (0.500 g, 1.32 mmol) gave a crude product that was purified by flash column chromatography, eluting with 96:3.6:0.4 CH₂Cl₂–EtOH–NH₃OH to furnish ketopiperazine **33** (0.399 g, 72%) as a yellow oil, R_f 0.20 (1:1 petrol–EtOAc); $[\alpha]_D^{24}$ +47 (*c*. 0.95, CHCl₃), δ_H (500 MHz, MeOD, 333 K) 7.37-7.28 (5 H, m, Ar H), 5.82 (1 H, ddd, *J* 17.2, 10.6, 5.7, 2-H), 5.24 (1 H, dd, *J* 10.6, 1.3, 1-H_A), 5.22 (1 H, dd, *J* 17.2, 1.3, 1-H_B), 5.16 (2 H, s, OCH₂Ar), 5.10-5.05 (1 H, m, 3-H), 4.17 (1 H, d, *J* 17.9, piperazine 2-H_A), 4.10 (1 H, d, *J* 17.9, piperazine 2-H_B), 3.75 (1 H, ddd, *J* 13.4, 5.9, 4.5, piperazine 5-H_A), 3.61 (1 H, ddd, *J* 13.4, 6.4, 4.8, piperazine 5-H_B), 3.34-3.28 (2 H, m (under residual solvent signal), piperazine 6-H), 3.08 (1 H, ddd, *J* 12.1, 7.4, 5.6, 5-H_A), 3.00-2.94 (1 H, m, 5-H_B), 1.86-1.76 (2 H, m, 4-H), 1.42 (9 H, s, OC(CH₃)₃); δ_C (125 MHz, MeOD, 333 K), 168.0 (piperazine 3-C), 158.3 (ArCH₂OCO₂), 156.3 (CO₂NH), 137.8 (Ar 1-C), 136.5 (2-C), 129.6 (Ar-C), 129.2 (Ar-C), 129.0 (Ar-C), 118.3 (1-C), 80.2 (OC(CH₃)₃), 68.8 (OCH₂Ar), 54.3 (3-C), 48.6 (piperazine 2-C), 42.4 (piperazine 6-C), 42.0 (piperazine 5-C), 38.4 (5-C), 31.4 (4-C), 28.9 (OC(CH₃)₃); υ_{max} /cm⁻¹ (neat) 3355, 2977, 1704, 1645, 1516, 1427, 1366, 1327, 1240, 1172, 1123; *m*/z (ESI) 440 (100%, MNa⁺); Found: MNa⁺, 440.2158. C₂₂H₃₁N₃O₅ requires *MNa*, 440.2156.

Benzyl-4-[(2S,3R)-1-[(tert-butoxy)carbonyl]-2-[(4-cyanophenyl)methyl]pyrrolidin-3-yl]-3-oxopiperazine-1-carboxylate S5

According to General Procedure A, ketopiperazine **33** (0.070 g, 0.167 mmol) and 4-bromobenzonitrile (36.0 mg, 0.200 mmol) gave pyrrolidine **S5** (0.113 g, 64% (based upon 50% purity), <95:5 *dr*) as a yellow oil. A sample was purified by mass-directed preparative HPLC (XBridge Prep C18 5µm OBD, 50-95% MeOH–water with 0.1% HCOOH) for the purposes of analysis, $R_{\rm f}$ 0.35 (95:4.5:0.5 CH₂Cl₂–EtOH–NH₃OH); $\delta_{\rm H}$ (500 MHz, MeOD, 333 K) 7.60 (2 H, d, *J* 8.0, Ar 3-H), 7.42 (2 H, d, *J* 8.0, Ar 2-H), 7.37-7.30 (5 H, Cbz Ar-H), 5.17 (1 H, d, J 15.2, OCHAAr), 5.14 (1 H, d, J 15.2, OCHBAr), 4.91 (1 H, app. td, J 7.4, 5.0, pyrrolidine 3-H), 4.04 (1 H, app. dt, J 8.1, 5.0, pyrrolidine 2-H), 3.99 (1 H, d, J 18.0, piperazine 2-HA), 3.94 (1 H, d, J 18.0, piperazine 2-HB), 3.70-3.66 (1 H, m, pyrrolidine 5-HA), 3.53 (2 H, app. t, J 5.4, piperazine 5-H), 3.26 (1 H, app. dt, J 12.3, 5.3, pyrrolidine 5-HB), 3.20-3.09 (3 H, m, piperazine 6-H, ArCHA), 2.92 (1 H, dd, J 13.2, 7.9, ArCHB), 1.95-1.88 (2 H, m, pyrrolidine 4-H), 1.46 (9 H, s, OC(CH3)3); δ C (125 MHz, MeOD, 333 K) 167.1 (piperazine 3-C), 156.1 (ArCH2OCO2 and CO2NH), 144.9 (Ar 1-C), 137.8 (CbzAr 1-C), 133.2 (Ar 3-C), 131.8 (Ar 2-C), 129.6 (Cbz Ar-C), 129.3 (Cbz Ar-C), 129.0 (Cbz Ar-C), 119.8 (C≡N), 111.6 (Ar 4-C), 68.8 (OCH2Ar), 52.5 (piperazine 2-C), 42.7 (piperazine 6-C), 42.3 (piperazine 5-C), 28.8 (OC(CH3)3), 27.6 (pyrrolidine 4-C). Signals not observed (rotameric): (OC(CH3)3), pyrrolidine 2-C, pyrrolidine 3-C, pyrrolidine 5-C, ArCH2; umax/cm–1 (neat) 2972, 2226, 1687, 1649, 1393, 1364, 1235, 1164, 1115; m/z (ESI) 541 (100%, MNa+); Found: MNa+, 541.2426. C29H34N4O5 requires MNa, 541.2602.

Benzyl-4-[(2S,3R)-1-[(tert-butoxy)carbonyl]-2-(pyrimidin-5-ylmethyl)pyrrolidin-3-yl]-3-oxopiperazine-1-carboxylate 41

According to General Procedure A, ketopiperazine **33** (60.0 mg, 0.140 mmol) and 5-bromopyrimidine (27.0 mg, 0.170 mmol) gave a crude product that was purified by flash column chromatography, eluting with 95:4.5:0.5 CH₂Cl₂–EtOH–NH₃OH to furnish pyrrolidine **41** (57.0 mg, 63% (based upon 78% purity), >95:5 *dr*) as a colourless oil. A sample was further purified by mass-directed preparative HPLC (XBridge Prep C18 5µm OBD, 50-95% MeOH–water with 0.1% HCOOH) for the purposes of analysis, R_f 0.28 (95:4.5:0.5 CH₂Cl₂–EtOH–NH₃OH); δ_H (500 MHz, MeOD, 333 K) 8.97 (1 H, s, Ar 2-H), 8.67 (2 H, s, Ar 4-H), 7.37-7.30 (5 H, m, Cbz Ar-H), 5.15 (1 H, s, OCH₂Ar), 4.91 (1 H, app. td, *J* 7.3, 5.3, pyrrolidine 3-H), 4.09-4.00 (3 H, m, pyrrolidine 2-H and piperazine 2-H), 3.71 (1 H, app. br s, pyrrolidine 5-H_A), 3.65 (1 H, ddd, *J* 13.3, 6.5, 4.0, piperazine 5-H_B), 3.35 (1 H, ddd, *J* 12.3, 6.8, 4.0, piperazine 6-H_B), 3.14-3.09 (1 H, m, pyrrolidine 5-H_B), 3.05-2.98 (2 H, m, OCH₂Ar), 2.01-1.94 (2 H, m, pyrrolidine 4-H), 1.43 (9 H, s, OC(CH₃)₃); δ_C (125 MHz, MeOD, 333 K) 167.9 (piperazine 3-C), 159.0 (Ar 4-C), 157.7 (Ar 2-C), 156.2 (ArCH₂OCO₂), 156.0 (CO₂NH), 137.8 (Cbz Ar 1-C), 133.2 (Ar 5-C), 129.6 (Cbz Ar-C), 129.3 (Cbz Ar-C), 129.0 (Cbz Ar-C), 81.8 (OC(CH₃)₃); 68.8 (OCH₂Ar), 61.0 (broad, pyrrolidine 2-C), 58.6 (broad, pyrrolidine 3-C), 48.6 (piperazine 2-C), 46.2

(broad, pyrrolidine 5-C), 42.6 (piperazine 6-C), 42.4 (piperazine 5-C), 33.9 (Ar*C*H₂), 28.7 (OC(*C*H₃)₃), 27.3 (pyrrolidine 4-C); υ_{max}/cm⁻¹ (neat) 2973, 1687, 1649, 1560, 1393, 1364, 1234, 1164, 1118, 1049; *m*/*z* (ESI) 518 (100%, MNa⁺); Found: MNa⁺, 518.2375. C₂₆H₃₃N₅O₅ requires *MNa*, 518.2374.

Benzyl-4-[(2S,3R)-1-[(tert-butoxy)carbonyl]-2-(pyridin-3-ylmethyl)pyrrolidin-3-yl]-3-oxopiperazine-1-carboxylate S6

According to General Procedure A, ketopiperazine 33 (0.174 g, 0.416 mmol) and 3-bromopyridine (48.0 µL, 0.500 mmol) gave a crude product that was purified by flash column chromatography, eluting with 95:4.5:0.5 CH₂Cl₂-EtOH-NH₃OH to furnish pyrrolidine **S6** (0.124 g, 60% (based upon 91% purity), >95:5 dr) as a colourless oil. A sample was further purified by mass-directed preparative HPLC (XBridge Prep C18 5µm OBD, 50-95% MeOH-water with 0.1% HCOOH) for the purposes of analysis – a 3:1 mixture of diastereomers was obtained due to close-running impurities. Major diastereomer characterised, $R_{\rm f}$ 0.31 (95:4.5:0.5 CH₂Cl₂-EtOH-NH₃OH); δ_H (500 MHz, MeOD, 333 K) 8.44 (1 H, br s, Ar 2-H), 8.35 (1 H, br s, Ar 4-H), 7.71 (1 H, d, J 7.6, Ar 6-H), 7.37-7.34 (6 H, Cbz Ar-H, Ar 5-H), 5.14 (1 H, s, OCH₂Ar), 4.92 (1 H, app. td, J 7.4, 5.3, pyrrolidine 3-H), 4.05-3.94 (3 H, m, pyrrolidine 2-H and piperazine 2-H), 3.68 (1 H, app. br s, pyrrolidine 5-H_A), 3.58-3.50 (2 H, m, piperazine 5-H), 3.29-3.25 (1 H, m, piperazine 6-H_A), 3.16 (1 H, ddd, J 12.3, 6.5, 4.2, piperazine 6-H_B), 3.10-3.06 (2 H, m, pyrrolidine 5-H_B, OCH_AAr), 2.93 (1 H, dd, J 13.6, 7.5, OCH_BAr), 1.95-1.91 (2 H, m, pyrrolidine 4-H), 1.45 (9 H, s, OC(CH₃)₃); δ_C (125 MHz, MeOD, 333 K) 167.8 (piperazine 3-C), 156.1 (ArCH₂OCO₂), 155.9 (tBuCO₂N), 151.2 (Ar 2-C), 148.4 (Ar 6-C), 139.3 (Ar 4-C), 137.8 (Cbz Ar 1-C), 135.3 (Ar 3-C), 129.6 (Cbz Ar-C), 129.3 (Cbz Ar-C), 129.0 (Cbz Ar-C), 125.0 (Ar 5-C), 81.7 (OC(CH₃)₃), 68.8 (OCH₂Ar), 61.2 (broad, pyrrolidine 2-C), 58.8 (broad, pyrrolidine 3-C), 48.5 (piperazine 2-C), 46.1 (broad, pyrrolidine 5-C), 42.7 (piperazine 6-C), 42.4 (piperazine 5-C), 33.9 (ArCH₂), 28.8 (OC(CH₃)₃), 27.5 (pyrrolidine 4-C); v_{max}/cm⁻¹ (neat) 2974, 1685, 1649, 1422, 1392, 1364, 1322, 1234, 1165, 1119, 1051; *m/z* (ESI) 495 $(100\%, MH^{+})$; Found: MH⁺, 495.2612. C₂₇H₃₄N₄O₅ requires *MH*, 495.2602.

tert-Butyl-(2*R*,3*S*)-3-[(2'*S*)-2'-{[(*tert*-butyldiphenylsilyl)oxy]methyl}pyrrolidin-1'-yl]-2-{[2-(methoxycarbonyl)phenyl]methyl}pyrrolidine-1-carboxylate 27

According to General Procedure A, amine 14 (0.200 g, 0.382 mmol) and methyl 2-bromobenzoate (108 mg, 0.5 mmol) gave a crude product that was purified by flash column chromatography, eluting with $30:70 \rightarrow 50:50$ Et₂O–pentane to furnish pyrrolidine 27 (0.208 g, 83%, >95:5 *dr*) as a yellow oil; $R_{\rm f}$ 0.15 (70:30, pentane—Et₂O); $\delta_{\rm H}$ (500 MHz; DMSO; 353 K) 7.72 (1H, d, *J* 6.7, Ar 3-H), 7.61 (4H, d, *J* 6.4, silyloxy Ar H), 7.47-7.37 (7H, m, silyloxy Ar H and Ar 5-H), 7.29 (1H, t, *J* 7.2, Ar 4-

H), 7.21 (1H, d, *J* 7.4, Ar 6-H), 4.12 (1H, br s, 2-H), 3.79 (3H, s, OMe), 3.38 (2H, br s,), 3.27 (1H, br s, CH_AOSi), 3.14 (1H, ddd, *J* 10.6, 9.6 and 3.5, CH_BOSi), 3.08 (2H, br s, 5'-H_B and 5-H_A), 2.88 (1H, br s, CH_AAr), 2.81-2.77 (1H, m, CH_BAr), 2.72 (1H, br s, 5-H_A), 2.22 (1H, br s, 5-H_B), 2.05-1.95 (1H, m, 3'-H_A), 1.73-1.63 (3H, m, 4-H₂ and 3'-H_B), 1.56 (2H, br s, 3-H), 1.19 (9H, br s, OC(CH₃)₃), 1.00 (9H, s, SiC(CH₃)₃); $\delta_{\rm C}$ (125 MHz; DMSO *d*6; 353 K) 167.5 (CO₂Me), 153.3 (NHCO₂), 135.1 (TBDPS Ar 2-C), 133.6 (TBDPS Ar 1-C), 133.5 (Ar 2-C), 131.7 (Ar 1-C), 131.4 (Ar 6-C), 129.8 (Ar 5-C), 129.6, 129.5 (TBDPS 4-C), 127.7 (Ar 4-C), 126.1 (Ar 3-C), 77.9 (OC(CH₃)₃), 66.7 (SiOCH₂), 61.9 (NCH), 61.1 (CH₂Ar), 51.7 (OCH₃), 49.5 (5'-C), 44.6 (5-C), 27.9 (OC(CH₃)₃ and 4'-C), 27.7 (4-C), 26.7 (SiC(CH₃)₃), 23.3 (3'-C), 18.8 (SiC(CH₃)₃); v_{max}/cm^{-1} (film) 3426, 2963, 2519, 2235, 2071, 1720, 1674, 1404, 1366, 1275, 1261, 1115; *m*/z (ES⁺) 657.4 (100%, [M+H]⁺); found 657.3707, C₃₉H₅₂N₂O₅Si requires *MH* 657.3718.

(1*S*,10a*R*)-1-[(2*S*)-2-{[(*tert*-Butyldiphenylsilyl)oxy]methyl}pyrrolidin-1-yl]-1*H*,2*H*,3*H*,5*H*,10*H*,10a*H*-pyrrolo[1,2-b]isoquinolin-5-one 53

According to General Procedure F1, *N*-Boc-pyrrolidine **27** (70.0 mg, 0.110 mmol) gave a crude product that was purified by flash column chromatography, eluting with 7:3 EtOAc–petrol to furnish the lactam **53** (0.035 g, 61%) as a colourless film, $R_{\rm f}$ 0.15 (1:1 petrol–EtOAc); $\delta_{\rm H}$ (500 MHz, CDCl₃) 8.03 (1 H, dd, *J* 7.4, 1.0, Ar 2-H), 7.63-7.58 (4 H, SiAr 3-H), 7.39-7.28 (6 H, SiAr-H), 7.21 (2 H, app. t, *J* 7.4, Ar 5-H, Ar 4-H), 7.05 (1 H, d, *J* 7.4, Ar 3-H), 3.68-3.63 (1 H, m, 7-H_A), 3.45 (1 H, ddd, *J* 12.0, 10.2, 8.1, 7-H_B), 3.40 (1 H, br s, SiOCH_A), 3.39 (1 H, br s, SiOCH_B), 3.25-3.14 (2 H, m, 1-H, 9-H), 3.02-3.00 (1 H, m, 2-H_A), 2.95-2.92 (2 H, m, pyrrolidine 2-H, pyrrolidine 5-H_A), 2.70 (1 H, app. dd, *J* 16.2, 11.6, pyrrolidine 5-H_B), 2.63 (1 H, app. dd, *J* 15.8, 8.3, 2-H_B), 1.95-1.89 (2 H, m, 8-H_A, pyrrolidine 3-H_A), 1.81-1.75 (3 H, m, pyrrolidine 3-H_B, pyrrolidine 4-H), 1.66-1.58 (1 H, 8-H_B), 1.03 (9 H, s, SiC(CH₃)₃); $\delta_{\rm C}$ (75 MHz, CDCl₃) 163.4(ArCO), 137.2 (Ar 1-C), 135.6 (SiAr 2-C), 133.7 (SiAr 1-C), 131.5 (SiAr 2-C), 130.2 (Ar 6-C), 129.7 (SiAr 3-C), 127.6 (Ar 4-C), 127.3 (Ar 3-C), 127.2 (Ar 5-C), 127.0 (Ar 2-C), 68.4 (1-C), 67.5 (SiOCH₂), 60.6 (pyrrolidine 2-C), 58.2 (9-C), 52.5 (7-C), 42.3 (ArCH₂), 34.4 (pyrrolidine 5-C), 28.5 (8-C), 26.9 (SiC(CH₃), 24.9 (pyrrolidine 3-C), 23.9 (pyrrolidine 4-C), 19.2 (SiC(CH₃)₃); υ_{max}/cm^{-1} (neat) 2954, 1639, 1469, 1427, 1360, 1117, 1065; m/z (ESI) 525 (100%, MH⁺); Found: MH⁺, 525.2942. C₃₃H₄₀N₂O₂Si requires *MH*, 525.2932.

tert-Butyl-(2*R*,3*S*)-3-[(2S)-2-{[(*tert*-butyldiphenylsilyl)oxy]methyl}pyrrolidin-1-yl]-2-{[4-(trifluoromethyl) phenyl]methyl}pyrrolidine-1-carboxylate S7

According to General Procedure A, amine 14 (0.200 g, 0.382 mmol) and 4-bromobenzenetrifluoride (112.5 mg, 0.5 mmol) gave a crude product that was purified by flash column chromatography, eluting with 20:80 EtOAc–Petrol to furnish pyrrolidine S7 (0.210 g, 83%, >95:5 dr) as a yellow oil; R_f 0.24 (20:80, EtOAc–petrol); δ_H (500 MHz; DMSO-d6; 343 K)

7.61-7.58 (4H, m, silyloxy Ar H), 7.56 (2H, d, *J* 8, Ar 3-H), 7.47-7.38 (6H, m, silyloxy Ar H), 7.33 (2H, d, *J* 8, Ar 2-H), 3.91 (1H, ap t, *J* 6.7, 2'-H), 3.35-3.28 (2H, m, 5'-H_A and CH_AOSi), 3.21 (1H, dd, *J* 9.8 and 7.3, CH_BOSi), 3.10-3.04 (2H, m, 5'-H_B and 5-H_A), 2.86-2.77 (2H, m, benzylic H_A and 5-H_B), 2.69 (1H, dd, *J* 13.1 and 8.3, benzylic H_B), 2.64-2.58 (1H, m, 2-H), 2.17 (1H, ap dt, *J* 8.6 and 8, 3'-H), 1.89 (1H, br s, 4'-H_A), 1.70-1.62 (3H, m, 4'-H_B, 3 or 4-H), 1.57-1.51 (2-H, m, 3 and 4-H), 1.33 (9H, s, OC(CH₃)₃), 0.98 (9H, s, SiC(CH₃)₃); $\delta_{\rm C}$ (125 MHz; DMSO; 343 K) 153.3 (NHCO₂), 143.5 (Ar 4-C), 135.1, 135.0, 133.4, 129.9, 129.7, 129.6, 127.7, 124.9, 124.5 (q, *J* 280), 78.3 (OC(CH₃)₃), 66.5 (SiOCH₂), 61.6 (NCH), 61.2 (CH₂Ar), 59.6 (1'-C), 49.9 (5-C), 49.1 (5-C), 28.1 (4-C), 27.5 (SiC(CH₃)₃ and 4'-C), 23.2 (3'-C), 18.8 (SiC(CH₃)₃); v_{max}/cm^{-1} (film) 2967, 2859, 2305, 1892, 1758, 1687, 1618, 1399, 1326, 1262, 1166, 1111, 1067; *m*/z (ES⁺) 667.4 (100%, [M+H]⁺); found 667.3568, C₃₈H₄₉F₃N₂O₃Si requires *MH* 667.3537.

tert-Butyl-(2*R*,3*S*)-3-[(2*S*)-2-{[(*tert*-butyldiphenylsilyl)oxy]methyl}pyrrolidin-1-yl]-2-(pyrimidin-5-ylmethyl)pyrrolidine-1-carboxylate S8

According to General Procedure A, amine **14** (0.200 g, 0.382 mmol) and 5-bromopyrimidine (79.5 mg, 0.5 mmol) gave a crude product that was purified by flash column chromatography, eluting with 20:80 EtOAc–Petrol to furnish pyrrolidine **S8** (0.121 g, 53%, >95:5 *dr*) as a yellow oil; R_f 0.11 (20:80, EtOAc–petrol); δ_H (500 MHz; DMSO-*d*6; 353 k) 8.98 (1H, s, Ar 1-H), 8.54 (2H, s, Ar 4 and 6-H), 7.64-7.59 (4H, m, silyloxy Ar H), 7.47-7.38 (6H, m, silyloxy Ar H), 3.92 (1H, ap t, *J* 6.2, 2-H), 3.43 (1H, dd, *J* 10.1 and 4.6, CH_AOSi), 3.35 (1H, dt, *J* 9.6 and 8.8, 5-H_A), 3.31 (1H, dd, *J* 10.1 and 7.2, CH_BOSi), 3.11-3.01 (2H, m, 3-H, 5-H_B), 2.83 (1H, ddd, *J* 11.9, 6.2 and 3.2, 5'-H_A), 2.80-2.74 (1H, m, 2'-H), 2.70 (2H, d, *J* 6.1, benzylic H₂), 2.29-2.23 (1H, m, 5'-H_B), 1.95-1.86 (1H, m, 4-H_A), 1.74-1.63 (3H, m, 4-H_B, 3' or 4-H₂), 1.61-1.55 (2H, m, 3' or 4-H₂), 1.29 (9H, s, OC(CH₃)₃), 1.01 (9H, s, SiC(CH₃)₃); δ_C (125 MHz; DMSO; 353 K) 157.2 (pyr 2-C), 156.4 (NHCO₂), 153.3 (4- and 6-C), 135.1 (Ar 2-C), 134.5 (Ar 1-C), 133.5 (pyr 1-C), 133.4 (Ar 3-C), 132.1 (Ar 4-C), 129.6 (Ar 4-C), 127.7 (Ar 3-C), 78.5 (OC(CH₃)₃), 66.9 (CH₂OSi), 61.6 (2-C), 60.7 (2'-C), 50.3 (5-C), 44.6 (5'-C), 33.8 (CH₂Ar), 28.0 (OC(CH₃)₃), 27.7 (3-C), 27.5 (3'-C), 26.8 (4-C), 24.1 (SiC(CH₃)₃), 18.7 (SiC(CH₃)₃; v_{max}/cm⁻¹ (film) 2965, 2932, 2064, 1688, 1561, 1473, 1410, 1366, 1275, 1262, 1169, 1113; m/z (ES⁺) 601.4 (100%, MH⁺); found 601.3592, C₃₅H₄₈N₄O₃Si requires *MH* 601.3568.

tert-Butyl-(2*R*,3*S*)-3-[(2*S*)-2-{[(*tert*-butyldiphenylsilyl)oxy]methyl}pyrrolidin-1-yl]-2-(pyridin-3-ylmethyl)pyrrolidine-1-carboxylate 28

According to General Procedure A, amine **14** (0.150 g, 0.287 mmol) and 3-bromopyridine (33.0 μ L, 0.340 mmol) gave a crude product that was purified by flash column chromatography, eluting with 1:1 cyclohexane–EtOAc) to furnish pyrrolidine **28** (96.0 mg, 56%, >95:5 *dr*) as a yellow oil, R_f 0.21 (1:1 cyclohexane–EtOAc); δ_H (500 MHz, MeOD, 333 K) 8.35-8.32 (2 H, m, Ar 2-H, Ar 6-H), 7.66-7.64 (4 H, silyloxy Ar 3-H), 7.57 (1 H, app. br s, Ar 4-H), 7.44-7.37 (6 H, m, silyloxy Ar), 7.27 (1 H, app. dd, *J* 7.2, 5.3, Ar 5-H), 4.00 (1 H, app. t, *J* 5.8, *N*-Boc pyrrolidine 2-H), 3.41-3.30 (3 H, m, pyrrolidine 2-H, SiOCH₂), 3.14-3.10 (2 H, m, pyrrolidine 5-H), 2.89-2.85 (1 H, m, *N*-Boc pyrrolidine 5-H_A), 2.81 (1 H, br s, ArCH_A), 2.72-2.67 (2 H, m, *N*-Boc pyrrolidine 3-H, ArCH_B), 2.22 (1 H, app. dd, *J* 16.3, 8.0, *N*-Boc pyrrolidine 5-H_B), 1.92-1.87 (1 H, m, pyrrolidine 3-H_A), 1.79-1.69 (3 H, m, pyrrolidine 3-H_B, pyrrolidine 4-H), 1.65-1.59 (2 H, *N*-Boc pyrrolidine 4-H), 1.39 (9 H, s, OC(CH₃)₃), 1.04 (9 H, s, SiC(CH₃)₃); δ_C (125 MHz, MeOD, 333 K) 156.0 (*t*BuCO₂N), 151.1 (Ar 2-C), 148.2 (Ar 6-C), 139.1 (Ar 4-C), 136.8 (SiAr 4-C), 135.2 (Ar 3-C), 135.0 (SiAr 1-C), 130.9 (SiAr 2-C), 128.8 (SiAr 3-C), 125.0 (Ar 5-C), 81.1 (OC(CH₃)₃), 68.3 (SiOCH₂), 66.5 (broad, pyrrolidine 2-C), 63.7 (broad, *N*-Boc pyrrolidine 3-C), 62.9 (broad, *N*-Boc pyrrolidine 2-C), 52.1 (pyrrolidine 5-C), 46.5 (broad, *N*-Boc pyrrolidine 5-C), 38.2 (broad, ArCH₂), 29.2 (pyrrolidine 3-C), 28.9 (OC(CH₃)₃), 27.6 (SiC(CH₃), 24.5 (pyrrolidine 4-C), 20.1 (SiC(CH₃)₃), signal for *N*-Boc pyrrolidine 4-C not observed; ν_{max}/cm^{-1} (neat) 2960, 1688, 1455, 1390, 1363, 1104, 1027; *m*/z (ESI) 600 (100%, MH⁺); Found: MH⁺, 600.3631. C₃₆H₅₀N₃O₃Si requires *MH*, 600.3616.

$Benzyl-4-[(2R,3S)-1-[(tert-butoxy)carbonyl]-2-\{[2-(methoxycarbonyl)phenyl]methyl\}pyrrolidin-3-yl]piperazine-1'-carboxylate 24$

According to General Procedure A, amine **15** (0.281 g, 0.69 mmol) and methyl 2-bromobenzoate (195 mg, 0.91 mmol) gave a crude product that was purified by flash column chromatography, eluting with 95:5 CHCl₃–MeOH to furnish pyrrolidine **24** (0.310 g, 84%, >95:5 *dr*) as a yellow oil; R_f 0.3 (30:70, Et₂O—pentane); δ_H (500 MHz; C₆D₆; 333 K) 7.79 (1H, d, *J* 7.8, Ar 3-H), 7.25-6.89 (7H, m, Cbz and Ar 4 and 6-H), 6.93 (1H, ap t, *J* 8, Ar 5-H), 5.07 (2H, s, Cbz), 4.29 (1H, br s, 2-H), 3.52 (3H, s, OMe), 3.55-3.06 (8H, br m, 2'-H, 5-H_{AB} and benzylic H_{AB}), 2.75 (1H, br s, 3-H), 2.16-1.95 (4H, m, 3'-H), 1.67 (1H, br s, 4-H_A), 1.52 (1H, br s, 4-H_B), 1.34 (9H, s, OC(CH₃)₃); δ_C (75 MHz; C₆D₆) 154.9 (NHCO₂), 153.9 (NHCO₂), 137.6 (1-C), 132.2 (2-C), 131.5 (Ar 1-C), 130.5 (Ar 3-C), 128.5 (Ar 4-C), 128.1 (Ar 5-C), 126.0 (Ar 6-C), 78.5 (OC(CH₃)₃), 66.9 (2-C), 53.0 (OCH₃), 51.3 (pip 3-C), 49.4 (pip 2-C), 44.2 (5-C), 29.8 (ArCH₂), 28.3 (OC(*C*H₃)₃), 25.8 (4-C); v_{max}/cm^{-1} (film) 2973, 1694, 1433, 1393, 1244; *m/z* (ES⁺) 538.3 (100%, MH⁺; found 538.2920, C₃₀H₃₉N₃O₆ requires *MH* 538.2912.

Benzyl-4-[(1S,10aR)-5-oxo-1H,2H,3H,5H,10H,10aH-pyrrolo[1,2-b]isoquinolin-1-yl]piperazine-1-carboxylate 52

According to General Procedure F1, methyl ester **24** (100 mg, 0.186 mmol) gave a crude product that was purified by flash column chromatography, eluting with CH₂Cl₂—MeOH (95:5) to furnish lactam **52** (51 mg, 68%) as a foam. R_f 0.55 (95:5, CH₂Cl₂—MeOH); δ_H (500 MHz; CDCl₃) 8.03 (1H, dd, *J* 7.6 and 1, 7-H), 7.41 (1H, td, *J* 7.5 and 1.3, 9-H) 7.36-7.30 (1H, m, 8-H and Cbz), 7.19 (1H, d, *J* 7.5, 10-H), 5.14 (2H, s, Cbz) 3.82-3.76 (2H, m, 3-H_A and 1-H), 3.63 (1H, ddd, *J* 12.4, 9.5 and 8, 3-H_B), 3.58-3.50 (4H,m, 1'-H), 3.13 (1H, dd, *J* 15.3 and 3.9, 12-H_A), 3.05 (1H, ddd, *J* 10, 8.9 and 6.9, 13-H), 2.87 (1H, dd, *J* 14.5 and 14, 12-H_B), 2.61 (4H, br s, 2'-H), 2.10 (1H, ddd, *J* 12.5, 7.6, 7.6 and 2.6, 2-H_A), 1.9 (1H, dq, *J* 12.5 and 9.7, 2-H_B); δ_C (125 MHz; CDCl₃) 163.6 (9-C), 155.2 (NHCO₂), 137.1 (Ar 1-C), 136.7 (3-C), 131.7 (5-C), 130.2, 128.5, 128.1, 127.9, 127.6, 127.24, 127.22, 71.5 (CH₂Ar), 67.2 (13-C), 57.2 (1-C), 50.2 (pip 3-C), 44.1 (11-C), 42.7 (pip 2-C), 34.9 (2-C), 23.5 (12-C); v_{max}/cm^{-1} (film) 2950, 2888, 1698, 1650, 1465, 1432, 1243; *m*/z (ES⁺) 406.2 (100%, MH⁺); found 406.2131, C₂₄H₂₇N₃O₃ requires *MH* 406.2125.

Benzyl-4-[(2R,3S)-1-[(tert-butoxy)carbonyl]-2-(pyrimidin-5-ylmethyl)pyrrolidin-3-yl]piperazine-1-carboxylate 25

According to General Procedure A, amine **15** (0.908 g, 2.25 mmol) and 5-bromopyrimidine (467 mg, 2.93 mmol) gave a crude product that was purified by flash column chromatography, eluting with 95:5 CH₂Cl–MeOH to furnish pyrrolidine **25** (0.870 g, 80%, >95:5 *dr*) as a yellow oil; R_f 0.1 (50:50, Et₂O—pentane); δ_H (500 MHz; C₆D₆; 333K; *very broad*) 9.61 (1H, s, py), 8.41 (2H, s, py), 7.27-7.21 (2H, m, Cbz), 7.15-7.09 (2H, m Cbz), 7.08-7.03 (1H, m, Cbz), 5.10 (2H, s, Cbz), 3.80 (1H, br s, 2-H), 3.51-3.01 (6H, m, 1'-H, and 5-H_{AB}), 2.74 (1H, br s, benzylic H_A), 2.57 (1H, br s, benzylic H_B), 2.33 (1H, dd, *J* 10.7 and 5.9, 3-H), 1.91-1.80 (4H, m, 3'-H), 1.39 (9H, s, OC(CH₃)₃), 1.27-1.21 (1H, m, 4-H_A), 1.08 (1H, br s, 4-H_B); δ_C (125 MHz; C₆D₆) 158.9 (pyr 2-C), 157.6 (NHCO₂), 157.5 (NHCO₂), 154.9 (pyr 4 or 6-C), 154.4 (pyr 4 or 6-C), 137.5 (Ar 1-C), 131.7 (pyr 5-C), 128.5, 128.2, 128.2, 128.1, 127.9, 127.7, 79.3 (OC(CH₃)₃), 67.1 (ArCH₂O), 49.3 (3-C), 45.5 (pip 3-C), 44.1 (pip 2-C), 43.6 (5-C), 29.8 (ArCH₂), 28.3 (OC(CH₃)₃), 24.1 (4'-C); v_{max} /cm⁻¹ (film) 2977, 2280, 1693, 1409, 1275, 1245; *m/z* (ES⁺) 482.3 (100%, MH⁺); found 482.2775, C₂₆H₃₅N₅O₄ requires *MH* 482.2762.

Benzyl-4-[(2*R*,3*S*)-1-[(*tert*-butoxy)carbonyl]-2-{[4-(trifluoromethyl)phenyl]methyl}pyrrolidin-3-yl]piperazine-1-carboxylate S9

According to General Procedure A, amine **15** (0.287 g, 0.71 mmol) and 4-bromobenzenetrifluoride (209 mg, 0.93 mmol) gave a crude product that was purified by flash column chromatography, eluting with 95:5 CHCl₃–MeOH to furnish pyrrolidine **S9** (0.287 g, 74%, >95:5 *dr*) as a yellow oil; R_f 0.44 (95:5, CHCl₃–MeOH); δ_H (500 MHz; DMSO-*d*6; 353 K) 7.61 (2H, d, *J* 8.2, Ar 3-H), 7.41 (2H, d, *J* 8.2, Ar 2-H), 7.37-7.27 (5H, m, Cbz), 5.06 (2H, s, Cbz), 3.97 (1H, ddd, *J* 7.5, 5.4 and 2.2, 2-H), 3.43 (1H, dd, 5-H_A), 3.30 (4H, ap t, *J* 5, 2'-H), 3.09 (1H, ddd, *J* 14.1, 7.4 and 7.4), 2.92 (1H, dd, *J* 13.7 and 4.8, benzylic H_A), 2.91-2.89 (1H, m, 3-H), 2.83 (1H, dd, *J* 13.7 and 7.6, benzylic H_B), 2.30-2.20 (4, m, 3'-H), 1.91-1.82 (2H, m, 4-H_{AB}), 1.38 (9H, s, OC(CH₃)₃); δ_C (125 MHz; DMSO-*d*6; 353 K) 154.4 (NHCO₂), 153.2 (NHCO₂), 143.5 (Ar 1-C), 137.0 (Ar 1-C), 130.1 , 128.3, 127.7, 127.4, 124.8 (q, *J* 3.8), 78.5 (OC(CH₃)₃), 66.1 OCH₂Ar, 59.8 (3'-C), 54.7 (pip 2-C), 48.8 (2'-C), 44.8 (pip 3-C), 43.8 (ArCH₂), 28.1 (OC(CH₃)₃), 24.8 (4'-C); v_{max} /cm⁻¹ (film) 2976, 1694, 1393, 1275, 1260; *m*/z (ES⁺) 548.3 (100%, [M+H]⁺); found 548.2737, C₂₉H₃₆F₃N₃O₄ requires *MH* 548.2731.

Benzyl-4-[(2R,3S)-1-[(tert-butoxy)carbonyl]-2-(pyridin-3-ylmethyl)pyrrolidin-3-yl]piperazine-1-carboxylate S10

According to General Procedure A, amine **15** (1.02 g, 2.53 mmol) and 3-bromopyridine (0.290 mL, 3.04 mmol) gave a crude product that was purified by flash column chromatography, eluting with 9:1 EtOAc–MeOH to furnish pyrrolidine **S10** (0.764 g, 63%, >95:5 *dr*) as a yellow oil, R_f 0.20 (9:1 EtOAc–MeOH); δ_H (500 MHz, MeOD, 333 K) 8.40-8.38 (2 H, m, Ar 2-H, Ar 6-H), 7.68 (1 H, d, *J* 6.9, Ar 4-H), 7.36-7.27 (6 H, m, Ar 5-H, Cbz Ar-H), 5.09 (2 H, s, OCH₂Ar), 4.06 (1 H, ddd, *J* 7.5, 5.4, 2.3, pyrrolidine 2-H), 3.54-3.53 (1 H, m, pyrrolidine 5-H_A), 3.07 (4 H, app. t, *J* 5.1, piperazine 2-H and 6-H), 3.19-3.15 (1 H, m, pyrrolidine 5-H_B), 2.96 (2 H, app. br s, pyrrolidine 3-H, CH_AAr), 2.84 (1 H, dd, *J* 13.4, 7.7, CH_BAr), 2.38-2.29 (4 H, m, piperazine 3-H and 5-H), 1.95 (2 H, app. br s, pyrrolidine 4-H), 1.41 (9 H, s, OC(CH_3)₃); δ_C (125 MHz, MeOD, 333 K) 156.9 (*t*BuCO₂N), 156.0 (ArCH₂OCO₂), 151.2 (Ar 2-C), 148.3 (Ar 6-C), 139.3 (Ar 4-C), 138.2 (Cbz Ar 1-C), 136.2 (Ar 3-C), 129.5 (Cbz Ar-C), 129.1 (Cbz Ar-C), 128.9 (Cbz Ar-C), 125.0 (Ar 5-C), 81.3 (OC(CH_3)₃), 68.4 (OCH₂Ar), 61.5 (broad, pyrrolidine 2-C and 3-C), 50.5 (piperazine 3-C and 5-C), 46.4 (broad, pyrrolidine 5-C), 45.1 (piperazine 2-C and 6-C), 38.0 (broad, CH_2Ar), 2.88 (OC(CH_3)₃), 26.1 (pyrrolidine 4-C); v_{max}/cm^{-1} (neat) 2971, 1685, 1423, 1390, 1240, 1168, 1113, 1012; m/z (ESI) 481 (100%, MH⁺); Found: MH⁺, 481.2816. C₂₇H₃₆N₄O₄ requires *MH*, 481.2809.

i) General Procedure C1 was followed using amine **16** (48.0 mg, 0.200 mmol) with the following deviations: For the deprotection, a 1:1 ratio of TFA/DCM was used. Upon reaction completion, the reaction mixture was diluted with CH_2Cl_2 (5 mL) and aqueous NaOH (1 M) (until aqeous phase was at pH 12). The layers were separated and the aqueous phase was extracted with CH_2Cl_2 (3×3 mL). The combined organic phase was dried (MgSO₄) and concentrated *in vacuo*. For the urea formation, 1.2 eq CDI and 2.0 eq DBU were used to give a crude product that was used immediately.

ii) According to General Procedure E1 a crude product was obtained that was purified by flash column chromatography, eluting with 100:0 \rightarrow 95:5 CH₂Cl₂–MeOH) to furnish urea **S11** (24 mg, 67 %) as a brown oil; R_f 0.51 (9:1 CH₂Cl₂–MeOH); $[\alpha]_D^{21}$ –80 (*c* 0.80, CHCl₃); δ_H (400 MHz, CDCl₃) 5.88 (1 H, d, *J* 6.3 Hz, CH=CH), 5.78 (1 H, d, *J* 6.6 Hz, CH=CH), 5.20 (1 H, br. s, NH), 4.49 (1 H, dd, *J* 15.3, 5.31 Hz, NCH₂), 4.43–4.29 (1 H, m, NCH), 4.10 (1 H, ddd, *J* 15.3, 4.0, 2.0 Hz, NCH₂), 3.33 (2 H, d, *J* 8.3 Hz, NHCH₂), 2.09 (1 H, dd, *J* 12.3, 3.2 Hz, NHCH₂CH₂), 1.49 (1 H, qd, *J* 11.9, 7.8 Hz, NHCH₂CH₂); δ_C (100 MHz, CDCl₃) 155.7 (*C*=O), 129.1 (*C*H=CH), 127.1 (CH=*C*H), 62.5 (N*C*H), 53.7 (N*C*H₂), 40.2 (NHCH₂), 27.3 (NHCH₂CH₂); υ_{max}/cm^{-1} (neat) 3299, 3079, 2933, 1635, 1502, 1467, 1417, 1346, 1291, 1222, 1179, 1116, 1068; *m/z* (EI) 138 (100%, M⁺); Found: M⁺, 138.0787. C₇H₁₀ON₂ requires *MH*, 138.0793.

tert-Butyl-(9aR)-5-oxo-1H,2H,3H,4H,5H,7H,9aH-pyrrolo[1,2-d][1,4]diazepine-3-carboxylate 49

According to General Procedure D1 where NEt₃ and chloroacetyl chloride was used, amine **16** (42.0 mg, 0.170 mmol) gave a crude product that was purified by flash column chromatography, eluting with 55:45 *n*-hexane–petrol to furnish a ketodiazepine that was used immediately according to General Procedure E1. The reaction was complete after 6 h, cooled to room temperature loaded directly onto a silica column, eluting with 4:1 CH₂Cl₂–Et₂O to give dihydro-pyrrole **49** (0.021 g, 48%) as a yellow oil, $R_f 0.19$ (4:1 CH₂Cl₂–Et₂O); $[\alpha]_D^{26}$ –16 (*c*. 0.22, CHCl₃), δ_H (500 MHz, MeOD, 333 K) 5.87 (1 H, app. dq, *J* 6.5, 2.0, pyrrole 3-H), 5.74 (1 H, ddd, *J* 6.5, 4.2, 2.1, pyrrole 4-H), 4.72 (1 H, app. dqd, *J* 8.4, 4.2, 2.0, pyrrole 2-H), 4.26 (1 H, ddd, *J* 16.6, 4.5, 2.1, pyrrole 5-H_A), 4.24 (1 H, d, *J* 15.9, diazepine 3-H_A), 4.15 (1 H, app. ddt, *J* 16.6, 4.2, 2.0, pyrrole 5-H_B), 4.03 (1 H, br s, diazepine 5-H_A), 3.98 (1 H, d, *J* 15.9, diazepine 3-H_B), 3.28 (1 H, br s, diazepine 5-H_B), 2.01 (1 H, app. dt, *J* 14.0, diazepine 6-H_A), 1.61 (1 H, app. dtd, *J* 14.0, 11.2, 4.2, diazepine 6-H_B), 1.45 (9 H, s, OC(CH₃)₃); δ_C (125 MHz, MeOD, 333 K) 171.9 (diazepine 3-C), 53.8 (pyrrole 5-C), 40.7 (diazepine 5-C), 35.2 (diazepine 6-C), 28.7 ((OC(CH₃)₃); υ_{max}/cm^{-1} (neat) 2977, 1755, 1682, 1394, 1365, 1240, 1155; *m/z* (ESI) 275 (100%, MNa⁺); Found: MNa⁺, 275.1367. C₁₃H₂₀N₂O₃ requires *MNa*, 275.1366.

i) NaHCO₃ (0.174 g, 2.08 mmol) and CbzCl (0.230 mL, 2.08 mmol) was added to a solution of amine **16** (0.250 g, 1.04 mmol) in CHCl₃ (6.00 mL) and water (2.00 mL) at 0 $^{\circ}$ C (ice). The reaction mixture was then stirred at room temperature for 18 h, diluted with CH₂Cl₂ (20.0 mL) and washed with saturated aqueous NH₄Cl (20.0 mL), saturated aqueous NaHCO₃ (20.0 mL) and water (20.0 mL). The organic phase was dried (MgSO₄), filtered and concentrated *in vacuo* to give a crude product that was purified by flash column chromatography, eluting with 4:1 petrol–EtOAc to furnish a dicarbonate that was used immediately.

ii) According to General Procedure E1 the reaction was complete after 20 h. The mixture was cooled to room temperature and loaded directly onto a silica column, eluting with 95:5 CH₂Cl₂–Et₂O to give dihydro-pyrrole **36** (0.240 g, 66%) as a yellow oil, $R_{\rm f}$ 0.45 (9:1 CH₂Cl₂–Et₂O); $[\alpha]_{\rm D}^{24}$ –48 (*c*. 0.74, CHCl₃); $\delta_{\rm H}$ (500 MHz, MeOD, 333 K) 7.38-7.27 (5 H, m, Ar-H), 5.84 (2 H, app. br s, 3-H, 4-H), 5.15 (2 H, app. br s, OCH₂Ar), 4.63 (1 H, ddd, *J* 10.8, 5.3, 2.0, 2-H), 4.25 (1 H, dd, *J* 15.0, 1.7, 5-H_A), 4.09 (1 H, d (broad), *J* 15.0, 5-H_B), 3.17-3.02 (2 H, m, CO₂NHCH₂), 1.93-1.87 (2 H, m, NHCH₂CH₂), 1.42 (9 H, s, OC(CH₃)₃); $\delta_{\rm C}$ (125 MHz, MeOD, 333 K) 158.3 (CO₂OCH₂Ar), 156.6 (*t*BuCO₂NH), 138.2 (Ar 1-C), 130.8 (C-4), 129.6 (Ar 3-C), 129.0 (Ar 4-C), 128.9 (C-3), 126.3 (Ar 2-C), 80.1 (OC(CH₃)₃), 68.1 (OCH₂Ar), 64.2 (broad, 2-C), 54.6 (broad, 5-C), 37.7 (broad, CO₂NHCH₂), 35.5 and 34.8 (2 × rotameric signals, NHCH₂CH₂), 28.9 (OC(*C*H₃)₃); v_{max}/cm^{-1} (neat) 3355, 2976, 1713, 1682, 1514, 1416, 1327, 1251, 1172, 1107; *m*/z (ESI) 369 (100%, MNa⁺); Found: MNa⁺, 369.1782. C₁₉H₂₆N₂O₄ requires *MNa*, 369.1785.

(4aR)-1H,2H,3H,4H,4aH,7H,8H-pyrido[1,2-c]pyrimidin-1-one 46

i) NaHCO₃ (88.0 mg, 1.05 mmol) followed by Boc₂O (0.229 g, 1.05 mmol) was added to a solution of amine **17** (0.222 g, 0.870 mmol) in THF (4.00 mL) and water (4.00 mL). The reaction mixture was stirred at room temperature for 2 h before being diluted with EtOAc (10.0 mL) and water (10.0 mL), the phases separated and the aqueous phase extracted with EtOAc (3 \times 10.0 mL). The combined organic phase was dried (MgSO₄), filtered and concentrated *in vacuo* to give a crude product that was used immediately.

ii) According to General Procedure E1 the reaction was complete after 4 h. The mixture was cooled to room temperature and loaded directly onto a silica column, eluting with $98:2 \text{ CH}_2\text{Cl}_2\text{-Et}_2\text{O}$ to give a product that was used immediately.

iii) According to General Procedure C1, urea **46** (52.0 mg, 39%) was obtained as a pale yellow waxy solid, $R_f 0.53$ (85:13.5:0.5 CH₂Cl₂–EtOH–NH₃OH); $[\alpha]_D^{20}$ +100 (*c*. 0.39, CHCl₃); δ_H (500 MHz, CDCl₃) 5.87 (1 H, dd, *J* 9.5, 6.6, pyrido 3-H), 5.54 (1 H, app. d (broad), *J* 9.5, pyrido 4-H), 5.17 (1 H, br s, NH), 4.53 (1 H, app. dd, *J* 12.5, 5.8, pyrido 6-H_A), 3.95 (1 H, app. dd, *J* 12.0, 2.0, pyrido 2-H), 3.33-3.25 (2 H, m, NHCH₂), 2.69 (1 H, app. td, *J* 12.5, 3.7, pyrido 6-H_B), 2.28-2.22 (1 H, m, pyrido 5-H_A), 2.00-1.97 (2 H, m, pyrido 5-H_B, NHCH₂CH_A), 1.68 (1 H, ddd, *J* 19.0, 12.0, 5.3, NHCH₂CH_A); δ_C (125 MHz, CDCl₃) 155.9 (NCONH), 127.8 (pyrido 3-C), 126.4 (pyrido 4-C), 52.4 (pyrido 2-C), 38.8 (pyrido 6-C), 38.3 (NHCH₂), 29.2 (pyrido 5-C),

25.0 (NHCH₂CH₂); υ_{max}/cm⁻¹ (neat) 3206, 2916, 1650, 1499, 1439, 1367, 1287, 1139; *m*/*z* (ESI) 275 (100%, MH⁺); Found: MH⁺, 153.1021. C₈H₁₂N₂O requires *MH*, 153.1022.

tert-Butyl-N-{2-[(2R)-1-methanesulfonyl-1,2,5,6-tetrahydropyridin-2-yl]ethyl}carbamate S12

i) DIPEA (31.0 μ L, 0.180 mmol) and methanesulfonyl chloride (13.0 μ L, 0.160 mmol) were added to a solution of amine **17** (38.0 mg, 0.15 mmol) in CH₂Cl₂ (2 mL) at 0 °C (ice). The resulting mixture was stirred for 10 min at that temperature and at room temperature for 1 h. After this time the reaction mixture was diluted with CH₂Cl₂ (3 mL) and saturated aqueous NH₄Cl (2 mL) and the layers separated. The aqueous phase was extracted with CH₂Cl₂ (3 × 2 mL). The combined organic phase was dried (MgSO₄), filtered and concentrated *in vacuo* to give a crude product that was used immediately.

ii) According to General Procedure E1, a crude product was obtained that was purified by flash column chromatography, eluting with 8:2 \rightarrow 6:4 petrol–EtOAc) to furnish tetrahydropyridine **S12** (33.0 mg, 72%) as a yellow oil, R_f 0.28 (1:1 cylohexane–EtOAc); $[\alpha]_D^{21}$ –25 (*c* 1.2, CHCl₃); δ_H (400 MHz, CDCl₃) 5.88 (1 H, ddq, *J* 10.5, 5.2, 2.8 Hz, CH=CH), 5.72 (1 H, ddt, *J* 10.3, 4.0, 1.9 Hz, CH=CH), 5.25 (1 H, br. s, NH), 4.11 (1 H, d, *J* 10.3 Hz, NCH), 3.89 (1 H, ddd, *J* 14.9, 6.3, 0.7 Hz, NCH₂), 3.50–3.30 (1 H, m, NHCH₂), 3.20–3.00 (2 H, m, NCH₂, NHCH₂), 2.86 (3 H, s, SCH₃), 2.30 (1 H, dddq, *J* 18.6, 11.6, 6.8, 2.5 Hz, NCH₂CH₂), 1.99 (1 H, dt, *J* 18.2, 4.5 Hz, NCH₂CH₂), 1.80 (1 H, ddt, *J* 14.7, 9.6, 4.5 Hz, NHCH₂CH₂), 1.60 (1 H, ddt, *J* 14.6, 10.8, 4.1 Hz, NHCH₂CH₂), 1.44 (9 H, s, C(CH₃)₃); δ_C (100 MHz, CDCl₃) 156.2 (*C*=O), 128.6 (*C*H=CH), 125.3 (CH=CH), 79.1 (*C*(CH₃)₃), 51.0 (NCH), 39.7 (SCH₃), 38.1 (NCH₂), 36.6 (NHCH₂), 33.9 (NHCH₂CH₂), 28.6 (C(CH₃)₃), 23.2 (NCH₂CH₂); ν_{max} /cm⁻¹ 3397, 2976, 2932, 1701, 1508, 1454, 1391, 1366, 1321, 1251, 1211, 1149, 1097, 1075, 1041, *m/z* (ESI) 327 (100%, MNa⁺); Found: MNa⁺, 327.1358. C₁₃H₂₄O₄N₂S requires *MNa*, 327.1349.

tert-Butyl-(10aR)-5-oxo-1H,2H,3H,4H,5H,7H,8H,10aH-pyrido[1,2-d][1,4]diazepine-3-carboxylate 47

General Procedure D3/E2 was followed where DIPEA was used and following RCM the reaction mixture was simply concentrated *in vacuo*. Amine **17** (51.0 mg, 0.200 mmol) gave a crude product that was purified by flash column chromatography, eluting with 7:3 \rightarrow 3:7 petrol–EtOAc to furnish diazepine **47** (38.0 mg, 72%) as a colourless oil, R_f 0.18 (1:1 cyclohexane–EtOAc); $[\alpha]_D^{21}$ –24 (*c* 1.3, CHCl₃); δ_H (400 MHz, DMSO-d₆, 120 °C) 5.93 (1 H, ddd, *J* 10.3, 6.8, 4.0 Hz, CHC*H*=CH), 5.69–5.60 (1 H, ddt, *J* 10.2, 3.6, 1.9 Hz, CHCH=CH), 4.28–4.16 (1 H, m, NCH₂CO, NCH), 4.02 (1 H, d, *J* 15.6 Hz, NCH₂CO), 3.85 (1 H, dt, *J* 12.8, 5.0 Hz, NCH₂CH₂CH=CH), 3.49 (2 H, t, *J* 5.9 Hz, BocNCH₂CH₂), 3.14 (1 H, ddd, *J* 13. 1, 7.3, 5.3 Hz, NCH₂CH₂CH=CH), 2.17–1.96 (2 H, m, NCH₂CH₂CH=CH), 1.97–1.82 (1 H, m, BocNCH₂CH₂), 1.77–1.60 (1 H, m, BocNCH₂CH₂), 1.42 (9 H, s, C(CH₃)₃); δ_C (100 MHz, CDCl₃) 168.6 (CH₂CON), 154.6 (OCON), 127.4 (CH=CH), 126.5 (CH=CH), 80.6 (*C*(CH₃)₃), 53.0 (NCH₂CO), 52.7 (br., NCH), 43.6 (BocNCH₂CH₂), 37.0 (NCH₂CH₂CH=CH), 32.8 (BocNCH₂CH₂), 28.5 (C(CH₃)₃), 24.5 (NCH₂CH=CH); ν_{max}/cm^{-1} (neat) 3407, 2975, 2930, 1690, 1641, 1404, 1365, 1334, 1234, 1158, 1118, 1076; *m*/z (ESI) 289 (100%, MNa⁺); Found: MNa⁺, 289.1517. C₁₄H₂₂O₃N₂ requires *MNa*, 289.1523.

General Procedure D3/E2 was followed where NEt₃ was used and following RCM the reaction mixture was loaded directly onto a silica column, eluting with 4:1 CH₂Cl₂–Et₂O to give a crude product that was used immediately. Amine **18** (0.100 g, 0.440 mmol) gave a crude product that was purified by flash column chromatography, eluting with 96:3.6:0.4 CH₂Cl₂–EtOH–NH₃OH to furnish ketopiperazine **48** (0.068 g, 65%) as a yellow waxy solid, R_f 0.17 (96:3.6:0.4 CH₂Cl₂–EtOH–NH₃OH); $[\alpha]_D^{20}$ +55 (*c*. 0.59, CHCl₃), δ_H (500 MHz, MeOD, 333 K) 6.05 (1 H, app. dq, *J* 6.4, 2.0, 8-H), 5.88-5.86 (1 H, m, 7-H), 4.55-4.49 (2 H, m, 8a-H, 6-H_A), 4.33 (1 H, dd, *J* 13.0, 2.4, 1-H_A), 4.22 (1 H, d, *J* 17.8, 3-H_A), 4.06 (1 H, app. d, *J* 13.8, 6-H_B), 3.83 (1 H, d, *J* 17.8, 3-H_B), 2.73 (1 H, dd, *J* 13.0, 8.4, 1-H_B), 1.49 (9 H, s, OC(CH₃)₃); δ_C (125 MHz, MeOD, 333 K) 167.2 (4-C), 155.7 (NCO₂), 128.8 (8-C), 127.7 (7-C), 82.3 (OC(CH₃)₃), 64.2 (8a-C), 53.7 (3-C), 48.1 (6-C), 46.7 (1-C), 28.7 (C(CH₃)₃); ν_{max}/cm^{-1} (neat) 2975, 1692, 1658, 1393, 1365, 1323, 1237, 1161, 1124; *m*/z (ESI) 239 (100%, MH⁺); Found: MH⁺, 239.1387. C₁₂H₁₈ N₂O₃ requires *MH*, 239.1390.

tert-Butyl-N-{[(2S)-1-methanesulfonyl-2,5-dihydro-1H-pyrrol-2-yl]methyl}carbamate S14

i) DIPEA (31.0 μ L, 0.180 mmol) and methanesulfonyl chloride (13.0 μ L, 0.160 mmol) were added to a solution of amine **17** (34.0 mg, 0.15 mmol) in CH₂Cl₂ (2 mL) at 0 °C (ice). The resulting mixture was stirred for 10 min at that temperature and at room temperature for 1 h. After this time the reaction mixture was diluted with CH₂Cl₂ (3 mL) and saturated aqueous NH₄Cl (aq. sat., 2 mL) and the layers separated. The aqueous phase was extracted with CH₂Cl₂ (3 × 2 mL). The combined organic phase was dried (MgSO₄), filtered and concentrated *in vacuo* to give a crude product that was used immediately.

ii) According to General Procedure E1, a crude product was obtained that was purified by flash column chromatography, eluting with 7:3 \rightarrow 1:1 petrol–EtOAc to furnish dihydro-pyrrole **S14** (36.0 mg, 72%) as a yellow oil, R_f 0.16 (1:1 cylohexane–EtOAc); $[\alpha]_D^{21}$ –139 (*c* 1.1, CHCl₃); δ_H (400 MHz, CDCl₃) 5.86 (1 H, dq, *J* 6.1, 2.1 Hz, CH=CH), 5.74 (1 H, dq, *J* 6.3, 2.3 Hz, CH=CH), 5.02 (1 H, br. s, NH), 4.52 (1 H, dt, *J* 5.8, 2.0 Hz, MsNCH), 4.16 (2 H, dt, *J* 4.0, 2.1 Hz, MsNCH₂), 3.49–3.27 (2 H, m, BocNHCH₂), 2.80 (3 H, s, SCH₃), 1.42 (9 H, s, C(CH₃)₃); δ_C (100 MHz, CDCl₃) 156.3 (*C*=O), 128.2 (CH=CH), 126.5 (CH=CH), 79.4 (*C*(CH₃)₃), 67.7 (MsNCH), 56.0 (MsNCH₂), 44.7 (BocNHCH₂), 34.5 (SCH₃), 28.4 (C(*C*H₃)₃); ν_{max}/cm^{-1} (neat) 3385, 2978, 2932, 1696, 1516, 1453, 1393, 1365, 1328, 1250, 1150, 1079, 1053; *m*/*z* (ESI) 299 (100%, MNa⁺); Found: MNa⁺, 299.1047. C₁₁H₂₀O₄N₂Srequires *MNa*, 299.1036.

(7aS)-1H,2H,3H,5H,7aH-pyrrolo[1,2-c]imidazolidin-3-one S13

i) General Procedure C1 was followed using amine **18** (126 mg, 0.557 mmol) with the following deviations: For the deprotection, a 1:1 ratio of TFA/DCM was used. Upon reaction completion, the reaction mixture was diluted with CH_2Cl_2 (5 mL) and aqueous NaOH (1 M) (until aqeous phase was at pH 12). The layers were separated and the aqueous phase was

extracted with CH_2Cl_2 (3×3 mL). The combined organic phase was dried (MgSO₄) and concentrated *in vacuo*. For the urea formation, 1.2 eq CDI and 2.0 eq DBU were used to give gave a crude product that was used immediately.

ii) According to General Procedure E1, a crude product was obtained that was purified by flash column chromatography, eluting with $10:0 \rightarrow 9:1$ EtOAc–MeOH to furnish the title compound **S13** (32.0 mg, 51%) as a white solid (m.p. 123–124 °C); $R_f 0.10$ (EtOAc); $[\alpha]_D^{21}$ –82 (*c* 1.0, CHCl₃); δ_H (400 MHz, CDCl₃) 6.24 (1 H, br. s, N*H*), 5.93 (1 H, dq, *J* 6.0, 2.0 Hz, C*H*=CH), 5.81 (1 H, ddt, *J* 5.9, 3.8, 1.7 Hz, CH=C*H*), 4.59 (1 H, ddq, *J* 8.0, 5.8, 3.6 Hz, NC*H*), 4.32 (1 H, dq, *J* 15.5, 2.3 Hz, NC*H*₂), 3.70 (1 H, t, *J* 9.2 Hz, NHC*H*₂), 3.63 (1 H, ddt, *J* 15.6, 4.5, 1.8 Hz, NC*H*₂), 3.39 (1 H, dd, *J* 8.9, 4.1 Hz, NHC*H*₂); δ_C (100 MHz, CDCl₃) 167.3 (*C*=O), 130.1 (*C*H=CH), 129.8 (CH=CH), 64.7 (N*C*H), 54.1 (N*C*H₂), 44.2 (NH*C*H₂); υ_{max} /cm⁻¹ (neat) 3270, 2867, 1682, 1605, 1487, 1459, 1429, 1385, 1325, 1285, 1261, 1217, 1133, 1110, 1086, 1049, 1019; *m*/z (EI) 124 (100%, M⁺); Found: M⁺, 124.0634. C₆H₈ON₂ requires *M*, 124.0637).

(8aS)-1H,2H,3H,5H,6H,8aH-imidazolidino[1,5-a]pyridin-3-one 45

i) NaHCO₃ (21.0 mg, 0.250 mmol) followed by Boc₂O (54.0 mg, 0.250 mmol) was added to a solution of amine **19** (50.0 mg, 0.210 mmol) in THF (1.00 mL) and water (1.00 mL). The reaction mixture was stirred at room temperature for 2 h before being diluted with EtOAc (5.0 mL) and water (5.0 mL), the phases separated and the aqueous phase extracted with EtOAc (3×5.0 mL). The combined organic phase was dried (MgSO₄), filtered and concentrated *in vacuo* to give a crude product that was used immediately.

ii) According to General Procedure E1 the reaction was complete after 4 h. The mixture was cooled to room temperature and loaded directly onto a silica column, eluting with $9:1 \text{ CH}_2\text{Cl}_2-\text{Et}_2\text{O}$ to give a product that was used immediately.

iii) According to General Procedure C1, urea **45** (17.0 mg, 61%) was obtained as a waxy colourless solid, $R_f 0.66$ (85:13.5:0.5 CH₂Cl₂–EtOH–NH₃OH; $[\alpha]_D^{28}$ +55 (*c*. 0.29, CHCl₃); δ_H (500 MHz, CDCl₃) 5.88 (1 H, dd, *J* 9.0, 6.3, 3-H), 5.60 (1 H, app. d, *J* 10.2, 4-H), 5.14 (1 H, br s, N*H*), 4.27 (1 H, app. br s, H-2), 3.91 (1 H, dd, *J* 13.4, 6.7, H-6_A), 3.59 (1 H, app. t, *J* 8.8, NHC*H*_A), 3.10 (1 H, dd, *J* 8.1, 5.5, NHC*H*_B), 2.94 (1 H, ddd, *J* 13.4, 11.4, 4.5, H-6_B), 2.35-2.29 (1 H, m, 5-H_A), 1.92 (1 H, app. d, *J* 17.5, 5-H_B); δ_C (125 MHz, CDCl₃) 162.1 (NCONH), 127.5 (3-C), 127.4 (4-C), 52.9 (2-C), 44.5 (NHCH₂), 37.4 (6-C), 23.5 (5-C); ν_{max}/cm^{-1} (neat) 3252, 2921, 1686, 1659, 1424, 1259, 1087; *m*/*z* (ESI) 139 (100%, MH⁺); Found: MH⁺, 139.0862. C₇H₁₀N₂O requires *MH*, 139.0866.

tert-Butyl-(9aS)-4-oxo-1H,2H,3H,4H,6H,7H,9aH-pyrido[1,2-a]piperazine-2-carboxylate S15

General Procedure D3/E2 was followed where DIPEA was used and following RCM the reaction mixture was concentrated *in vacuo*. Amine **19** (44.0 mg, 0.180 mmol) gave a crude product that was purified by flash column chromatography, eluting with 7:3 \rightarrow 3:7 petrol–EtOAc to furnish ketopiperazine **S15** (24.0 mg, 67%) as a colourless oil, R_f 0.19 (1:1 cyclohexane–EtOAc); $[\alpha]_D^{21}$ +67 (*c* 1.2, CHCl₃); δ_H (400 MHz, CDCl₃) 5.99 (1 H, ddt, *J* 9.6, 5.4, 1.6 Hz, CHCH=CH), 5.49 (1 H, ddt, *J* 10.1, 2.8, 1.4 Hz, CHCH=CH), 4.76 (1 H, ddt, *J* 13.1, 5.8, 1.3 Hz, NCH₂CH₂CH=CH), 4.45 (1 H, d, *J* 18.2 Hz, NCH₂CO), 4.37–4.11 (2 H, m, BocNCH₂CH), 3.78 (1 H, d, *J* 18.2 Hz, NCH₂CO), 2.75–2.70 (1H, m, BocNCH₂CH), 2.67 (1 H, td, *J* 12.2, 4.0 Hz, NCH₂CH₂CH=CH), 2.37–2.22 (1 H, m, NCH₂CH₂CH=CH), 2.15–2.04 (1 H, m, NCH₂CH₂CH=CH), 1.47 (9 H, s, C(CH₃)₃); δ_C

(100 MHz, CDCl₃) δ 165.1 (CH₂CON), 153.9 (OCON), 128.3 (*C*H=CH), 124.4 (CH=*C*H), 81.0 (*C*(CH₃)₃), 53.5 (NCH₂CO), 48.1 (NCH), 45.5 (BocNCH₂CH), 37.6 (NCH₂CH₂CH=CH), 28.5 (C(*C*H₃)₃), 25.0 (NCH₂CH₂CH=CH); v_{max}/cm^{-1} (neat) 3383, 2977, 2929, 1694, 1650, 1452, 1416, 1391, 1366, 1328, 1288, 1240, 1161, 1128, 1076, 1042, 1014; *m/z* (ESI) 275 (100%, MNa⁺); Found: MNa⁺, 275.1359. C₁₃H₂₀O₃N₂ requires *MNa*, 275.1366.

tert-Butyl-N-{[(2S)-1-methanesulfonyl-1,2,5,6-tetrahydropyridin-2-yl]methyl}carbamate 35

i) DIPEA (31.0 μ L, 0.180 mmol) and methanesulfonyl chloride (13.0 μ L, 0.160 mmol) were added to a solution of amine **17** (36.0 mg, 0.15 mmol) in CH₂Cl₂ (2 mL) at 0 °C (ice). The resulting mixture was stirred for 10 min at that temperature and at room temperature for 1 h. After this time the reaction mixture was diluted with CH₂Cl₂ (3 mL) and saturated aqueous NH₄Cl (aq. sat., 2 mL) and the layers separated. The aqueous phase was extracted with CH₂Cl₂ (3 × 2 mL). The combined organic phase was dried (MgSO₄), filtered and concentrated *in vacuo* to give a crude product that was used immediately.

ii) According to General Procedure E1, a crude product was obtained that was purified by flash column chromatography, eluting with 8:2→4:6 petrol–EtOAc) to furnish tetrahydro-pyridine **35** (27.0 mg, 54%) as a yellow oil, R_f 0.25 (1:1 cylohexane–EtOAc); $[\alpha]_D^{21}$ –81 (*c* 0.91, CHCl₃); δ_H (400 MHz, CDCl₃) 5.98 (1 H, ddt, *J* 9.8, 4.5, 2.1 Hz, CH=CH), 5.71 (1 H, dddd, *J* 10.4, 4.1, 2.6, 1.4 Hz, CH=CH), 5.00 (1 H, br. s, NH), 4.20 (1 H, dt, *J* 9.9, 3.3 Hz, NCH), 3.88 (1 H, dd, *J* 14.7, 6.2 Hz, NHCH₂), 3.35 (1 H, ddd, *J* 14.2, 6.8, 3.8 Hz, NCH₂), 3.25–3.08 (2 H, m, NHCH₂, NCH₂), 2.85 (3 H, s, SCH₃), 2.30 (1 H, dddd, *J* 18.3, 11.8, 6.2, 2.9 Hz, NCH₂CH₂), 2.02 (1 H, dt, *J* 18.0, 4.7 Hz, NCH₂CH₂), 1.43 (9 H, s, C(CH₃)₃); δ_C (100 MHz, CDCl₃) 156.2 (*C*=O), 127.5 (CH=CH), 125.3 (CH=CH), 79.6 (*C*(CH₃)₃), 53.5 (NCH), 43.0 (NCH₂), 39.9 (SCH₃), 38.3 (NHCH₂), 28.5 (C(CH₃)₃), 23.6 (NCHCH₂ ν_{max} /cm⁻¹ (neat) 3392, 2977, 2931, 1699, 1513, 1453, 1391, 1366, 1322, 1276, 1251, 1208, 1147, 1094, 1058; *m*/z (ESI) 313 (100%, MNa⁺); Found: MNa⁺, 313.1187. C₁₂H₂₂O₄N₂S requires *MNa*, 313.1192.

tert-Butyl-N-[(2S)-2-[3-(2-nitrobenzenesulfonyl)-2-oxoimidazolidin-1-yl]but-3-en-1-yl]carbamate S16

According to General Procedure C2, amine **20** (0.142 g, 0.340 mmol) furnished urea **S16** (0.095 g, 63%) as a yellow oil, $\delta_{\rm H}$ (500 MHz, CDCl₃) 8.45-8.43 (1 H, Ar 3-H), 7.77-7.74 (2 H, m Ar 5-H, 6-H), 7.72-7.70 (1 H, m, Ar 4-H), 5.70 (1 H, dd, *J* 17.3, 10.6, 6.2, 3-H), 5.30 (1 H, app. d, *J* 10.6, 4-H_A), 5.23 (1 H, dd, *J* 17.3, 1.4, 4-H_B), 4.63 (1 H, br s, CO₂NH), 4.36-4.32 (1 H, m, 2-H), 4.11-4.01 (2 H, m, imidazolidine 4-H_A, 5-H_A), 3.63 (1 H, dd, *J* 14.8, 8.8, imidazolidine 5-H_B), 3.56-3.50 (1 H, m, 1-H_A), 3.45 (1 H, app. dd, *J* 16.4, 8.8, imidazolidine 4-H_B), 3.23-3.18 (1 H, m, 1-H_B), 1.39 (9 H, s, OC(CH₃)₃); $\delta_{\rm C}$ (125 MHz, CDCl₃) 155.9 (*t*BuCO₂N), 153.6 (imidazolidine 2-C), 147.9 (Ar 2-C), 134.5 (Ar 5-C), 133.9 (Ar 4-C), 132.0 (Ar 1-C), 132.0 (Ar 3-C), 131.9 (3-C), 124.0 (Ar 6-C), 119.5 (4-C), 79.8 (OC(CH₃)₃), 55.1 (2-C), 42.1 (1-C), 40.6 (imidazolidine 5-C), 38.8 (imidazolidine 4-C), 28.2 ((OC(*C*H₃)₃); υ_{max} /cm⁻¹ (neat) 2979, 1713, 1591, 1541, 1482, 1427, 1268, 1168, 1128; *m*/z (ESI) 441 (100%, MH⁺); Found: MH⁺, 441.1456. C₁₈H₂₄N₄O₇S requires *MH*, 441.1438.

tert-Butyl-N-[(2S)-2-[4-(2-nitrobenzenesulfonyl)-2-oxopiperazin-1-yl]but-3-en-1-yl]carbamate S17

According to Procedure D4, amine **20** (0.390 g, 0.940 mmol) gave a crude product that was filtered through a plug of SiO₂, eluting with MTBE to furnish ketopiperazine **S17** (0.441 g, 89%) as a yellow oil, $[\alpha]_D^{20}$ +18.18 (c = 2.20, CDCl₃); δ_H (400 MHz, CDCl₃) 8.01 (1 H, dd, *J* 7.7, 1.6, 1H, Ar 3-H), 7.69 - 7.79 (2 H, m, Ar 4-H, Ar 5-H), 7.65 (1 H, dd, *J* 7.5, 1.8, Ar 6-H), 5.72 (1 H, ddd, *J* 17.2, 10.8, 5.9, 3-H), 5.20-5.33 (2 H, m, 4-H), 5.09 - 5.17 (1 H, m, 2-H), 4.76 - 4.83 (1 H, m, NH), 4.04 (1 H, d, *J* 17.0, piperazine 3-H_A), 3.87 (1 H, d, *J* 17.0, piperazine 3-H_B), 3.67 (1 H, dt, *J* 12.8, 4.4, piperazine 5-H_A), 3.46 - 3.60 (2 H, m, 1-H_A and piperazine 5-H_A), 3.33 - 3.41 (2 H, m, piperazine 6-H), 3.21 (1 H, dt, *J* 14.2, 4.3, 1-H_B), 1.35 (9 H, s, OC(CH₃)₃); δ_C (100 MHz, CDCl₃) 164.2 (piperazine 2-C), 156.0 (NHCO₂), 148.3 (Ar 2-C), 134.3 (Ar 5-C), 132.3 (3-C), 131.8 (Ar 4-C), 131.3 (Ar 3-C), 130.5 (Ar 1-C), 124.4 (Ar 6-C), 119.7 (4-C), 79.5 ((OC(CH₃)₃), 55.1 (2-C), 48.3 (piperazine 3-C), 43.2 (piperazine 5-C), 42.0 (piperazine 6-C), 40.1 (1-C), 28.3 (OC(CH₃)₃); ν_{max}/cm^{-1} (neat) 3320, 2977, 2927, 1704, 1648, 1544, 1484, 1451, 1305, 1296, 1250, 1168, 1130, 1004; *m*/z (ESI) 477 (100%, MNa⁺); Found: MNa⁺, 477.1417. C₁₉H₂₆N₄NaO₇S requires *MNa*, 477.1414.

N-{2-[(5S)-5-Ethenyl-2-oxoimidazolidin-1-yl]ethyl}-2-nitrobenzene-1-sulfonamide 30

According to General Procedure C1, amine **20** (0.250 g, 0.600 mmol) gave a crude product that was filtered through a plug of SiO₂, eluting with MTBE to furnish urea **30** (0.0980 g, 48%) as a yellow waxy solid, $[\alpha]_D^{19}$ +76 (c = 0.20, EtOH); δ_H (400 MHz, DMSO) 8.20 (1 H, br. s., Ns-N*H*), 8.01-8.07 (2 H, m, Ar 3-H and Ar 6-H), 7.89-7.96 (2 H, m, Ar 4-H and Ar 5-H), 6.49 (1 H, s, imidazolidinone-N*H*), 5.68-5.80 (1 H, m, ethenyl C*H*CH₂), 5.21-5.34 (2 H, m, ethenyl C*H*CH₂), 4.11 (1 H, app. q, *J* 8.3, imidazolidinone 5-H), 3.35-3.44 (1 H, m, imidazolidinone-4-H_A), 3.15-3.26 (1 H, m, NC*H*₂), 2.91 - 3.08 (4 H, m, NC*H*₂, NCH₂C*H*₂ and imidazolidinone 4-H_B); δ_C (100 MHz, DMSO-d₆) 161.4 (imidazolidinone 2-C), 147.7 (Ar 2-C), 136.9 (ethenyl CHCH₂), 134.0 (Ar 5-C), 132.7 (Ar 1-C), 132.6 (Ar 4-C), 129.4 (Ar 6-C), 124.4 (Ar 3-C), 119.1 (ethenyl CHCH₂), 59.0 (imidazolidinone 5-C), 43.6 (imidazolidinone 4-C), 40.9 (NCH₂), 40.8 (NCH₂); v_{max}/cm^{-1} (neat) 3301, 3234, 2924, 1690, 1538, 1491, 1426, 1356, 1340, 1262, 1163, 1060; *m*/*z* (ESI) 341 (100%, MH⁺); Found: MH⁺, 341.0905. C₁₃H₁₇N₄O₅S requires *MH*, 341.0920.

(3S,5S)-5-Ethenyl-3-(hydroxymethyl)piperazin-2-one 37

According to General Procedure F1, amine **21** (58.0 mg, 0.200 mmol) gave a crude product which was purified by flash column chromatography, eluting with 4:1 EtOAc–MeOH to furnish the ketopiperazine **37** (30.0 mg, 96%) as a colourless oil, $R_{\rm f}$ 0.21 (4:1 DCM–MeOH); $[\alpha]_{\rm D}^{24}$ –18 (*c*. 0.02, DMSO); $\delta_{\rm H}$ (500 MHz, MeOD) 5.88 (1H, ddd, *J* 17.4, 10.6, 5.8, ethenyl 1-H), 5.37 (1H, dd, *J* 17.4, 2.0, ethenyl 2-H_A), 5.26 (1H, dd, *J* 10.6, 2.0, ethenyl 2-H_B), 3.91 (1H, dd, *J* 11.0, 7.1, CH_{2A}OH), 3.82-

3.79 (1H, m, 5-H), 3.78 (1H, dd, *J* 11.0, 3.8, *CH*_{2B}OH), 3.51 (1H, dd, *J* 7.1, 3.8, 3-H), 3.36 (1H, dd, *J* 12.2, 4.0, 6-H_A), 3.21 (1H, dd, *J* 12.2, 8.0, 6-H_B); $\delta_{\rm C}$ (75 MHz, DMSO) 169.2 (2-C), 137.9 (ethenyl 2-C), 116.0 (ethenyl 1-C), 61.6 (3-C), 58.1 (*C*H₂OH), 49.6 (6-C), 46.0 (5-C); $\upsilon_{\rm max}/{\rm cm}^{-1}$ (neat) 3317, 2984, 1682, 1497, 1430, 1352, 1206; *m*/*z* (ESI) 157 (100%, MH⁺); Found: MH⁺, 157.0979. C₇H₁₂N₂O₂ requires *MH*, 157.0972.

(4R,8aS)-4-ethenyl-octahydropyrrolo[1,2-a]piperazin-1-one S18

According to General Procedure F1 where a 1:1 TFA/DCM ratio was used for deprotection, amine **22** (92.0 mg, 0.310 mmol) gave a crude product that was purified by flash column chromatography, eluting with $10:0 \rightarrow 9:1$ CH₂Cl₂–MeOH to furnish lactam **S18** (51.0 mg, 68%) as an orange solid; m.p. 91–92 °C; R_f 0.61 (8:2 CH₂Cl₂–MeOH); $[\alpha]_D^{20}$ –47 (*c* 0.5, MeOH); δ_H (600 MHz, CDCl₃) 6.78 (1H, br. s, NH), 5.77 (1H, ddd, J = 17.5, 10.4, 7.3 Hz, CH=CH₂), 5.28 (1H, dt, J = 17.2, 1.1 Hz, *trans*-CH=CH₂), 5.20 (1H, dd, J = 10.4, 1.3 Hz, *cis*-CH=CH₂), 3.39–3.31 (1H, m, CONHCH₂), 3.29–3.20 (2H, m, CONHCH₂, CHCH=CH₂), 3.01 (1H, t, J = 8.3 Hz, CHCONH), 2.96 (1H, td, J = 8.5, 4.2 Hz, CHNCH₂), 2.29 (1H, q, J = 8.4 Hz, CHNCH₂), 2.16 (1H, dddd, J = 12.8, 9.9, 8.1, 4.4 Hz, CH₂CHCONH), 1.92 (1H, dddd, J = 12.8, 11.0, 8.8, 7.3 Hz, CH₂CHCONH), 1.85–1.70 (2H, m, NCH₂CH₂); δ_C (150 MHz, CDCl₃) 172.7 (C=O), 136.4 (CH=CH₂), 118.7 (CH=CH₂), 64.4 (NCHCONH), 61.0 (CHCH=CH₂), 49.6 (CHNCH₂), 45.7 (CONHCH₂), 26.0 (CH₂CHCONH), 21.4 (NCH₂CH₂); υ_{max}/cm^{-1} (neat) 3229, 2972, 2877, 1660, 1489, 1422, 1359, 1270, 1199, 1177, 1131, 1083; *m/z* (ESI) 167 (100%, MH⁺); Found: MH⁺, 167.1181. C₉H₁₅N₂O requires *MH*, 167.118.

(5S,9aS)-5-ethenyl-octahydro-1H-pyrrolo[1,2-a][1,4]diazepin-1-one 38

According to General Procedure F2, amine **23** (65.0 mg, 0.210 mmol) gave a crude product that was purified by flash column chromatography, eluting with 100:0 \rightarrow 95:5 CH₂Cl₂–MeOH to furnish lactam **38** (29.0 mg, 77%) as an white solid, m.p. 101–102 °C; $R_f 0.47$ (8:2 CH₂Cl₂–MeOH); $[\alpha]_D^{21}$ +13 (*c* 0.8, MeOH); δ_H (500 MHz, CDCl₃) 6.04 (1H, br. s, NH), 5.84 (1H, ddd, J = 17.2, 10.1, 8.7 Hz, CH=CH₂), 5.17 (1H, dd, J = 17.1, 1.3 Hz, *trans*-CH=CH₂), 5.02 (1H, dd, J = 10.2, 1.6 Hz, *cis*-CH=CH₂), 3.41 (1H, dddd, J = 14.9, 9.8, 4.9, 2.9 Hz, CONHCH₂), 3.34–3.21 (2H, m, CONHCH₂, CHCONH), 3.19–3.10 (1H, m, CHNCH₂), 2.99 (1H, td, J = 8.4, 4.8 Hz, CHCH=CH₂), 2.62 (1H, dddd, J = 12.3, 8.0, 4.0, 2.1 Hz, CH₂CHCONH), 2.26 (1H, ddd, J = 10.6, 9.3, 6.3 Hz, CHNCH₂), 1.95–1.63 (5H, m, CH₂CH₂CHCONH), CH₂CHCH=CH₂); δ_C (100MHz, CDCl₃) δ 176.1 (*C*=O), 141.4 (CH=CH₂), 115.1 (CH=CH₂), 71.1 (CHCH=CH₂), 63.6 (CHCONH), 56.5 (CHNCH₂), 40.2 (CONHCH₂), 37.7 (CH₂CHCH=CH₂), 28.4 (CH₂CHCONH), 23.6 (CH₂CH₂CHCONH); v_{max} /cm⁻¹ (neat) 3283, 3080, 2925, 2784, 1671, 1627, 1475, 1421, 1367, 1314, 1285, 1197, 1146, 1121, 1047; *m*/z (ESI) 181 (100%, MH⁺); Found: MH⁺, 181.1344. C₁₀H₁₇N₂O requires *MH*, 181.1341.

tert-Butyl-(2R,3S)-3-(4-ethylpiperazin-1-yl)-2-(pyridin-3-ylmethyl)pyrrolidine-1-carboxylate S19

10% Pd/C (0.244 g, 20 mol% Pd) and ethylene diamine (77.0 µL, 1.15 mmol) were added to a solution of pyrrolidine S10 (0.551 g, 1.15 mmol) in MeOH (15.0 mL). The reaction vessel was placed under an atmosphere of H₂, stirred at room temperature for 18 h then filtered through celite (MeOH) and the filtrate concentrated in vacuo. The crude product (0.374 g) was dissolved in MeOH (3.7 mL) and to this was added acetaldehyde (5 M solution in THF, 0.690 mL, 3.45 mmol) and AcOH (66.0 µL, 1.15 mmol). After 1 h NaBH(OAc)₃ (0.732 g, 3.45 mmol) was added and the reaction mixture stirred at room temperature for a further 2 h before being quenched by the addition of saturated aqueous NaHCO₃ and concentrated in vacuo. The crude material was taken in MeOH (5.0 mL), filtered and filtrate purified by SCX solid phase extraction followed by flash column chromatography, eluting with 95:4.5:0.5 DCM-EtOH-NH₄OH to furnish amine **S19** (0.200 g, 46%) as a colourless oil, R_f 0.16 (95:4.5:0.5 DCM–EtOH–NH₄OH); δ_H (500 MHz, MeOD, 333 K) 8.40-8.39 (2 H, m, Ar 2-H, Ar 6-H), 7.69 (1 H, d, J 67.5, Ar 4-H), 7.35 (1 H, dd, J 7.5, 4.9, Ar 5-H), 4.10 (1 H, dd, J 7.5, 5.3, 2.2, pyrrolidine 2-H), 3.54 (1 H, app. br s, pyrrolidine 3-H), 3.18 (1 H, app. br s, pyrrolidine 5-H_A), 2.93 (2 H, app. br s, pyrrolidine 5-H_B, ArCH_A), 2.86-2.82 (1 H, m, ArCH_B), 2.45-2.39 (8 H, m, piperazine 2-H and 3-H), 2.38 (2 H, q, J 7.3, ethyl CH₂), 1.98 (2 H, app. br s, pyrrolidine 4-H), 1.42 (9 H, s, OC(CH₃)₃), 1.05 (3 H, t, J 7.3, ethyl CH₃); δ_{C} (125 MHz, MeOD, 333 K) 155.9 (tBuCO₂N), 151.2 (Ar 2-C), 148.2 (Ar 6-C), 139.3 (Ar 4-C), 136.2 (Ar 3-C), 125.0 (Ar 5-C), 81.3 (OC(CH₃)₃), 76.9 (pyrrolidine 3-C), 61.6 (pyrrolidine 2-C), 54.2 (ethyl CH₂), 53.7 (piperazine 3-C and 5-C), 53.2 (piperazine 2-C and 6-C), 50.3 (pyrrolidine 5-C), 34.3 (CH₂Ar), 28.8 (OC(CH₃)₃), 26.3 (pyrrolidine 4-C), 11.7 (ethyl CH₃); v_{max}/cm⁻¹ (neat) 2970, 2812, 1686, 1390, 1363, 1162, 1111, 1027; m/z (ESI) 375 (100%, MH⁺); Found: MH⁺, 375.2765. C₂₁H₃₅N₄O₂ requires *MH*, 375.2754.

(2R,3S)-N-ethyl-3-(4-ethylpiperazin-1-yl)-2-(pyridin-3-ylmethyl)pyrrolidine-1-carboxamide S21

TFA (1.00 mL) was added to a solution of pyrrolidine **S19** (0.100 g, 0.270 mmol) in CH₂Cl₂ (3.0 mL). The reaction mixture was stirred at room temperature for 16 h and concentrated *in vacuo*. The crude product was dissolved in CH₂Cl₂ (3.0 mL) and cooled to 0 °C (ice). To this was added NEt₃ (0.190 mL, 1.35 mmol) and ethyl isocyanate (23.0 μ L, 0.290 mmol). The reaction was allowed to warm to room temperature with stirring over 18 h and then concentrated *in vacuo* to give a crude product that was purified by flash column chromatography, eluting with 95:5 CH₂Cl₂–saturated methanolic NH₃ to furnish urea **S21** as a colourless oil, *R*_f 0.15 (CH₂Cl₂–saturated methanolic NH₃); $\delta_{\rm H}$ (500 MHz, CDCl₃) 8.47 (1 H, d, *J* 5.0, Ar 6-H), 8.43 (1 H, s, Ar 2-H), 7.56 (1 H, d, *J* 7.7, Ar 4-H), 7.22 (1 H, dd, *J* 7.7, 5.0, Ar 5-H), 4.31 (1 H, t, *J* 5.2, NCON*H*), 4.20-4.18 (1 H, m, 4.10, pyrrolidine 2-H), 3.33 (2 H, q, *J* 8.6, ethyl CH₂), 3.30-3.25 (2 H, m, urea CH₂), 3.17 (1 H, app. dt, *J* 9.1, 4.3, pyrrolidine 5-H_A),

3.07 (1 H, dd, *J* 13.6, 3.5, ArC*H*_A), 2.94 (3 H, app. br s, pyrrolidine 3-H, piprazine 2-H), 2.76 (1 H, dd, *J* 13.6, 8.4, ArC*H*_B), 2.69 (3 H, app. br s, pyrrolidine 5-H_B, piperazine 3-H), 2.04 (1 H, app. ddd, *J* 12.1, 7.2, 3.4, pyrrolidine 4-H_A), 1.80-1.73 (1 H, m, pyrrolidine 4-H_A, 1.32 (3 H, app. t, *J* 7.3, urea CH₃), 1.15 (3 H, t, *J* 7.2, ethyl C*H*₃); $\delta_{\rm C}$ (75 MHz, CDCl₃) 156.3 (NCO₂N), 150.3 (Ar 2-C), 147.8 (Ar 6-C), 136.9 (Ar 4-C), 133.7 (Ar 3-C), 123.3 (Ar 5-C), 66.9 (pyrrolidine 3-C), 61.3 (pyrrolidine 2-C), 51.8 (piperazine 3-C and 5-C), 51.4 (piperazine 2-C and 6-C), 45.0 (pyrrolidine 5-C), 36.6 (urea *C*H₂), 35.4 (ethyl *C*H₂ and ArC*H*₂), 24.1 (pyrrolidine 4-C), 15.5 (urea *C*H₂), 9.3 (ethyl *C*H₃); ν_{max}/cm^{-1} (neat) 3336, 2973, 1673, 1623, 1532, 1449, 1373, 1197, 1125; *m/z* (ESI) 346 (100%, MH⁺); Found: MH⁺, 346.2604. C₁₉H₃₁N₅O requires *MH*, 346.2601.

Benzyl-4-[(2S,3R)-1-acetyl-2-(pyridin-3-ylmethyl)pyrrolidin-3-yl]piperazine-1-carboxylate S22

TFA (2.0 mL) was added to a solution of ent-S10 (0.391 g, 0.810 mmol) in CH₂Cl₂ (6.0 mL). The reaction mixture was stirred at room temperature for 16 h and concentrated in vacuo. The crude product was dissolved in CH₂Cl₂ (0.8 mL) and cooled to 0 °C (ice). To this was added DIPEA (0.508 g, 4.00 mmol) and acyl chloride (94.0 mg, 1.20 mmol). The reaction was allowed to warm to room temperature with stirring over 18 h and then concentrated *in vacuo* to give a crude product that was purified by flash column chromatography, eluting with 96:3.6:0.4 DCM-EtOH-NH₄OH to furnish pyrrolidine S22 (0.312 g, 93%, 4:1 mixture of rotameric species, major species characterised) as a colourless oil, $R_f 0.0.2$ (96:3.6:0.4 DCM–EtOH–NH₄OH); δ_H (500 MHz, MeOD, 333 K) 8.42 (1 H, d, J 1.8, Ar 2-H), 8.40 (1 H, dd, J 4.9, 1.8, Ar 6-H), 7.74 (1 H, app. dt, J 7.8, 1.8, Ar 4-H), 7.36-7.28 (6 H, m, Ar 5-H, Cbz Ar-H), 5.08 (2 H, s, OCH₂Ar), 4.32 (1 H, ddd, J 8.5, 5.0, 2.6, pyrrolidine 2-H), 3.61 (1 H, app. dt, J 10.6, 7.9, pyrrolidine 5-H_A), 3.42-3.37 (5 H, m, piperazine 2-H and pyrrolidine 5-H_B), 3.07 (1 H, dd, J 13.6, 5.0, ArCH_A), 2.93 (2 H, ddd, J 6.5, 3.9, 2.6, pyrrolidine 3-H), 2.80 (1 H, dd, J 13.6, 8.5, ArCH_B), 2.34-2.25 (4 H, m, piperazine 3-H), 2.07-2.01 (5 H, m, pyrrolidine 4-H and NCOCH₃); δ_C (125 MHz, MeOD, 333 K) 171.6 (NCOCH₃), 156.8 (ArCH₂OCO₂), 151.0 (Ar 2-C), 148.3 (Ar 6-C), 139.3 (Ar 4-C), 138.2 (Cbz Ar 1-C), 136.1 (Ar 3-C), 129.5 (Cbz Ar-C), 129.1 (Cbz Ar-C), 128.9 (Cbz Ar-C), 125.1 (Ar 5-C), 68.9 (pyrrolidine 3-C), 68.4 (OCH₂Ar), 61.3 (pyrrolidine 2-C), 50.6 (piperazine 3-C), 47.9 (pyrrolidine 5-C), 45.0 (piperazine 2-C), 36.5 (CH₂Ar), 26.5 (pyrrolidine 4-C), 22.4 (NCOCH₃); v_{max}/cm⁻¹ (neat) 2948, 1695, 1629, 1422, 1358, 1243, 1119, 1079; m/z (ESI) 423 (100%, MH⁺); Found: MH⁺, 423.2399. C₂₄H₃₁N₄O₃ requires MH, 423.2391.

S9. <u>References</u>

- [1] A. Jadhav, R. S. Ferreira, C. Klumpp, B. T. Mott, C. P. Austin, J. Inglese, C. J. Thomas, D. J. Maloney, B. K. Shoichet, A. Simeonov, J. Med. Chem. 2010, 53, 37–51.
- [2] I. Churcher, A. Nadin, C. Hattotuwagama, I. Churcher, Angew. Chem. Int. Ed. 2012, 5, 1114–1122.
- [3] J. J. Irwin, T. Sterling, M. M. Mysinger, E. S. Bolstad, R. G. Coleman, J. Chem. Inf. Model. 2012, 52, 1757–1768.
- [4] A. Schuffenhauer, P. Ertl, S. Roggo, S. Wetzel, M. A. Koch, H. Waldmann, J. Chem. Inf. Model. 2006, 47, 47–58.
- [5] H. Yokoyama, H. Ejiri, M. Miyazawa, S. Yamaguchi, Y. Hirai, *Tetrahedron: Asymmetry* 2007, 18, 852–856.
- [6] P. Tosatti, J. Horn, A. J. Campbell, D. House, A. Nelson, S. P. Marsden, Adv. Synth. Catal. 2010, 352, 3153–3157.
- [7] D. R. Anton, R. H. Crabtree, *Organometallics* **1983**, *2*, 621–627.
- [8] I. S. Mikhel, H. Rüegger, P. Butti, F. Camponovo, D. Huber, A. Mezzetti, Organometallics 2008, 27, 2937–2948.
- [9] D. P. Papahatjis, V. R. Nahmias, S. P. Nikas, M. Schimpgen, A. Makriyannis, *Chemistry* 2010, 16, 4091–9.
- [10] B. Gruber, S. Balk, S. Stadlbauer, B. König, Angew. Chem. Int. Ed. 2012, 51, 10060–3.
- [11] A. I. Gerasyuto, R. P. Hsung, N. Sydorenko, B. Slafer, J. Org. Chem. 2005, 70, 4248–56.
- [12] F. Dioury, E. Guéné, A. Di Scala-Roulleau, C. Ferroud, A. Guy, M. Port, *Tetrahedron Lett.* 2005, 46, 611–613.

S10. <u>NMR Spectra and HPLC Traces</u>

S25			
Sample Name: Vial Number: Sample Type:	RD256 P1:F5 unknown	Injection Volume: Channel: Wavelength:	10.0 DAD_Signal_A n.a.
Control Program:	NP PreMix 100%B 60min 0,3ml min pos3 OD-H	Bandwidth:	n.a.
Quantif. Method:	MH1	Dilution Factor:	1.0000
Recording Time: Run Time (min):	10/10/2013 12:08 59.91	Sample Weight: Sample Amount:	1.0000 1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	32.49	n.a.	11.000	17.324	7.78	n.a.	BMB
2	36.53	n.a.	115.572	205.417	92.22	n.a.	BMB
Total:			126.572	222.740	100.00	0.000	

S25 miz			
Sample Name:	RD256/270 mix 5%IPA95%Hexane	Injection Volume:	10.0
Vial Number:	P1:F4	Channel:	DAD_Signal_A
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	NP PreMix 100%B 60min 0,3ml min pos3 OD-H	Bandwidth:	n.a.
Quantif. Method:	MH1	Dilution Factor:	1.0000
Recording Time:	10/10/2013 10:41	Sample Weight:	1.0000
Run Time (min):	59.84	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	32.27	n.a.	130.988	211.581	53.20	n.a.	BM
2	36.70	n.a.	107.671	186.125	46.80	n.a.	MB
Total:			238.659	397.705	100.00	0.000	

27	RD394/395 5%EtOH95%He	xane S	526				
	Mobile phase - 5%EtOH / 95%Hexane						
Sampl	Flow Rate - 0.5ml/min	RD394/395 5%EtOH95	5%Hexane		Injection V	olume:	10.0
Vial N	Column - Daicel Chiralcel AS-H 250mm x	4 P1:F5			Channel:		DAD_Signa
Sampl	е Туре:	unknown			Wavelengt	h:	n.a.
Contro	l Program:	NP PreMix 100%B 60)min 0,5ml	min pos1	Bandwidth	:	n.a.
Quant	if. Method:	MH1			Dilution Fa	actor:	1.0000
Record	ding Time:	14/04/2014 12:02			Sample W	'eight:	1.0000
Run T	ime (min):	59.90			Sample Ar	mount:	1.0000
50.0 40.0 30.0 20.0	mAU 	1	- 32.009	3 - 39.291			min
-5.0	0.0 10.0 20.0) 30.0	1 1	40.0	50	0.0	59.9
No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	32.01	n.a.	42.576	80.107	45.14	n.a.	BMB
2	36.25	n.a.	1.401	1.090	0.61	n.a.	BMB
3	39.29	n.a.	41.449	96.259	54.24	n.a.	BMB
Total:			85.427	177.455	100.00	0.000	

RD370/	/396 5%EtOH95%Hexane	15	
Sample Name: Vial Number:	RD370/396 5%EtOH95%Hexane P1:F1	Injection Volume: Channel :	10.0 DAD_Signal_ B
Sample Type: Control Program:	unknown NP 100%B 60min 1,0ml min pos2 AD- H	Wavelength: Bandwidth:	n.a. n.a.
Quantif. Method: Recording Time: Run Time (min):	MH1 17/03/2014 12:40 59.91	Dilution Factor: Sample Weight: Sample Amount:	1.0000 1.0000 1.0000

	Ret.Tim				Rel.Are	Amoun	
No.	е	Peak Name	Height	Area	а	t	Туре
	min		mAU	nau mi n	%		
			274.76				
1	31.06	n.a.	4	357.454	50.47	n.a.	BMB
			226.95				
2	37.51	n.a.	2	350.863	49.53	n.a.	BMB
Total:			501.71 6	708.318	100.00	0.000	

RD396	B1 5%EtOH95%Hexane	15	
Sample Name: Vial Number:	RD396 B1 5%EtOH95%Hexane P1:F4	Injection Volume: Channel	10.0 DAD_Signal_
Sample Type: Control Program:	unknown NP 100%B 60min 1,0ml min pos2 AD- H	: Wavelength: Bandwidth:	в n.a. n.a.
Quantif. Method: Recording Time: Run Time (min):	 MH1 17/03/2014 14:42 59.90	Dilution Factor: Sample Weight: Sample Amount:	1.0000 1.0000 1.0000

	Ret.Tim				Rel.Are	Amoun	
No.	е	Peak Name	Height	Area mAU*mi	а	t	Туре
	min		mAU	n	%		
1	31.78	n.a.	18.171 240.76	23.359	6.01	n.a.	BMB
2	37.34	n.a.	7	365.221	93.99	n.a.	BMB
Total:			258.93 8	388.580	100.00	0.000	

Data File K:\HPCHEM\1\DATA\ERIC\HL10.D Sample Name: N22359-46-E1

a File K:\HPCHEM ble Name: N22359-	\1 -4	\DATA\ERIC\HL10.D 6-E1 ====================================	
Acq. Operator	:	ERIC HORTENSE	
Acq. Instrument	:	LALANDRY Location : Vial 1	N.
Injection Date	:	15/02/2012 12:12:29	O_2S
		Inj Volume : 5 µl	
Method	:	C:\CHEM32\1\METHODS\ERIC1.M	
Last changed	:	15/02/2012 12:33:37 by ERIC HORTENSE (modified after loading)	
Sample Info	:	25cm Chiralpak IA,col.no.IAOOCE-MC024,5%ETOH/C7,1ml/min ,wavelength 215nm,RT	NO ₂

Area Percent Report _____ ===========

Sorted By		:	Signal	
Multiplier		:	1.0000	
Dilution		:	1.0000	
Use Multiplier	&	Dilution	Factor with	ISTDs

Signal 1: DAD1 A, Sig=215,10 Ref=450,80

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	24.108	BB	0.5741	1.18060e4	314.42432	49.3881
2	26.710	BB	0.7586	1.20986e4	238.99828	50.6119
Total	ls :			2.39046e4	553.42259	

*** End of Report ***

LALANDRY 15/02/2012 13:44:30 ERIC HORTENSE

Page 1 of 1

S27

Data File K:\HPCHEM\1\DATA\ERIC\HL9.D Sample Name: N22359-50-A1

pro namer nelever		
Acq. Operator Acq. Instrument	: ERIC HORTENSE : LALANDRY Location : Vial 1	BOC ^N
Injection Date	: 15/02/2012 11:38:32 Inj Volume : 5 μl	0 ₂ S
Acq. Method	: C:\CHEM32\1\METHODS\ERIC1.M	
Last changed	: 15/02/2012 11:37:38 by ERIC HORTENSE (modified after loading)	
Analysis Method	: C:\CHEM32\1\METHODS\ERIC1.M	$\langle \rangle$
Last changed	: 15/02/2012 12:33:37 by ERIC HORTENSE (modified after loading)	Ť NO-
Sample Info	: 25cm Chiralpak IA,col.no.IAOOCE-MC024,5%ETOH/C7,1ml/min ,wavelength 215nm,RT	

	Area	a Percent Report
=======================================		
Sorted By	:	Signal
Multiplier	:	1.0000
- 1 - 1 - 1		1 0000

Dil	ution		:	1.00	000	
Use	Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: DAD1 A, Sig=215,10 Ref=450,80

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	24.079	MF	0.6401	2.20293e4	573.58832	93.2988
2	27.098	BB	0.6757	1582.24622	35.65968	6.7012
Total	ls :			2.36115e4	609.24800	

*** End of Report ***

LALANDRY 15/02/2012 13:42:55 ERIC HORTENSE

Page 1 of 1

н

Area Percent Report

Sorted By		:	Sign	nal	
Multiplier		:	1.00	000	
Dilution		:	1.00	000	
Use Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: DAD1 A, Sig=215,10 Ref=450,80

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.435	VV	0.4488	1.83904e4	598.03406	50.3302
2	12.155	VB	0.5632	1.81491e4	471.33688	49.6698
Tota	ls :			3.65395e4	1069.37094	

*** End of Report ***

LALANDRY 15/02/2012 11:05:28 ERIC HORTENSE

Page 1 of 1

Data File K:\HPCHEM\1\DATA\ERIC\HL7.D Sample Name: N22359-51-A1

le Name: N22359	-5		
Acq. Operator	:	ERIC HORTENSE BOC	:
Acq. Instrument	:	LALANDRY Location : Vial 1	
Injection Date	:	15/02/2012 09:51:36 O ₂ S	
		Inj Volume : 5 µl	
Method	:	C:\CHEM32\1\METHODS\ERIC1.M	~
Last changed	:	15/02/2012 09:16:10 by ERIC HORTENSE (modified after loading)	
Sample Info	:	25cm Chiralpak AD-H,col.no.ADHOCE-BH013,10%ETOH/C7,1ml/ min,wavelength 215nm,RT	

Sorted By		:	Sigr	nal	
Multiplier	:	1.00	000		
Dilution		:	1.00	000	
Use Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: DAD1 A, Sig=215,10 Ref=450,80

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.522	BB	0.4321	3174.91309	107.65047	15.5844
2	12.24/	DD	0.5452	1./19/464	4/1.04255	04.4100
Total	ls :			2.03723e4	579.49282	

*** End of Report ***

LALANDRY 15/02/2012 11:03:54 ERIC HORTENSE

Page 1 of 1

S28

ы

Data File K:\HPCHEM\1\DATA\ERIC\HL4.D Sample Name: N22359-35-A1

Acq. Operator	:	ERIC HORTENSE
Acq. Instrument	:	LALANDRY Location : Vial 1
Injection Date	:	06/02/2012 10:24:42
		Inj Volume : 5 µl
Method	:	C:\CHEM32\1\METHODS\ERIC1.M
Last changed	:	06/02/2012 10:28:52 by ERIC HORTENSE
		(modified after loading)
Sample Info	:	25cm Chiralpak IC, col.no.ICOOCE-MF060, 10%ETOH/C7, 1ml/mi
		n,wavelength 215nm,RT

DAD1 A, Sig=215,10 Ref=450,80 (ERIC\HL4.D) mAU 14.707 423 300 N22359-35-A1 16.4 250 200 150 -100 50 0 10 25 Ó 5 15 20 min _____ Area Percent Report Sorted By : Signal : 1.0000 Multiplier Dilution Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 A, Sig=215,10 Ref=450,80 Peak RetTime Type Width Area Height Area [min] [mAU*s] [mAU] # [min] 8 1 14.707 VB 0.3526 7076.60742 312.05734 45.4899 2 16.423 BB 0.4685 8479.84082 280.66971 54.5101 Totals : 1.55564e4 592.72705

*** End of Report ***

LALANDRY 06/02/2012 11:27:38 ERIC HORTENSE

Data File K:\HPCHEM\ Sample Name: N22359-	1	DATA\ERIC\HL3.D -A1
Acq. Operator	:	ERIC HORTENSE
Acq. Instrument	:	LALANDRY Location : Vial 1
Injection Date	:	06/02/2012 09:54:05
-		Inj Volume : 5 µl
Acq. Method	:	C:\CHEM32\1\METHODS\ERIC1.M
Last changed	:	06/02/2012 09:28:55 by ERIC HORTENSE
		(modified after loading)
Analysis Method	:	C:\CHEM32\1\METHODS\ERIC1.M
Last changed	:	06/02/2012 10:28:52 by ERIC HORTENSE
		(modified after loading)
Sample Info	:	25cm Chiralpak IC, col.no.ICOOCE-MF060,10%ETOH/C7,1ml/mi
		n,wavelength 215nm,RT

Area Percent Report

Sorted By		:	Sigr	nal		
Multiplier		:	1.00	000		
Dilution		:	1.00	000		
Use Multiplier	&	Dilution	Factor	with	ISTDs	

Signal 1: DAD1 A, Sig=215,10 Ref=450,80

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.485	BB	0.3511	2.75342e4	1230.44348	93.2491
2	16.206	BB	0.4260	1993.38611	73.59498	6.7509
Total	ls :			2.95276e4	1304.03846	

*** End of Report ***

LALANDRY 06/02/2012 11:23:43 ERIC HORTENSE

Page 1 of 1

S29

Data File K:\HOYTEN\HPCHEM\1\DATA\ERIC\LIHO6.D Sample Name: N22359-36-A1

	==	
Acq. Operator	:	ERIC HORTENSE
Acq. Instrument	:	HOYTEN Location : Vial 1 536
Injection Date	:	06/02/2012 10:11:39
		Inj Volume : 5 µl
Acq. Method	:	K:\HOYTEN\HOYTENS METHODS\CHIMETH1.M
Last changed	:	06/02/2012 09:22:23 by ERIC HORTENSE
		(modified after loading)
Analysis Method	:	K:\HOYTEN\HOYTENS METHODS\CHIMETH1.M
Last changed	:	06/02/2012 10:57:22 by ERIC HORTENSE
		(modified after loading)
Method Info	:	Chiral Method 1. Isocratic Analysis at 1.000 ml/min.
Sample Info	:	25cm Chiralpak AD
		,col.no.ADOOCE-A1074,10%ETOH/C7,1ml/min,wavelength 215n
		m, RT

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area १
]						
1	11.492	VV	0.4413	6545.63965	227.72227	49.8532
2	13.802	VB	0.5711	6584.19092	171.80617	50.1468
Total	ls :			1.31298e4	399.52844	

*** End of Report ***

HOYTEN 06/02/2012 11:22:44 ERIC HORTENSE

Page 1 of 1

Data File K:\HOYTEN\HPCHEM\1\DATA\ERIC\LIHO5.D Sample Name: N22359-45-A1

Acq. Operator	: ERIC HORTENSE
Acq. Instrument	: HOYTEN Location : Vial 1
Injection Date	: 06/02/2012 09:43:32
	Inj Volume : 5 µl
Acq. Method	: K:\HOYTEN\HOYTENS METHODS\CHIMETH1.M
Last changed	: 06/02/2012 09:22:23 by ERIC HORTENSE
	(modified after loading)
Analysis Method	: K:\HOYTEN\HOYTENS METHODS\CHIMETH1.M
Last changed	: 06/02/2012 10:57:22 by ERIC HORTENSE
	(modified after loading)
Method Info	: Chiral Method 1. Isocratic Analysis at 1.000 ml/min.
Sample Info	: 25cm Chiralpak AD
	,col.no.ADOOCE-A1074,10%ETOH/C7,1ml/min,wavelength 215n
	m, RT

S36

Data File K:\HPCHEM\1\DATA\ERIC\HL11.D

Sample Name: N22359-	53-C1
Acq. Operator	: ERIC HORTENSE
Acq. Instrument	: LALANDRY Location : Vial 1
Injection Date	: 28/02/2012 15:26:40
	Inj Volume : 5 µl
Acq. Method	: C:\CHEM32\1\METHODS\ERIC1.M
Last changed	: 28/02/2012 15:24:53 by ERIC HORTENSE
2007.000.000 (2007.000) Control Contro	(modified after loading)
Analysis Method	: C:\CHEM32\1\METHODS\ERIC1.M
Last changed	: 15/03/2012 14:10:41 by ERIC HORTENSE
-	(modified after loading)
Sample Info	: 25cm Chiralpak IA, col.no.IAOOCE-MC024, 40%ETOH/C7, 1ml/mi
-	n,wavelength 215nm,RT

Sortea By		:	Sigi	nai		
Multiplier		:	1.0000			
Dilution		:	1.00	000		
Use Multiplier	&	Dilution	Factor	with	ISTDs	

Signal 1: DAD1 A, Sig=215,10 Ref=450,80

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.123	VV	0.1727	1.98121e4	1824.43323	69.6540
2	8.420	VB	0.2349	8631.47852	562.92065	30.3460
Total	s :			2.84435e4	2387.35388	

*** End of Report ***

LALANDRY 16/03/2012 11:32:07 ERIC HORTENSE

Page 1 of 1

Data File K:\HPCHEM\1\DATA\ERIC\HL12.D Sample Name: N22359-54-A1

	==:	
Acq. Operator	:	ERIC HORTENSE
Acq. Instrument	:	LALANDRY Location : Vial 1
Injection Date	:	28/02/2012 15:57:26
		Inj Volume : 5 µl
Acq. Method	:	C:\CHEM32\1\METHODS\ERIC1.M
Last changed	:	28/02/2012 15:24:53 by ERIC HORTENSE
and the reaction of the second se		(modified after loading)
Analysis Method	:	C:\CHEM32\1\METHODS\ERIC1.M
Last changed	:	15/03/2012 14:10:41 by ERIC HORTENSE
2		(modified after loading)
Sample Info	:	25cm Chiralpak IA, col.no.IAOOCE-MC024,40%ETOH/C7,1ml/mi
-		n,wavelength 215nm,RT

LALANDRY 16/03/2012 11:34:21 ERIC HORTENSE

Page 1 of 1

120 110 100 f1 (ppm) 220 210 180 170 160 150 140

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

500 MHz 1 H NMR (CDCl₃) of **38**

