Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Homocoupling versus Reduction of Radicals: An Experimental and Theoretical Study of Ti(III)-mediated Deoxygenation of Activated Alcohols

Consuelo Prieto,^{*a*} José A. González Delgado,^{*a*} Jesús F. Arteaga,^{*,*b*} Martín Jaraíz,^{*,*c*} José L. López-Pérez^{*d*} and Alejandro F. Barrero^{*a*}

^aDepartment of Organic Chemistry and Institute of Biotechnology, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain..

^bCIQSO–Center for Research in Sustainable Chemistry, and Department of Chemical Engineering, Physical Chemistry and Organic Chemistry, University of Huelva, Campus el Carmen, 21071 Huelva, Spain..

^cDepartment of Electronics, ETSIT, University of Valladolid, Paseo de Belén 15, 47011, Valladolid, Spain.

^dDepartment of Pharmaceutical Chemistry-IBSAL-CIETUS, University of Salamanca, Avda. Campo Charro s/n, 37071 Salamanca, Spain.

jesus.fernandez@diq.uhu.es, mjaraiz@ele.uva.es

Supporting Information

1 General details	S-2
2 Spectroscopic data for compounds 2 and 9	S-3
2.1. ¹ H and ¹³ C NMR spectra of deuterated derivatives of 2 and 9	S-3
Compound 2	S-3
Compound 9	S-4
3 Computational details	S-5
3.1. Reaction set simulated with COPASI	S-5
3.2. Gaussian09: Methodology	S-9
3.3. Relaxed Potential Energy Surface Scans in <i>in vacuo</i> [b3lyp/6-31+g(d,p)].	S-10
3.4. Cartesian coordinates, energies and IRC plots	S-15
3.5. Comparative study on the performance of several computation models	S-36
3.6. Comparative behaviour of TiCl ₃ - Cp ₂ TiCl	S-38

<u>1. - GENERAL DETAILS</u>

The solvents used were purified according to standard literature techniques and stored under Argon. THF was freshly distilled immediately prior to use from sodium/benzophenone and strictly deoxygenated for 30 min under Argon for each of the Cp₂TiCl₂/Mn reactions. Reagents were purchased at the higher commercial quality and used without further purification, unless otherwise stated. Yields refer to chromatographically and spectroscopically (¹H NMR) homogeneous materials, unless otherwise stated. NMR spectra were performed either with ¹H 500 MHz/¹³C 125 MHz, ¹H 400 MHz/¹³C 100 MHz, or¹H 300 MHz/¹³C 75 MHz spectrometers. The accurate mass determination was carried out with an AutoSpec-Q mass spectrometer arranged in an EBE geometry and equipped with a FAB (LSIMS) source. The instrument was operated at 8 KV of accelerating voltage and Cs⁺ were used as primary ions. Silica gel (35–70 µm) was used for flash column chromatography. Reactions were monitored by thin layer chromatography (TLC) carried out on 0.25 mm silica gel plates (60F–254) using UV light as the visualizing agent and solutions of phosphomolybdic acid in ethanol or acidic mixture of anisaldehyde and heat as developing agents. All air- and water-sensitive reactions were performed in flaks flame-dried under a positive flow of Argon and conducted under an Argon atmosphere. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, pent = pentet, hex = hexet, br = broad.

Yields corresponding to experiments carried out for the study and optimization of the reduction/homocoupling methodology (Table 1 and Table 2) were calculated by yields and ¹H NMR integrals in the case of the mixture of **2–3** or **9–10** obtained from the first silica gel flash chromatography.

2. - SPECTROSCOPIC DATA FOR DEUTERATED DERIVATIVES OF 2 AND 9

2.1.¹H and ¹³C NMR spectra of C–3 deuterated compound 2

S-3

2.2.¹H and ¹³C NMR spectra of deuterated compound 9

3. - COMPUTATIONAL DETAILS.-

3.1. Reaction set simulated with COPASI

3.1.1 **Scheme 1**. (a) Complete reaction diagram, (b) simplified reaction diagram, and (c) simplified reaction diagram (no HCl removal cases) of the reactions listed in Table 3. The reactions listed in Table 3 with a negligible contribution have been omitted in both Simplified Diagrams b and c.

3.1.2. Simulations¹

The reaction set listed in Table 3 and shown in the Reaction Diagram above was implemented in COPASI (Complex Pathway SImulator). Models (the Reaction Diagram in our case) are defined as chemical reactions between molecular species. The kinetics of a model is determined by the rate law associated with individual reactions. For example, the concentration of R–H evolves with time as (see Reaction Diagram and r09, r10 in Table 3):

$$d[RH]/dt = k09*[TiCl_3R]*[TiCl_3OH] + k10*[TiCl_3R]*[HCl]$$

with $k09 = A^{exp}(-b09/RT)$, $k10 = A^{exp}(-b10/RT)$ and $A = 4^{*}10^{7} M^{-1}s^{-1}$.

The complete system of differential equations is solved numerically by COPASI using the barriers listed in Table 3 and the $TiCl_4$ and Mn initial concentrations (per mol of R–OH) given in Table 1. Thus, for example for Entry 7 of Table 1, we get the time evolution for some representative species represented below in 3.1.3:

MnCl2 Table 1, Entry 7 1 TiCl4 TiCl3THF 0.8 ROH •• RH 0.6 - RR Mo 0.4 0.2 0 2 1 3 5 0 4 6 t (h)

3.1.3. Simulation for Entry 7 of Table 1

¹ For other examples of systems modeled with Copasi software, see: (a) D. A. Colby, R. G. Bergman and J. A. Ellman, *J. Am. Chem. Soc.*, 2008, **130**, 3645–3651; (b) M. P. Watson, L. E. Overman and R. G.Bergman, *J. Am. Chem. Soc.*, 2007, **129**, 5031–5044; (c) R. Ghosh, X. Zhang, P. Achord, T. J. Emge, K. Krogh-Jespersen and A. S.Goldman, *J. Am. Chem. Soc.*, 2007, **129**, 853–866.

The species not plotted are below 0.02 mol except for THF, Mn, (TiCl₃)₂O (almost equal to R–H) and TiCl₃OH (almost equal to R–R). Refer to the above Figure and to the Simplified Reaction Diagram for the following comments. Before R–OH is added (first half hour), TiCl₄ and Mn decrease to form MnCl₂ and TiCl₃. However, TiCl₃ is immediately solvated to TiCl₃THF (with two THF molecules, actually) as seen in the figure. After about half an hour, R–OH is added and interacts slowly (non-negligible forward and reverse barriers b03, b03r) with TiCl₃THF to release R• and TiCl₃OH. R• proceeds immediately through r08, r09 to form R–H while TiCl₃OH is partially spent to protonate R• through r09. For these particular conditions (Entry 7) the reaction stops because all the TiCl₃THF (and TiCl₄) available has been consumed. Reactions r12 and r13 have a negligible contribution and can also be deleted from the Simplified Reaction Diagram (see Figure above) except when the generated HCl is extracted from the media (Entry 5).

3.1.4. Graph showing a comparison between experimental and simulated values of R–H and R–R of Table 1, entries 1, 7, 8, 9 and 5.

Entries 1, 7, 8, 9 are ordered by decreasing molarity of TiCl₄ and Mn, while entry 5 has the same molarities as entry 8 but the HCl gas generated is removed from the reaction media. The agreement between experiment and simulation is very good. In addition, the parameter (barrier energies) optimization with COPASI can be done using only entries 1, 7, 8 and 9 (using the complete Reaction Diagram) and then the behaviour for entry 5 (HCl removal) is correctly predicted by the simulator by the mechanisms described in the paper (switching the TiCl₃THF flux from r08 to r12). This reinforces the plausibility of the model.

3.1.5. Graph showing a comparison between the barrier values obtained with Gaussian09 and optimized with COPASI.

The reaction barriers calculated with Gaussian need only be slightly fine-tuned by Copasi to provide a remarkably close agreement with the experimental results. This is a valuable feature since it would be difficult to find the large number of parameter values using just a blind optimization within Copasi. Notice, however, that the constraints imposed by the limited experimental conditions tested is not enough to establish a unique set of barrier values. In any case, the use of a set of parameters obtained with an *ab-initio* program increases the prediction capabilities of the model since it is founded on physically-based parameters. In fact, the model thus developed can later be used to design further experiments or tests (as the HCl gas removal effect).

3.2. Gaussian09: Methodology

Geometry optimizations and energy calculations were performed with GAUSSIAN 09² using DFT³ at the b3lyp/6-31+g(d,p)⁴ level of theory *in vacuo*. To simulate the solvent effect used in the experimental reactions (tetrahydrofuran), a single point calculation was performed at the same level described before, using the SMD continuum model.⁵ Transition state structures were optimized as saddle points at the same level of calculation. A vibrational analysis was performed at the same level of theory in order to determine the zero-point vibrational energy and to characterize each stationary point as a minimum or transition state structure. Transition states were identified by the presence of a single imaginary frequency that corresponds to the expected motion along the reaction coordinate. The reported energies are expressed in Hartrees (au) and include zero-point energy corrections. The same energies expressed in Kcal/mol as relative energies appear in the Scheme **4** in the paper. To verify that the TSs correspond to the expected reactant and product wells, intrinsic reaction coordinate (IRC)⁶ calculations were performed at the same level b3lyp/6-31+g(d,p). In the IRC plots, energies do not include zero point energy corrections. Structural drawings were produced by Spartan08.⁷

² M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox in Gaussian 09, Revision B.01, Vol. Gaussian, Inc., Wallingford, CT, 2009.

³ (a) Lynch, B. J.; Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2003,107, 1384-1388; (b)W. Koch and M.C. Holthausen, A Chemist's Guide to Density Functional Theory, Wiley-VCH, Weinheim, Germany, 2nd, 2000, pp. 117–259; (c) R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Clarendon Press, Oxford, UK, 1989.

⁴ (a) P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, *J. Phys. Chem.*, 1994, **98**, 11623–11627; (b) K. Kim and K. D. Jordan, *J. Phys. Chem.*, 1994, **98**, 10089–10094; (c) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648–5652; (d) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 1372–1377; (e) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785–789.

⁵ A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.

⁶ (a) C. Gonzalez and H. B. Schlegel, J. Chem. Phys., 1989, **90**, 2154–2161; (b) C. Gonzalez and H. B. Schlegel, J. Chem. Phys., 1991, **95**, 5853–5860; (c) H. P. Hratchian and H. B. Schlegel, J. Chem. Phys., 2004, **120**, 9918–9924; (d) H. P. Hratchian and H. B. Schlegel, J. Chem. Theory Comput., 2005, **1**, 61–69. ⁷Sparton²⁰⁸, Wavefunction, Inc. Integration, CA.

⁷Spartan`08. Wavefunction, Inc., Irvine, CA.

3.3. Relaxed Potential Energy Surface Scans in *in vacuo* [b3lyp/6-31+g(d,p)].

The Relaxed Potential Energy Surface Scans and the IRC plots *in vacuo*, do not include zero point energy corrections. To calculate the barriers in Table 2, the solvent effects (THF) using the SMD continuum model, has been considered.

3.3.2. Relaxed Potential Energy Surface Scans for r02 in vacuo (b3lyp/6-31+g(d,p))

3.3.3. Plot of IRC of r03 in vacuo (b3lyp/6-31+g(d,p))

3.3.4. Relaxed Potential Energy Surface Scans for r04 in vacuo (b3lyp/6-31+g(d,p))

3.3.5. Plot of IRC for r05 in vacuo (b3lyp/6-31+g(d,p))

3.3.7. Relaxed Potential Energy Surface Scans for r07 in vacuo (b3lyp/6-31+g(d,p))

3.3.8. Relaxed Potential Energy Surface Scans for r08 in vacuo (b3lyp/6-31+g(d,p))

3.3.9. Plot of IRC for r09 in vacuo (b3lyp/6-31+g(d,p))

3.3.10. Plot of IRC for r10 in vacuo (b3lyp/6-31+g(d,p))

3.3.11. Relaxed Potential Energy Surface Scans for r11 in vacuo (b3lyp/6-31+g(d,p))

3.3.12. Relaxed Potential Energy Surface Scans for r12 in vacuo (b3lyp/6-31+g(d,p))

3.3.13. Plot of IRC of r05 for r13 in vacuo (b3lyp/6-31+g(d,p))

3.4.- CARTESIAN COORDINATES, ENERGIES AND IRC PLOTS:

3.4.1. Structure, Cartesian Coordinates and Energies of TiCl₃ROH (I)

#freq b3lyp/6-31+g(d,p) scrf=(smd, solvent=thf)//# opt freq b3lyp/6-31+g(d,p) geom=connectivity Charge = 0 Multiplicity = 2

6	2.636426000	-0.465727000	-0.475430000	
6	3.840741000	-0.017536000	-0.066661000	
1	2.482334000	-1.540368000	-0.557845000	
6	1.453058000	0.364945000	-0.838617000	
1	1.661495000	1.433621000	-0.903296000	
1	0.992282000	0.035327000	-1.772293000	
8	0.380705000	0.191733000	0.165441000	
1	0.742751000	0.158824000	1.067452000	
22	-1.650369000	-0.031817000	0.002323000	
17	-1.940775000	-1.952774000	-1.125269000	
17	-1.763600000	-0.221184000	2.284996000	
17	-2.411619000	1.906081000	-0.835252000	
6	4.222260000	1.432862000	0.096193000	
1	4.598628000	1.610507000	1.110978000	
1	5.041607000	1.686538000	-0.587911000	
1	3.404567000	2.132082000	-0.086310000	
6	4.944437000	-0.994905000	0.253903000	
1	5.815729000	-0.817064000	-0.389083000	
1	5.286680000	-0.865060000	1.288287000	
1	4.626759000	-2.032216000	0.122987000	
Zero	-point correction	n=	0.145232 (Hartree/Particle)	
Ther	mal correction t	o Energy=	0.158369	
Thermal correction to Enthalpy=			0.159313	
Ther	mal correction t	o Gibbs Free Ene	ergy = 0.101781	
Sum	Sum of electronic and zero-point Energies= -2501 923389			
Sum	of electronic an	d thermal Energi	es= -2501.910252	
Sum	of electronic an	d thermal Enthal	pies= -2501.909308	
Sum	Sum of electronic and thermal Free Energies= -2501.966841			
	e			

3.4.2. Structure, Cartesian Coordinates and Energies of $\text{TS}_{I \rightarrow VII}{}^8$

#freq b3lyp/6-31+g(d,p) scrf=(smd,solvent=thf) geom=connectivity//# opt=(ts,calcall) b3lyp/6-31+g(d,p) geom=connectivity Charge = 0 Multiplicity = 2

6	2.457470000	0.061691000	-0.833444000
6	3.691622000	0.146177000	-0.303380000
1	2.237773000	-0.776179000	-1.494907000
6	1.309123000	1.002435000	-0.624840000
1	1.584828000	1.880976000	-0.035353000
1	0.921439000	1.352996000	-1.590470000
8	0.234010000	0.335756000	0.065937000
1	0.304197000	-0.909705000	1.214817000
22	-1.595460000	0.088683000	-0.009832000
17	-2.512128000	-1.282341000	-1.522993000
17	-0.580467000	-1.707230000	1.837553000
17	-2.673070000	2.013226000	0.375210000
6	4.165587000	1.234193000	0.629486000
1	4.573311000	0.792923000	1.547671000
1	4.983007000	1.803341000	0.168261000
1	3.384386000	1.940782000	0.914636000
6	4.739862000	-0.888714000	-0.636830000
1	5.614452000	-0.420022000	-1.106492000
1	5.101349000	-1.383242000	0.274121000
1	4.357615000	-1.655753000	-1.315538000
	,·		
Zero	-point correction	 	0.139788 (Hartree/Particle)
I hei	mal correction t	o Energy=	0.151688
Iner	mal correction t	o Enthalpy=	0.152633
The	mal correction t	o Gibbs Free Ene	rgy = 0.09/639
Sum	of electronic an	d zero-point Ener	rgies = -2501.87/380
Sum	of electronic an	d thermal Energi	es = -2501.865479
Sum	ot electronic an	d thermal Enthal	pies= -2501.864535
Sum	of electronic an	d thermal Free E	nergies= -2501.919529

 $^{^8}$ $TS_{I \rightarrow VII}$: theoretical intermediate for direct elimination of HCl from complex I

3.4.3. Plot of IRC ($\mathbf{I} \rightarrow \mathbf{VII}$)

3.4.4. Structure, Cartesian Coordinates and Energies of TiCl₂RO + HCl (VII)⁹

freq b3lyp/6-31+g(d,p) scrf=(smd,solvent=thf) geom=connectivity // #opt freq b3lyp/6-31+g(d,p) geom=connectivity Charge = 0 Multiplicity = 2

6	2.191716000	-0.223296000	-1.095292000		
6	3.313907000	0.092884000	-0.415210000		
1	2.020251000	-1.269563000	-1.348376000		
6	1.136290000	0.716656000	-1.608565000		
1	1.369915000	1.764747000	-1.401700000		
1	1.028027000	0.602325000	-2.695021000		
8	-0.127655000	0.421066000	-1.024305000		
1	1.448867000	-0.573377000	1.085532000		
22	-1.702210000	0.113363000	-0.289590000		
17	-2.717013000	-1.850017000	-0.677299000		
17	0.765534000	-0.824409000	2.166724000		
17	-2.787679000	1.808388000	0.700465000		
6	3.713024000	1.488061000	-0.000940000		
1	3.932531000	1.514824000	1.073247000		
1	4.635775000	1.784419000	-0.515712000		
1	2.954034000	2.243759000	-0.208815000		
6	4.301118000	-0.982553000	-0.027625000		
1	5.280387000	-0.784417000	-0.481602000		
1	4.456528000	-0.996792000	1.058519000		
1	3.972903000	-1.976308000	-0.342985000		
Zero-point correction= 0.140725 (Hartree/Particle)					
The	ermal correction t	o Energy=	0.154489		
The	rmal correction t	o Enthalpy=	0.155433		
The	rmal correction t	o Gibbs Free Ene	ergy= 0.095294		
Sun	n of electronic an	d zero-point Ener	rgies= -2501.887211		
Sun	n of electronic an	d thermal Energi	es= -2501.873447		
Sun	n of electronic an	d thermal Enthal	pies= -2501.872503		
Sun	Sum of electronic and thermal Free Energies= -2501.932641				

⁹ VII: theoretical intermediate that represents the product coming from direct elimination of HCl from complex I

freq b3lyp/6-31+g(d,p) scrf=(smd,solvent=thf) geom=connectivity //# opt freq b3lyp/6-31+g(d,p) geom=connectivity

Charge = 0 Multiplicity = 1

6	-0.225123000	-0.414531000	1.154208000		
6	1.092681000	-0.420678000	0.890625000		
1	1.503041000	0.375525000	0.272495000		
6	2.096306000	-1.421412000	1.365830000		
1	1.643418000	-2.293324000	1.843110000		
1	2.733786000	-1.768285000	0.544431000		
8	2.987317000	-0.835867000	2.332977000		
22	4.010065300	-0.012687990	3.432631750		
17	5.512652540	-1.434597240	4.214581190		
17	2.773796260	0.779851630	5.086385810		
17	5.015457740	1.648636610	2.377821170		
6	-0.949337000	-1.431533000	1.999334000		
1	-1.710990000	-1.950471000	1.404170000		
1	-0.297369000	-2.185059000	2.443658000		
1	-1.482178000	-0.928758000	2.815262000		
6	-1.108802000	0.664614000	0.579972000		
1	-0.776094970	1.657064560	0.909392840		
1	-1.054767190	0.664913350	-0.515695460		
1	-2.154060240	0.538333480	0.871410220		
 7 or			0 124668 (Hartraa/Partiala)		
The	rmal correction t	o Enoray=	0.134008 (Haitiee/Faiticle)		
The	rmal correction t	o Enthology-	0.145900		
Thermal correction to Enthalpy= 0.146844					
I nermal correction to Globs Free Energy= 0.094998					
Sun	Sum of electronic and zero-point Energies= -2501.550152				
Sun	Sum of electronic and thermal Energies -2501.338920				
Sum of electronic and thermal Energies					
Sun	Sum of electionic and thermal Free Energies2301.389822				

¹⁰ VIII: theoretical intermediate that represents the product coming from elimination of H-atom from complex I.

freq b3lyp/6-31+g(d,p) scrf=(smd,solvent=thf) geom=connectivity // # opt=(calcall,ts) b3lyp/6-31+g(d,p) geom=connectivity Charge = 0 Multiplicity = 2

6	-2.850039000	-1.110335000	-0.659401000	
6	-3.549326000	-0.046568000	-0.135378000	
1	-3.232162000	-1.556966000	-1.576048000	
6	-1.671090000	-1.671478000	-0.115890000	
1	-1.336279000	-1.422377000	0.882813000	
1	-1.305906000	-2.611457000	-0.511610000	
8	-0.062451000	-0.657180000	-0.896668000	
1	-0.315426000	-0.507436000	-1.817703000	
22	1.452060000	0.069786000	-0.062326000	
17	3.214743000	-1.205450000	-0.583428000	
17	1.594083000	2.210688000	-0.712584000	
17	0.808947000	-0.089611000	2.110487000	
6	-3.148604000	0.696879000	1.104140000	
1	-2.182449000	0.398020000	1.510566000	
1	-3.108906000	1.773639000	0.896385000	
1	-3.911268000	0.563301000	1.883402000	
6	-4.804925000	0.431558000	-0.804791000	
1	-5.649007000	0.407852000	-0.102801000	
1	-4.697432000	1.478900000	-1.117744000	
1	-5.065114000	-0.167315000	-1.680903000	
Zero	o-point correction	=	0.141474 (Hartree/Particle)	
The	rmal correction to	Energy=	0.154850	
The	rmal correction to	Enthalpy=	0.155794	
Thermal correction to Gibbs Free Energy= 0.097672				
Sun	Sum of electronic and zero-point Energies= -2501.903905			
Sun	Sum of electronic and thermal Energies= -2501 890528			
Sun	n of electronic and	thermal Enthal	oies= -2501.889584	
Sun	n of electronic and	thermal Free Er	nergies= -2501.947706	

3.4.7. Structure, Cartesian Coordinates and Energies of R + TiCl₃OH

freq b3lyp/6-31+g(d,p) scrf=(smd,solvent=thf) geom=connectivity // # opt freq b3lyp/6-31+g(d,p) geom=connectivity Charge = 0 Multiplicity = 2

6	-3.040493000	0.958280000	0.837126000	
6	-3.413546000	-0.111389000	0.012854000	
1	-3.045676000	0.757200000	1.908599000	
6	-2.646796000	2.233610000	0.449233000	
1	-2.655367000	2.557403000	-0.586971000	
1	-2.441237000	2.993203000	1.196766000	
8	0.244675000	1.333926000	0.241304000	
1	-0.704930000	1.574721000	0.361940000	
22	1.409878000	0.067209000	0.012870000	
17	3.388264000	0.951864000	-0.406873000	
17	1.491351000	-1.178648000	1.834355000	
17	0.756426000	-1.200365000	-1.677628000	
6	-3.446100000	-0.025492000	-1.485396000	
1	-3.378295000	0.997412000	-1.861004000	
1	-2.613953000	-0.597482000	-1.920831000	
1	-4.369020000	-0.470711000	-1.877600000	
6	-3.777619000	-1.438967000	0.611445000	
1	-4.805429000	-1.721848000	0.343434000	
1	-3.129309000	-2.236213000	0.221183000	
1	-3.696853000	-1.438398000	1.701832000	
 7 or (point correction		 0 130370 (Hartree/Particle)	
The	rmal correction t	- Energy-	0.152311	
The	rmal correction t	o Enthalny—	0.15255	
Thermal correction to Enthalpy- 0.155255				
Sur	Sum of clootronic and zero point Energies 2501 021822			
Sur	Sum of electronic and thermal Energies2501,921825			
Sur	n of electronic an	d thermal Entral	-2501.900005	
Sur	n of electronic an	d thermal Erec E	$p_{100}2301.307339$	
Sul	in or electronic an		1101g1052301.904308	

freq b3lyp/6-31+g(d,p) scrf=(smd,solvent=thf) geom=connectivity // # opt freq b3lyp/6-31+g(d,p) geom=connectivity Charge = 0 Multiplicity = 1

-0.060805000	-0.006126000	1.368362000
-0.028470000	1.368242000	1.997161000
0.789973000	1.449612000	2.725336000
-0.957051000	1.571021000	2.548064000
0.101655000	2.156198000	1.249578000
-0.240975000	-1.135140000	2.355340000
0.559610000	-1.119183000	3.106862000
-0.243304000	-2.122072000	1.889133000
-1.185069000	-1.020141000	2.904773000
0.058491000	-0.157942000	0.037443000
0.186848000	0.751324000	-0.553549000
0.052816000	-1.427505000	-0.771698000
-0.750353000	-1.375745000	-1.520667000
-0.169271000	-2.299288000	-0.147221000
1.390623000	-1.666226000	-1.518410000
2.193792000	-1.717987000	-0.769441000
1.612710000	-0.794444000	-2.142887000
1.384947000	-2.935789000	-2.327551000
1.256591000	-3.845055000	-1.736559000
1.504244000	-3.087605000	-3.658470000
1.684414000	-1.958592000	-4.645448000
2.628507000	-2.073591000	-5.194881000
1.686743000	-0.971660000	-4.179241000
0.883828000	-1.974548000	-5.396970000
1.471908000	-4.461974000	-4.287269000
2.400490000	-4.664753000	-4.838172000
	$\begin{array}{c} -0.060805000\\ -0.028470000\\ 0.789973000\\ -0.957051000\\ 0.101655000\\ -0.240975000\\ 0.559610000\\ -0.243304000\\ -1.185069000\\ 0.058491000\\ 0.058491000\\ 0.186848000\\ 0.052816000\\ -0.750353000\\ -0.169271000\\ 1.390623000\\ 2.193792000\\ 1.612710000\\ 1.384947000\\ 1.256591000\\ 1.504244000\\ 1.684414000\\ 2.628507000\\ 1.686743000\\ 0.883828000\\ 1.471908000\\ 2.400490000\\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

¹¹ Homocoupling product R-R (R = dimethylallyl)

Zero-point correction=	0.253410 (Hartree/Particle)
Thermal correction to Energy=	0.266706
Thermal correction to Enthalpy=	0.267650
Thermal correction to Gibbs Free Ener	rgy= 0.212826
Sum of electronic and zero-point Ener	-391.677171
Sum of electronic and thermal Energie	-391.663875
Sum of electronic and thermal Enthalp	bies= -391.662931
Sum of electronic and thermal Free Er	nergies= -391.717755

opt freq b3lyp/6-31+g(d,p) geom=connectivity // # freq b3lyp/6-31+g(d,p) scrf=(smd,solvent=thf) geom=connectivity

Charge = 0 Multiplicity = 1

1	-0.246270000	0.724528000	2.153248000	
6	-0.214612000	-0.301298000	1.781229000	
1	-0.471189000	-1.022432000	2.561498000	
6	0.920769000	-0.621365000	0.903543000	
1	1.345310000	0.219851000	0.35883600	
6	1.472978000	-1.845423000	0.652165000	
22	-1.522028000	-0.532088000	0.202137000	
17	-1.009250000	0.880008000	-1.434157000	
17	-3.371111000	0.204631000	1.164143000	
17	-1.885176000	-2.657724000	-0.347007000	
6	1.091550000	-3.113165000	1.361457000	
1	1.988507000	-3.576742000	1.791419000	
1	0.666327000	-3.837595000	0.656059000	
1	0.366786000	-2.964214000	2.163129000	
6	2.575370000	-1.984744000	-0.363214000	
1	3.489993000	-2.366367000	0.109127000	
1	2.808377000	-1.036348000	-0.853407000	
1	2.296560000	-2.713474000	-1.135518000	
Zero	-point correction	=	0.128668 (Hartree/Particle)	
The	rmal correction to	o Energy=	0.141457	
The	Thermal correction to Enthalpy= 0.142401			
Thermal correction to Gibbs Free Energy= 0.087193				
Sun	Sum of electronic and zero-point Energies= -2426.083357			
Sum of electronic and thermal Energies= -2426.070569				
Sun	n of electronic an	d thermal Enthal	pies= -2426.069624	
Sun	n of electronic an	d thermal Free E	nergies= -2426.124833	

freq b3lyp/6-31+g(d,p) scrf=(smd,solvent=thf) geom=connectivity // # opt=(calcall,ts) b3lyp/6-31+g(d,p) geom=connectivity Charge = 0 Multiplicity = 1

1	2.214875000	2.250854000	0.469664000
6	1.350293000	1.890838000	-0.090559000
1	1.396517000	2.184187000	-1.142458000
6	0.055640000	2.000159000	0.595219000
1	0.096887000	2.004173000	1.682886000
22	1.207763000	-0.161235000	0.020085000
6	-1.192299000	2.055485000	0.036772000
6	-2.414565000	2.074952000	0.913555000
1	-2.990747000	2.994204000	0.745764000
1	-2.163622000	2.011317000	1.974994000
1	-3.080713000	1.239055000	0.665100000
6	-1.459557000	2.158755000	-1.437327000
1	-0.555573000	2.205560000	-2.045854000
1	-2.054180000	3.059673000	-1.635298000
1	-2.056243000	1.306140000	-1.782733000
1	-2.446508000	-1.750888000	-0.370558000
17	-0.278675000	-1.093917000	-1.388199000
17	3.201238000	-0.677893000	-0.779022000
17	1.147345000	-0.805127000	2.137741000
17	-3.656294000	-1.837077000	0.081872000
Zero	-point correction	=	0.136673 (Hartree/Particle)
The	ermal correction to	o Energy=	0.152980
The	rmal correction to	o Enthalpy=	0.153924
Thermal correction to Gibbs Free Energy= 0.089049			
Sum of electronic and zero-point Energies= -2886.884816			
Sum of electronic and thermal Energies= -2886 868509			
Sun	n of electronic and	d thermal Enthal	pies= -2886.867565
Sun	n of electronic and	d thermal Free E	nergies= -2886.932440
			5

freq b3lyp/6-31+g(d,p) scrf=(smd,solvent=thf) geom=connectivity // # opt=(calcall,ts) b3lyp/6-31+g(d,p) geom=connectivity Charge = 0 Multiplicity = 1

1	0.584330000	-1.978754000	-1.020346000
6	-0.082395000	-1.483716000	-0.312592000
1	0.009768000	-1.942893000	0.677486000
6	-1.429640000	-1.384124000	-0.834323000
1	-1.505882000	-1.300420000	-1.919619000
22	1.134707000	0.347497000	0.036420000
6	-2.608590000	-1.195923000	-0.137344000
6	-3.926374000	-1.099853000	-0.878487000
1	-4.508413000	-2.018072000	-0.731479000
1	-3.784310000	-0.955767000	-1.953183000
1	-4.533714000	-0.271481000	-0.496989000
6	-2.716236000	-1.388498000	1.361698000
1	-1.759222000	-1.290323000	1.876696000
1	-3.116224000	-2.388310000	1.572638000
1	-3.408709000	-0.661257000	1.797318000
1	-1.944210000	0.143586000	-0.218947000
17	1.416683000	1.212474000	2.062946000
17	2.920019000	-0.999932000	0.075333000
17	1.647346000	1.568098000	-1.730591000
17	-1.189316000	1.477337000	0.082831000
Zero	p-point correction	1=	0.134990 (Hartree/Particle)
The	rmal correction to	o Energy=	0.148555
The	rmal correction to	o Enthalpy=	0.149499
Thermal correction to Gibbs Free Energy= 0.093651			
Sum of electronic and zero-point Energies= -2886.864292			
Sun	Sum of electronic and thermal Energies= -2886.850726		
Sun	of electronic an	d thermal Enthal	pies= -2886.849782
Sun	n of electronic an	d thermal Free E	nergies= -2886.905631

3.4.12. -Structure, Cartesian Coordinates and Energies of $2 R-H^{12} + Cl_4Ti$

freq b3lyp/6-31+g(d,p) scrf=(smd,solvent=thf) geom=connectivity // # opt freq b3lyp/6-31+g(d,p) geom=connectivity Charge = 0 Multiplicity = 1

1	2.624878000	2.808374000	-0.339584000
6	3.040458000	1.921133000	0.129487000
1	3.244044000	1.986658000	1.194440000
6	3.283046000	0.814890000	-0.581568000
1	3.052770000	0.828187000	-1.648649000
22	-1.748819000	-0.055631000	-0.008336000
6	3.866216000	-0.488930000	-0.084012000
6	5.114230000	-0.859059000	-0.912615000
1	5.917847000	-0.131993000	-0.747764000
1	4.891960000	-0.875179000	-1.985441000
1	5.488443000	-1.849811000	-0.631697000
6	4.173742000	-0.508493000	1.418040000
1	3.281662000	-0.298447000	2.017174000
1	4.937784000	0.234527000	1.675564000
1	4.553083000	-1.491725000	1.716024000
1	3.109480000	-1.265362000	-0.282087000
17	-3.815703000	-0.753733000	0.026968000
17	-1.365585000	1.135506000	1.776660000
17	-1.435914000	1.162396000	-1.789793000
17	-0.411861000	-1.779381000	-0.049164000
Zero-point correction=			0.141879 (Hartree/Particle)
Thermal correction to Energy=			0.155573
Thermal correction to Enthalpy=			0.156518

¹²Reduction product R–H (R = dimethylallyl)

Thermal correction to Gibbs Free Energy=	0.096745
Sum of electronic and zero-point Energies=	-2886.917515
Sum of electronic and thermal Energies=	-2886.903820
Sum of electronic and thermal Enthalpies=	-2886.902876
Sum of electronic and thermal Free Energies=	-2886.962649

S-28

freq b3lyp/6-31+g(d,p) scrf=(smd,solvent=thf) geom=connectivity // # opt=(calcall,ts) b3lyp/6-31+g(d,p) geom=connectivity

Charge = 0 Multiplicity = 1

1	-2.678255000	1.945361000	-1.391796000
6	-1.939001000	1.970671000	-0.592587000
1	-2.371390000	2.344048000	0.340292000
6	-0.684030000	2.543768000	-0.991973000
1	-0.453567000	2.490014000	-2.057605000
22	-1.813284000	-0.196254000	-0.033197000
6	0.371561000	2.932616000	-0.171062000
6	1.633208000	3.507091000	-0.788092000
1	1.630480000	4.599814000	-0.691178000
1	1.721590000	3.261319000	-1.850165000
1	2.526743000	3.140301000	-0.273338000
6	0.187327000	3.203526000	1.312034000
1	-0.619973000	2.620436000	1.759179000
1	-0.038343000	4.266653000	1.462694000
1	1.106573000	2.980041000	1.860421000
1	0.400184000	1.532546000	-0.222495000
8	0.243167000	0.247258000	-0.002017000
22	1.744482000	-0.699526000	0.034126000
17	1.463805000	-2.750506000	0.758850000
17	2.607412000	-0.676861000	-1.996594000
17	3.141594000	0.374070000	1.370003000
17	-1.670954000	-0.711920000	2.125008000
17	-4.050253000	-0.176289000	-0.161503000
17	-1.436906000	-1.728932000	-1.598718000

Zero-point correction= Thermal correction to Energy=

0.143658 (Hartree/Particle) 0.163652

Thermal correction to Enthalpy=	0.164596
Thermal correction to Gibbs Free Energy=	0.091822
Sum of electronic and zero-point Energies=	-4732.176472
Sum of electronic and thermal Energies=	-4732.156478
Sum of electronic and thermal Enthalpies=	-4732.155534
Sum of electronic and thermal Free Energie	s= -4732.228308

3.4.14. Structure, Cartesian Coordinates and Energies of $\mathbf{R}-\mathbf{H}^{13} + (TiCl_3)_2O$

freq b3lyp/6-31+g(d,p) scrf=(smd,solvent=thf) geom=connectivity // # opt freq b3lyp/6-31+g(d,p) geom=connectivity Charge = 0 Multiplicity = 1

1	2.967084000	-1.714671000	2.483912000
6	3.407561000	-1.769534000	1.492483000
1	3.258209000	-2.696813000	0.946999000
6	4.096012000	-0.740833000	0.986419000
1	4.203994000	0.156871000	1.598174000
22	-2.078707000	-1.281958000	-0.030874000
6	4.777607000	-0.664533000	-0.361596000
6	6.268401000	-0.310091000	-0.179558000
1	6.798151000	-1.118567000	0.337486000
1	6.393013000	0.603928000	0.411745000
1	6.752371000	-0.151662000	-1.149723000
6	4.608981000	-1.920782000	-1.224378000
1	3.553544000	-2.151476000	-1.402636000
1	5.070661000	-2.793607000	-0.747737000
1	5.090065000	-1.781088000	-2.198267000
1	4.312617000	0.177438000	-0.899545000
8	-1.168006000	0.257071000	-0.008264000
22	-0.331182000	1.837563000	-0.009029000
17	-1.780322000	3.401156000	-0.509127000
17	0.500368000	2.217786000	1.979849000
17	1.265889000	1.812514000	-1.507450000
17	-2.922289000	-1.579265000	-2.029698000
17	-0.727115000	-2.932102000	0.457145000
17	-3.688851000	-1.177477000	1.449478000

Zero-point correction=

0.148136 (Hartree/Particle)

¹³ Reduction product R–H (R = dimethylallyl)

Thermal correction to Energy=	0.166138
Thermal correction to Enthalpy=	0.167082
Thermal correction to Gibbs Free	Energy= 0.096390
Sum of electronic and zero-point	Energies= -4732.233611
Sum of electronic and thermal En	ergies= -4732.215609
Sum of electronic and thermal En	thalpies= -4732.214664
Sum of electronic and thermal Fre	ee Energies= -4732.285357

# fr	eq b3lyp/6-31+g(d,p) scrf=(smd,so	olvent=thf) geom=connectivity // # opt freq b3lyp/6-
31+2 Cha	g(d,p) geom=coni rge = 0 Multiplici	$\frac{1}{10000000000000000000000000000000000$	
8	-0.093698000	0.749399000	0.000062000
22	-1.755566000	-0.074379000	-0.000012000
17	-2.844248000	0.575972000	1.766304000
17	-2.844332000	0.576475000	-1.766090000
17	-1.49//82000	-2.229019000	-0.000323000
22	1.927925000	0.125958000	0.000012000
17	2.319316000	-0.888584000	1.947556000
17	2.319363000	-0.888166000	-1.947740000
1/	2.353659000	2.390154000	0.000258000
I	0.016141000	1./26551000	0.000165000
Zer	o-point correction		0 021807 (Hartree/Particle)
The	ermal correction to	- Energy=	0.034356
The	ermal correction to	o Enthalpy=	0.035301
The	ermal correction to	o Gibbs Free Ene	rgy = -0.022212
Sur	n of electronic and	d zero-point Ener	$r_{gies} = -4536.358491$
Sur	n of electronic and	d thermal Energie	es= -4536.345941
Sur	n of electronic an	d thermal Enthal	bies= -4536.344997
Sur	n of electronic and	d thermal Free Ei	nergies= -4536.402509

freq b3lyp/6-31+g(d,p) scrf=(smd,solvent=thf) geom=connectivity // # opt=(calcall,ts) b3lyp/6-31+g(d,p) geom=connectivity Charge = 0 Multiplicity = 2

8	-0.031633000	0.406872000	0.00001	0000	
22	-1.730056000	-0.085225000	-0.0000	08000	
17	-2.692363000	0.733335000	1.8012	95000	
17	-2.692402000	0.733593000	-1.8011	72000	
17	-1.809411000	-2.282178000	-0.0001	63000	
22	1.894085000	-0.055044000	-0.0000	03000	
17	2.607389000	-0.882097000	1.9246	42000	
17	2.607417000	-0.881897000	-1.9247	23000	
17	1.751390000	2.463640000	0.0001	24000	
1	0.520109000	1.796193000	0.00008	2000	
 Zero		=======================================	0.01615	 3 (Hartree/Particle)	
The	rmal correction to	Fnerov=	0.01013	26044	
The	rmal correction to) Enthalny=	0.026988		
The	rmal correction to	rov=	-0.023978		
Sum of electronic and zero-point Energies= -4536 342098					
Sum of electronic and thermal Energie			es=	-4536 332207	
Sum of electronic and thermal Entrapies -4536.332207					
Sum of electronic and thermal Free Energies= -4536.382229					

freq b3lyp/6-31+g(d,p) scrf=(smd,solvent=thf) geom=connectivity // # opt freq b3lyp/6-31+g(d,p) geom=connectivity Charge = 0 Multiplicity = 2

8	-0.011439000	0.038072000	0.0001	58000	
22	-1.736373000	-0.138381000	0.0001	19000	
17	-2.503262000	0.889435000	1.8080	42000	
17	-2.503144000	0.891560000	-1.8066	589000	
17	-2.260517000	-2.284818000	-0.0011	15000	
22	1.887294000	0.007930000	0.0001	21000	
17	2.783054000	-0.607132000	1.9345	33000	
17	2.783370000	-0.607349000	-1.9340)66000	
17	1.709307000	2.582641000	-0.0002	88000	
1	0.412254000	2.633187000	-0.00074	46000	
Zero	-point correction=	=	0.01801	1 (Hartree/Particle	;)
The	rmal correction to	• Energy=	0.029923		
The	rmal correction to	o Enthalpy=	0.030867		
Thermal correction to Gibbs Free Energy= -0.025537					
Sum of electronic and zero-point Energies= -4536,348686					
Sun	n of electronic and	es=	-4536.336774		
Sun	n of electronic and	d thermal Enthal	pies=	-4536.335830	
Sun	n of electronic and	d thermal Free E	nergies=	-4536.392234	

3.5. - COMPARATIVE STUDY ON THE PERFORMANCE OF SEVERAL COMPUTATION MODELS

We performed all reaction energy calculations with DFT using the B3LYP/6-31+G(d,p) model. Friedrich et al.¹⁴ carried out a comparative study on the performance of several models for this type of reactions. We have plotted below some of their results for the reaction and activation energies for the ring opening of the cyclopropylcarbinyl radical, as well as experimental values (there is a large scatter in the reaction energy measurements) and the result that we obtain with B3LYP/6-31+G(d,p): our DFT model chemistry yields predictions in excellent agreement with the experimental values, even closer than the MP2 and CC methods tested for these reactions.

Another comparative study of activation energies of 12 organic elementary gas-phase reactions (six of which had a radical species as a reactant) found the following average and maximum absolute errors in calculated barrier heights in kcal/mol: BLYP/6-31G* (5.9, 21.9), MP2/6-31G* (9.9, 28.8).¹⁵ More recently, 205 combinations of methods and basis sets were tested using a database of 24 reaction barrier heights.¹⁶ The database included four reaction sets (chosen to be statistically representative of a still larger experimental database): heavy-atom transfer, nucleophilic substitution, unimolecular and association reactions, and hydrogen-transfer reactions. Among their results we

¹⁴ J. Friedrich, M. Dolg, A. Gansäuer, D.Geich-Gimbel, T. Lauterbach, J. Am. Chem. Soc., 2005, 127, 7071-7077.

¹⁵ J. Baker, M. Muir, J. Andzelm, J. Chem. Phys., 1995, 102, 2063-2079.

¹⁶ J. Zheng, Y. Zhao, D.G. Truhlar, J. Chem. Theory Comput., 2007, **3**, 569-582.

highlight the following three (first number is the maximum absolute error in kcal/mol, second number is relative computation time): G3X (0.6, 250), B3LYP/6-31+G(d,p) (4.9, 1.4), MP2/6-31+G(d,p) (6.3, 1.0). In summary, B3LYP has proven to yield fairly reliable predictions in activation energy calculations for different reaction types, even better than MP2.

As a further test within our reaction set, we have also calculated with MP2/6-31+G(d,p) the reaction barriers for r10 and r13 and the results are: b10 = 12.5, b13 = 11.4, b13r = 7.1. The first two values are close to those given in Table 3 for B3LYP/6-31+G(d,p) which are b10 = 12.9, b13 = 10.3. As for b13r, based on the previous discussion, the B3LYP value (1.4) should be more reliable.

3.6. - COMPARATIVE BEHAVIOUR OF TiCl₃ - Cp₂TiCl

To facilitate the study of the high number of reactions involved (listed in Table 3) with this accurate method we considered the TiCl₄/TiCl₃ system instead of Cp₂TiCl₂/Cp₂TiCl. This reduces the computational cost as well as the structural complexity of some intermediates possessing two titanocene moieties. From the experimental point of view, it is well established that both systems have shown similar behaviour (Ref. 12 of the text), although TiCl₃ is less selective and yields more side products due to its higher reactivity. To confirm that this similarity is also true from the theoretical approach, we compared the results obtained with Cp₂TiCl for a similar radical system, carried out by Gansäuer et al. (Ref 13 of the text), and the predictions that we obtain with TiCl₃. In their work, geometry optimization of a templated radical resulted in three structures 12, 13 and 14. Of these, 12 and 14 lead to the formation of a cis- and 13 to a trans-cyclobutylcarbinyl radical. The forward reaction (cyclization) barrier is similar for all three but the 13P product has a higher barrier for the reverse reaction (opening) than 12P and 14P, and therefore a longer life-time. This allows for the reduction of 13P by a second equivalent of the titanocene leading to only *trans*-cyclobutane, exactly as observed experimentally. Replacing their Cp₂TiCl₂/Cp₂TiCl system for TiCl₄/TiCl₃ we obtain essentially the same reaction path and predictions: the forward barriers are similar for all three (although smaller than for the titanocene system, in agreement with the different reactivity) and the reverse barrier from 13P is again much higher than from 12P and 14P, thus leading to only trans-cyclobutane.

The three structures (12, 13 and 14) of the radical 9 and the *cis*- and *trans*- cyclobutylcarbinyl radicals (12P, 14P and 13P) on the reference 13 on the text.

The Cp-moieties contribute to the increased forward reaction barriers of the Cp₂TiCl₂/Cp₂TiCl system and therefore to its reduced reactivity. But, overall we can expect that the results from our theoretical study with the TiCl₄/TiCl₃ system are representative of what would have been obtained with Cp₂TiCl₂/Cp₂TiCl.