SUPPORTING INFORMATION

Asymmetric Syntheses of Three-Membered Heterocycles Using Chiral Amide-Based Ammonium Ylides

Mathias Pichler,^{*a*} Johanna Novacek,^{*a*} Raphaël Robiette,^{*b*} Vanessa Poscher,^{*a*} Markus Himmelsbach,^{*c*} Uwe Monkowius,^{*d*} Norbert Müller,^{*a*} and Mario Waser^{*a*,*}

^a Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria. Fax: +43 732 2468 8747; Tel: +43 732 2468 8748; E-mail:

Mario.waser@jku.at

^b Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1 box L4.01.02, 1348 Louvain-la-Neuve, Belgium.

^c Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria.

^d Institute of Inorganic Chemistry, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria

1.	General Information:	2
2.	Synthesis of Ammonium Amide 6C.	3
3.	Syntheses of Epoxides Using Amide 6C:	4
4.	Reduction of Epoxide 17a:	9
5.	Syntheses of Aziridines Using Amide 6C:	. 10
6.	DFT Calculations:	. 14
7.	X-Ray Crystallography:	. 17
8.	Copies of selected NMR spectra:	. 19

1. General Information:

Melting points were measured on a Kofler melting point microscope (Reichert, Vienna). ¹Hand ¹³C-NMR spectra were recorded on a Bruker Avance III 300 MHz spectrometer, a Bruker Avance DRX 500 MHz, and on a Bruker Avance III 700 MHz spectrometer with TCI cryoprobe. All NMR spectra were referenced on the solvent peak. High resolution mass spectra were obtained using a Thermo Fisher Scientific LTQ Orbitrap XL with an Ion Max API Source. All analyses were made in the positive ionisation mode. IR spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer with ATR unit. All chemicals were purchased from commercial suppliers and used without further purification unless otherwise stated. All reactions were performed under an Ar-atmosphere. CH₂Cl₂ was distilled over P₂O₅ and stored under Ar (it was not necessary to dry CH₂Cl₂ prior to every experiment and usually this quality could be used successfully in these reactions over the course of 3-4 weeks after distillation). Column chromatography was carried out using silica gel and heptanes/EtOAc or CH₂Cl₂/MeOH (different ratios) as the eluent. Flushing the column with Et₃N (1% in heptanes) prior to use was found beneficial in some cases. Starting imines¹ were prepared according to literature procedures. Single-crystal structure analyses were carried out on a Bruker Smart X2S diffractometer operating with Mo-K_a radiation (λ = 0.71073 Å). Geometry optimization has been performed using the Jaguar 8.0 pseudospectral program package using the well established B3LYP hybrid density functional with the D3 dispersion correction and the standard split valence polarized 6-31G* basis as implemented in Jaguar. All the optimization calculations were carried out using the Poisson-Boltzmann polarizable continuum method as incorporated in Jaguar, and parameters for CH₂Cl₂. Energies were obtained by single point energy calculations at the B3LYP-D3/6-311+G**(CH₂Cl₂) level. The correct nature of each stationary point has been checked by performing frequency calculations at the B3LYP/6-31G*(CH₂Cl₂) level of theory. Thermal and entropic contributions to free energy (at 298.15 K) and zero-point energy have been obtained from these frequency calculations. We have made a systematic attempt to locate all possible local minima, with the data presented referring to the lowest energy form.

¹ (a) L. Huang and W. D. Wulff, *J. Am. Chem. Soc.* 2011, **133**, 8892-8895; (b) T. Regiani, V. G. Santos, M. N. Godói, B. G. Vaz, M. N. Eberlin and F. Coelho, *Chem. Commun.* 2011, **47**, 6593-6595; (c) K. Yoshida, N. Akashi and A. Yanagisawa, *Tetrahedron: Asymmetry* 2011, **22**, 1225-1230.

2. Synthesis of Ammonium Amide 6C.

Step 1: (R)-14 (3.00 g, 21.9 mmol) was dissolved in 50 mL acetone and 3.2 g anhydrous MgSO₄ were added and the reaction mixture was stirred for 3 h at 20 °C. After filtration and evaporation to dryness the product 21 was obtained in 95% (3.68 g, 20.7 mmol) and used without further purification. The ¹H-NMR-spectrum is in full accordance to literature.² ¹H-NMR (300 MHz, δ, CDCl₃, 298 K): 1.45 (s, 3H), 1.52 (s, 3H), 2.04 (b, 1H), 3.71 (t, 1H, J = 7.8 Hz), 4.29 (t, 1H, J = 7.8 Hz), 4.54 (t, 1H, J = 7.8 Hz), 7.26 - 7.41 (m, 5H, Ar-H) ppm. Step 2: Compound 21 (3.68 g, 20.7 mmol, 1 eq.) was dissolved in 25 mL CH₂Cl₂ and 83 mL aqueous saturated Na₂CO₃ solution were added. Then bromide 7 (2.9 mL, 21.7 mmol, 1.05 eq.) was added and the mixture was vigorously stirred for 4 h. After addition of aqueous saturated NaHCO₃ the aqueous layer was separated and washed three times with 20 mL CH₂Cl₂. The combined organic phases were dried over anhydrous MgSO₄, filtrated and the solvent removed under reduced pressure. The product was purified by column chromatography (silica gel, heptanes: EtOAc = 5:1) to give 8C (2.57 g, 8.6 mmol, 41 % yield) as a light-brown solid. The ¹H-NMR-spectrum was in accordance to literature.³ ¹H-NMR $(300 \text{ MHz}, \delta, \text{CDCl}_3, 298 \text{ K})$: 1.64 (s, 3H), 1.87 (s, 3H), 3.45 (d, 1H, J = 11.0 Hz), 3.52 (d, 1H, J = 11.0 Hz), 3.94 (dd, 1H, $J_1 = 9.0$ Hz, $J_2 = 2.7$ Hz), 4.41 (dd, 1H, $J_1 = 9.0$ Hz, $J_2 = 1.0$ 6.5 Hz), 5.07 (dd, 1H, $J_1 = 6.5$ Hz, $J_2 = 2.7$ Hz), 7.25 - 7.45 (m, 5H) ppm.

Step 3: Compound 8C (2.57 g, 8.6 mmol) was dissolved in THF (26 mL) and NMe₃ (2.50 mL, 20.4 mmol, 1.2 eq., 33 % solution in EtOH) was added. After stirring for 24 h at r.t. the solvent was removed with vacuum distillation. The crude product (purity >90%) was purified by column chromatography (heptanes \rightarrow CH₂Cl₂:MeOH = 5:1) to give the ammonium salt 6C in 90% yield (2.90 g, 8.1 mmol) as a white hygroscopic foam. [α]_D²² (c = 0.6, DCM) = -92; ¹H-NMR (700 MHz, δ , CDCl₃, 298 K): 1.65 (s, 3H), 1.86 (s, 3H), 2.98 (d, 1H, *J* = 16.3 Hz), 3.44 (s, 9H), 3.91 (dd, 1H, *J*₁ = 9.2 Hz, *J*₂ = 1.7 Hz), 4.46 (dd, 1H, *J*₁ =

² S. Kanemasa and K. Onimura, *Tetrahedron* 1992, **48**, 8631-8644.

³ R. J. R. Lumby, P. M. Joensuu and H. W. Lam, *Tetrahedron* 2008, 64, 7729-7740.

9.2 Hz, $J_2 = 6.5$ Hz), 5.83 (dd, 1H, $J_1 = 6.5$ Hz, $J_2 = 1.7$ Hz), 6.07 (d, 1H, J = 16.3 Hz), 7.28 - 7.51 (m, 5H) ppm; ¹³C NMR (176 MHz, δ , CDCl₃, 298 K): 23.5, 25.5, 54.7, 60.1, 64.8, 71.8, 97.5, 126.8, 128.5, 129.5, 140.5, 161.0 ppm; IR (film): $\bar{\nu} = 3011$, 2987, 2937, 2882, 1654, 1434, 1412, 1378, 1351, 1237, 1204, 1133, 1064, 1048, 923, 896, 843, 703, 664, 604, 579, 563, 517, 501 cm⁻¹; HRMS (ESI): m/z calcd for C₁₆H₂₅N₂O₂⁺: 277.1910 [M]⁺; found: 277.1904.

3. Syntheses of Epoxides Using Amide 6C:

General Procedure: Ammonium salt **6**C was dissolved in the appropriate solvent (20 mL/mmol ammonium salt) and Cs_2CO_3 (20 eq.) was added to the reaction mixture. After 5 min the aldehyde (2 eq) was added and the suspension was stirred for the indicated time at the given temperature. The reaction was quenched with water and extracted with toluene. The organic phase was washed with brine and dried with anhydrous Na₂SO₄, filtrated and the solvent was removed under reduced pressure. The epoxide was purified by column chromatography (silica gel, heptanes:EtOAc = 7:3).

Cond. A: *i*-PrOH, 24 h, 25 °C

Cond. B: toluene, 24 h, 60 °C

Cond. C: toluene, 72 h, 25 °C

Cond. D: toluene, 24 h, 25 °C

128.5, 128.7, 129.4, 135.3, 140.6, 164.2 ppm; IR (film): $\overline{\nu}$ = 3032, 2989, 2933, 2873, 1658, 1458, 1437, 1387, 1363, 1252, 1205, 1081, 1066, 894, 849, 772, 749, 695, 660, 596, 552, 513 cm⁻¹; HRMS (ESI): m/z calcd for C₂₀H₂₁NO₃: 324.1594 [M + H]⁺; found: 324.1595.

trans-epoxide 17b. Obtained in 80% (0.28 mmol scale) as a white solid after column

chromatography (Cond. A). M.p.: 139 - 141 °C; $[\alpha]_D^{22}$ (c = 0.6, DCM) = -161; ¹H NMR (300 MHz, δ , CDCl₃, 298 K): 1.71 (s, 3H), 1.88 (s, 3H), 2.28 (s, 3H), 3.22 (d, 1H, J = 1.5 Hz), 3.68 (d, 1H, J = 1.5 Hz), 3.90 (dd, 1H, $J_1 = 9.0$ Hz, $J_2 = 4.0$ Hz), 4.40 17b (dd, 1H, $J_1 = 9.0$ Hz, $J_2 = 6.8$ Hz), 5.11 (dd, 1H, $J_1 = 6.8$ Hz, $J_2 = 4.0$ Hz), 6.67 (d, 2H, J =8.1 Hz), 6.95 (m, 2H), 7.10 - 7.21 (m, 5H) ppm; ¹³C NMR (75 MHz, δ, CDCl₃, 298 K): 21.5, 24.3, 25.2, 58.4, 58.6, 61.0, 72.3, 97.7, 125.9, 126.1, 128.3, 129.0, 129.4, 132.3, 138.5, 140.7, 164.5 ppm; IR (film): $\overline{\nu} = 2981$, 2934, 2865, 2873, 1619, 1444, 1415, 1378, 1361, 1321, 1305, 1289, 1255, 1205, 1168, 1141, 1076, 1064, 1056, 891, 849, 830, 796, 772, 697, 683, 664, 603, 553, 522, 513, 492 cm⁻¹; HRMS (ESI): m/z calcd for C₂₁H₂₃NO₃: 338.1751 [M +

H]⁺; found: 338.1757.

trans-epoxide 17c. Obtained in 79% (0.15 mmol scale) as a colourless residue after column

chromatography (Cond. A). M.p.: 94 - 97 °C; $[\alpha]_D^{22}$ (c = 1.0, DCM) = -32; ¹H NMR (300 MHz, δ, CDCl₃, 298 K): 1.71 (s, 3H), 1.91 (s, 3H), 2.08 (s, 3H), 3.21 (d, 1H, J = 1.4 Hz), 3.95 (dd, 1H, J₁ = 9.0 Hz, J_2 = 3.3 Hz), 3.98 (d, 1H, J = 1.4 Hz), 4.43 (dd, 1H, J_1 = 9.0 Hz, $J_2 = 6.2$ Hz), 5.16 (dd, 1H, $J_1 = 6.2$ Hz, $J_2 = 3.3$ Hz), 6.60

(d, 1H, J = 7.9 Hz), 6.97 - 7.00 (m, 2H), 7.06 - 7.25 (m, 6H) ppm; ¹³C NMR (75 MHz, δ , CDCl₃, 298 K): 19.0, 24.0, 25.4, 56.7, 57.5, 61.4, 72.0, 97.3, 124.4, 126.0, 126.3, 128.3, 128.4, 129.5, 130.1, 133.7, 137.1, 141.2, 164.9 ppm; IR (film): $\overline{\nu}$ = 3026, 2936, 1646, 1436, 1389, 1376, 1364, 1316, 1239, 1064, 1043, 892, 843, 765, 706, 655, 609, 587, 564, 523 cm⁻¹; HRMS (ESI): m/z calcd for C₂₁H₂₃NO₃: 338.1751 [M + H]⁺; found: 338.1756.

trans-epoxide 17d. Obtained in 75% (0.3 mmol scale) as a colourless residue after column

chromatography (Cond. A). M.p.: 133 - 136 °C; $[\alpha]_D^{22}$ (c = 1.8, DCM) = -119; ¹H NMR (300 MHz, δ , CDCl₃, 298 K): 1.70 (s, 3H), 1.87 (s, 3H), 3.17 (d, 1H, J = 1.4 Hz), 3.62 (d, 1H, J = 1.4 Hz), 3.85 (dd, 1H, $J_1 = 9.2$ Hz, $J_2 = 4.2$ Hz), 4.40 (dd, 1H, $J_1 = 9.2$ Hz, $J_2 = 6.8$ Hz), 5.08 (dd, 1H, $J_1 = 6.8$ Hz,

 $J_2 = 4.2$ Hz), 6.70 (d, 2H, J = 8.3 Hz), 7.05 - 7.16 (m, 7H) ppm; ¹³C NMR (75 MHz, δ , CDCl₃, 298 K): 24.4, 25.1, 57.6, 58.8, 62.3, 72.2, 97.3, 126.1, 127.2, 128.5, 128.6, 129.5, 133.9, 134.6, 140.6, 164.2 ppm; IR (film): $\overline{\nu} = 2981$, 2937, 2863, 2384, 2349, 2307, 1657, 1600, 1495, 1445, 1412, 1377, 1362, 1247, 1320, 1303, 1255, 1205, 1166, 1141, 1077, 1064, 1013, 891, 848, 833, 791, 770, 758, 731, 699, 665, 655, 553 cm⁻¹; HRMS (ESI): *m/z* calcd for C₂₀H₂₀CINO₃: 358.1204 [M + H]⁺; found: 358.1209.

trans-epoxide 17e. Obtained in 85% (0.6 mmol scale) as a slightly yellowish solid after

column chromatography (Cond. A). M.p.: 258 - 260 °C; $[\alpha]_D^{22}$ (c = 0.5, DCM) = -75; ¹H NMR (300 MHz, δ , CDCl₃, 298 K): 1.70 (s, 3H), 1.88 (s, 3H), 3.17 (d, 1H, *J* = 1.3 Hz), 3.61 (d, 1H, *J* = 1.3 Hz), 3.88 (dd, 1H, *J*₁ = 9.1 Hz, *J*₂ = 4.2 Hz), 4.41 (dd, 1H, *J*₁ = 9.1 Hz, *J*₂ = 6.8 Hz), 5.08 (dd, 1H, *J*₁ = 6.8 Hz,

 $J_2 = 4.2$ Hz), 6.63 (d, 2H, J = 7.8 Hz), 7.05 - 7.31 (m, 7H) ppm; ¹³C NMR (75 MHz, δ , CDCl₃, 298 K): 24.3, 25.1, 57.6, 58.8, 61.4, 72.2, 97.4, 122.6, 126.1, 127.5, 128.6, 129.5, 131.5, 134.4, 140.7, 164.2 ppm; IR (film): $\overline{\nu} = 2982$, 2934, 2862, 2655, 1594, 1489, 1444, 1408, 1377, 1360, 1319, 1253, 1205, 1166, 1139, 1066, 1010, 971, 935, 889, 845, 831, 804, 789, 768, 757, 723, 699, 664, 638, 562, 553 cm⁻¹; HRMS (ESI): *m/z* calcd for C₂₀H₂₀BrNO₃: 402.0699 [M + H]⁺; found: 402.0702.

trans-epoxide 17f. Obtained in 89% (0.25 mmol scale) as a white solid after column

chromatography (Cond. A). M.p.: 140 - 143 °C; $[\alpha]_D^{22}$ (c = 0.6, DCM) = -11; ¹H NMR (700 MHz, δ , CDCl₃, 298 K): 1.72 (s, 3H), 1.90 (s, 3H), 3.26 (d, 1H, *J* = 1.8 Hz), 3.72 (d, 1H, *J* = 1.8 Hz), 3.90 (dd, 1H, *J*₁ = 9.2 Hz, *J*₂ = 4.2 Hz), 4.42 (dd, 1H,

*J*₁ = 9.2 Hz, *J*₂ = 6.9 Hz), 5.12 (dd, 1H, *J*₁ = 6.9 Hz, *J*₂ = 4.2 Hz), 6.84 - 6.68 (m, 2H), 7.05 - 7.82 (m, 12H) ppm; ¹³C NMR (176 MHz, δ, CDCl₃, 298 K): 24.6, 25.3, 58.3, 58.9, 61.5, 72.2, 97.2, 126.2, 126.3, 127.1, 127.3, 127.8, 128.5, 129.2, 129.5, 134.8, 140.6, 140.9, 141.7, 164.5

ppm; IR (film): $\overline{\nu} = 3029$, 2970, 2928, 2876, 1656, 1442, 1411, 1377, 1362, 1324, 1253, 1201, 1136, 1066, 893, 851, 772, 759, 743, 696, 662, 563, 549, 515 cm⁻¹; HRMS (ESI): m/z calcd for C₂₆H₂₅NO₃: 400.1907 [M + H]⁺; found: 400.1907.

trans-epoxide 17g. Obtained in 73% (0.5 mmol scale) as a yellowish residue after column

chromatography (Cond. A, compound **17g** partially decomposes during silica gel column chromatography). $[\alpha]_D^{22}$ (c = 1.0, DCM) = -132; ¹H NMR (300 MHz, δ , CDCl₃, 298 K): 1.71 (s, 3H), 1.87 (s, 3H), 3.22 (d, 1H, *J* = 1.4 Hz), 3.62 (d, 1H, *J* = 1.4 Hz), 3.82 (s, 3H), 3.88 (dd, 1H,

 $J_1 = 9.1$ Hz, $J_2 = 4.0$ Hz), 4.39 (dd, 1H, $J_1 = 9.1$ Hz, $J_2 = 6.8$ Hz), 5.10 (dd, 1H, $J_1 = 6.8$ Hz, $J_2 = 4.0$ Hz), 6.62 - 6.74 (m, 4H), 7.02 - 7.20 (m, 5H) ppm; ¹³C NMR (75 MHz, δ , CDCl₃, 298 K): 24.3, 25.3, 56.0, 58.0, 58.2, 61.2, 71.6, 97.2, 114.1, 126.1, 127.1, 127.2, 128.4, 129.6, 140.7, 160.1, 164.8 ppm; IR (film): $\bar{\nu} = 2976$, 2935, 2862, 2838, 1655, 1612, 1515, 1442, 1420, 1386, 1377, 1362, 1322, 1247, 1205, 1175, 1138, 1079, 1064, 1032, 892, 848, 833, 800, 772, 754, 698, 680, 661, 570, 552, 514 cm⁻¹; HRMS (ESI): *m/z* calcd for C₂₁H₂₃NO₄: 354.1700 [M + H]⁺; found: 354.1707.

trans-epoxide 17h. Obtained in 60% (0.4 mmol scale) crude yield (Cond. B, compound 17h

fully decomposes during silica gel column chromatography). ¹H NMR (700 MHz, δ , CDCl₃, 298 K): 1.69 (s, 3H), 1.87 (s, 3H), 2.89 (s, 6H), 3.26 (d, 1H, J =1.9 Hz), 3.63 (d, 1H, J = 1.9 Hz), 3.90 (dd, 1H, $J_1 =$ 9.0 Hz, $J_2 =$ 3.8 Hz), 4.40 (dd, 1H, $J_1 =$ 9.0 Hz, $J_2 =$ 6.9 Hz), 5.10

(dd, 1H, $J_1 = 6.9$ Hz, $J_2 = 3.8$ Hz), 6.48 (m, 2H), 6.65 (m, 2H), 7.05 - 7.36 (m, 5H) ppm; ¹³C NMR (75 MHz, δ , CDCl₃, 298 K): 24.3, 24.9, 40.8, 58.4, 58.7, 61.2, 72.3, 97.3, 112.4, 125.5, 126.2, 126.4, 127.8, 129.4, 140.8, 150.1, 165.4 ppm; HRMS (ESI): *m/z* calcd for C₂₂H₂₆N₂O₃: 367.2016 [M + H]⁺; found: 367.2019. trans-epoxide 17i. Obtained in 62% (0.45 mmol scale) as a slightly yellowish residue after

Column chromatography (Cond. C). M.p.: 85 - 88 °C; $[\alpha]_D^{22}$ (c = 0.5, DCM) = -113; ¹H NMR (300 MHz, δ , CDCl₃, 298 K): 1.71 (s, 3H), 1.88 (s, 3H), 3.16 (d, 1H, J = 1.7 Hz), 3.69 (d, 1H, J = 1.7 Hz), 3.87 (dd, 1H, $J_1 = 9.3$ Hz, $J_2 = 4.4$ Hz), 4.42 (dd, 1H, $J_1 = 9.3$ Hz, $J_2 = 6.8$ Hz), 5.07 (dd, 1H, $J_1 = 6.8$ Hz, $J_2 = 4.4$ Hz), 6.97 (m, 2H), 7.11 (m, 5H), 7.44 (m, 2H) ppm; ¹³C NMR (75 MHz, δ , CDCl₃, 298 K): 24.4, 25.2, 57.5, 59.0, 61.5, 72.2, 97.5, 112.7, 119.0, 126.1, 126.4, 128.6, 129.5, 132.2, 140.6, 140.8, 165.6 ppm; IR (film): $\overline{\nu} = 3093$, 3046, 2857, 2744, 2229, 1702, 1658, 1607, 1571, 1416, 1383, 1361, 1309, 1295, 1251, 1201, 1171, 1139, 1071, 1016, 893, 828, 772, 736, 705, 643, 562, 545 cm⁻¹; HRMS (ESI): m/z calcd for C₂₁H₂₀N₂O₃: 349.1547 [M + H]⁺; found: 349.1552.

trans-epoxide 17j. Obtained in 68% (0.5 mmol scale) as a yellow solid after column

chromatography (Cond. C). M.p.: 117 - 120 °C; $[\alpha]_D^{22}$ (c = 0.4, DCM) = -183; ¹H NMR (300 MHz, δ , CDCl₃, 298 K): 1.72 (s, 3H), 1.89 (s, 3H), 3.20 (d, 1H, *J* = 1.8 Hz), 3.72 (d, 1H, *J* = 1.8 Hz), 3.87 (dd, 1H, *J*₁ = 9.2 Hz, *J*₂ = 4.6 Hz), 4.42 (dd, 1H, *J*₁ = 9.2 Hz, *J*₂ = 6.8 Hz), 5.07 (dd, 1H, *J*₁ = 6.8 Hz,

 $J_2 = 4.6$ Hz), 6.96 - 7.17 (m, 6H), 7.35 (m, 1H), 7.58 (m, 1H), 8.10 (m, 1H) ppm; ¹³C NMR (75 MHz, δ , CDCl₃, 298 K): 24.5, 25.1, 57.1, 59.1, 61.6, 72.3, 97.5, 121.0, 123.6, 126.1, 128.5, 129.5, 129.6, 131.5, 137.7, 140.2, 148.3, 163.5 ppm; IR (film): $\bar{\nu} = 2986$, 2934, 2877, 1659, 1651, 1528, 1454, 1433, 1378, 1349, 1305, 1252, 1203, 1167, 1138, 1064, 889, 847, 802, 775, 735, 700, 677, 610, 565, 552, 515 cm⁻¹; HRMS (ESI): *m/z* calcd for C₂₀H₂₀N₂O₅: 369.1445 [M + H]⁺; found: 369.1449.

trans-epoxide 17k. Obtained in 42% (0.4 mmol scale) as a colourless hygroscopic residue after column chromatography (Cond. D). $[\alpha]_D^{22}$ (c = 0.5, DCM) = -68; ¹H NMR (300 MHz, δ , CDCl₃, 298 K): 0.81 - 1.36 (m, 21H), 1.67 (s, 3H), 1.85 (s, 3H), 2.83 (dt, 1H, $J_1 = 5.6$ Hz, $J_2 = 2.1$ Hz), 2.93 (d, 1H, J = 2.1 Hz), 3.91 (dd, 1H, $J_1 = 9.1$ Hz, $J_2 = 3.9$ Hz), 4.42 (dd, 1H, $J_1 = 9.1$ Hz, $J_2 = 6.8$ Hz), 5.15 (dd, 1H, $J_1 = 6.8$ Hz, $J_2 = 3.9$ Hz), 7.32 (m, 5H) ppm; ¹³C NMR (75 MHz, δ , CDCl₃, 298 K): 14.5, 23.0, 24.1, 25.2, 25.5, 29.5, 29.6, 29.8 (2x), 29.9, 31.1, 32.2, 54.5, 59.2, 61.4, 71.8, 97.5, 126.3, 128.5, 129.6, 141.5, 165.8 ppm; IR (film): $\overline{\nu} = 2923$, 2853, 1657, 1450, 1399, 1376, 1363, 1253, 1204, 1169, 1140, 1067, 904, 848, 758, 700, 664, 518 cm⁻¹; HRMS (ESI): *m/z* calcd for C₂₄H₃₇NO₃: 388.2846 [M + H]⁺; found: 388.2847.

trans-epoxide 171. Obtained in 39% (0.5 mmol scale) as a colourless residue after column

chromatography (Cond. D). M.p.: 63 - 65 °C; $[\alpha]_D^{22}$ (c = 0.6, DCM) = -76; ¹H NMR (300 MHz, δ , CDCl₃, 298 K): 0.46 - 1.63 (m, 11H), 1.66 (s, 3H), 1.86 (s, 3H), 2.76 (dd, 1H, J_1 = 5.5 Hz, J_2 = 1.9 Hz), 3.04 (d, 1H, J = 1.9 Hz), 3.91 (dd, 1H, J_1 = 9.1 Hz, J_2 =

3.3 Hz), 4.42 (dd, 1H, $J_1 = 9.1$ Hz, $J_2 = 6.4$ Hz), 5.16 (dd, 1H, $J_1 = 6.4$ Hz, $J_2 = 3.3$ Hz), 7.25 - 7.42 (m, 5H) ppm; ¹³C NMR (75 MHz, δ , CDCl₃, 298 K): 24.0, 25.2, 25.7, 25.8, 26.3, 28.3, 28.8, 38.9, 52.3, 61.6, 63.3, 71.9, 97.3, 126.3, 128.5, 129.4, 141.9, 166.1 ppm; IR (film): $\bar{\nu} = 2984$, 2926, 2850, 1644, 1444, 1395, 1374, 1362, 1339, 1314, 1283, 1247, 1235, 1205, 1164, 1132, 1064, 974, 900, 885, 844, 772, 703, 660, 578, 564, 514 cm⁻¹; HRMS (ESI): *m/z* calcd for C₂₀H₂₇NO₃: 320.2064 [M + H]⁺; found: 320.2070.

4. Reduction of Epoxide 17a:

In analogy to literature,⁴ **17a** (130 mg, 0.4 mmol) was dissolved in 5 mL THF. Then LiBHEt₃ (1.0 mL, 1 mmol, 1 M THF, 2.5 eq.) was added to the mixture and stirred for 35 min. The reaction was quenched with aqueous NH₄Cl solution followed by the extraction with Et₂O and brine. The organic phase was dried with anhydrous Na₂SO₄, filtrated, and the solvent removed under reduced pressure. Epoxyalcohol **18** (32 mg, 0.21 mmol) was obtained after column chromatography (silica gel, heptanes: EtOAc = 8:2 \rightarrow 1:1) as a colourless oil in 53% non-optimized yield. Analytical data are in accordance to literature.⁵ [α]_D²⁰ (c = 1.0, DCM) = -57; ¹H-NMR (300 MHz, δ , CDCl₃, 298 K): 1.80 (br, 1H), 3.10 (m, 1H), 3.76 (dd, 1H, *J*₁ =

⁴ F. Sarabia, C. Vivar-Garcia, M. Garcia-Castro and J. Martin-Ortiz, J. Org. Chem. 2011, 76, 3139-3150.

⁵ a) S. K., Cherian and P. Kumar, *Tetrahedron: Asymmetry*. 2007, **18**, 982-987; b) F. Sarabia, S. Chammaa, M. Garica-Castro and F. Martin-Galvez, *Chem. Commun.*, 2009, 5763-5765; c) P. G. Gordillo, D. M. Aparicio, M. Flores, A. Mendoza, L. Orea, J. R. Juarez, G. Huelgas, D. Gnecco and J. L. Teran, *Eur. J. Org. Chem.*, 2013, 5561-5565.

12.7 Hz, *J*₂ = 3.9 Hz), 3.93 (d, 1H, *J* = 1.8 Hz), 3.98 (dd, 1H, *J*₁ = 12.7 Hz, *J*₂ = 2.2 Hz), 7.20 - 7.42 (m, 5H) ppm.

5. Syntheses of Aziridines Using Amide 6C:

General procedure for the preparation of aziridines: A mixture of 6C (0.4 mmol), aldimine 3 (2 eq.), and 20 equivalents of solid Cs_2CO_3 in CH_2Cl_2 (8 mL) was vigorously stirred for 24 h at room temperature. CH_2Cl_2 and brine were added and the phases separated. The aqueous layer was extracted twice with CH_2Cl_2 , the combined organic layers were extracted with brine and the aqueous layer was re-extracted twice with CH_2Cl_2 . The combined organic layers were dried over Na₂SO₄, filtrated, evaporated, and dried *in vacuo*. Column chromatography (silica gel, heptanes/EtOAc = 20:1 - 2:1) gave the aziridines 19 in the reported yields. In most cases the minor *cis*-isomers and the olefins 20 could not be obtained in pure form.

trans-N-tosyl aziridine 19a. Obtained in 39% as a colourless oil after column chromatography (crude NMR yield 70%). $[\alpha]_D^{23}$ (c = 1.2, DCM) = -78; ¹H NMR (300 MHz, δ , CDCl₃, 298 K): 1.76 (s, 3H), 1.95 (s, 3H), 2.42 (s, 3H), 3.21 (d, 1H, J = 4.1 Hz), 4.03 (dd, 1H, J = 8.9, 1.6 Hz), 4.44 (d, 1H, J = 4.1 Hz), 4.53 (dd, 1H, J = 8.9, 6.3 Hz), 5.56 (dd, 1H, J = 6.3, 1.6 Hz), 6.85 – 6.93 (m, 2H), 7.21 – 7.48 (m, 10H), 7.77 – 7.85 (m, 2H) ppm; ¹³C NMR (75 MHz, δ , CDCl₃, 298 K): 21.6, 22.3, 25.4, 47.1, 49.5, 61.2, 71.5, 96.9, 126.2, 126.9, 127.6, 128.1, 128.3, 128.4, 129.2, 129.7, 132.9, 136.5, 141.3, 144.6, 161.4 ppm; IR (film): $\bar{\nu} = 2970$, 1662, 1432, 1378, 1329, 1238, 1204, 1159, 1085, 1063, 929, 812, 756, 695, 579 cm⁻¹; HRMS (ESI): m/z calcd for C₂₇H₂₈N₂O₄S: 477.1843 [M + H]⁺; found: 477.1834. *trans*-N-Boc aziridine 19b. Obtained in 62% as a colourless residue. M.p.: 136 - 139 °C; Boc Ph, N (α]_D²³ (c = 1.6, DCM) = -110; ¹H NMR (500 MHz, δ , CDCl₃, 298 K): 1.48 (s, 9H), 1.73 (s, 3H), 1.89 (s, 3H), 2.87 (d, 1H, J = 2.5 Hz), 3.69 (d, 1H, J = 2.5 Hz), 3.96 (dd, 1H, J = 9.1, 3.5 Hz), 4.47 (dd, 1H, J = 9.1, 6.8 Hz), 5.28 (dd, 1H, J = 6.8, 3.5 Hz), 6.88 (d, 2H, J = 6.9 Hz),

7.19 – 7.28 (m, 8H) ppm; ¹³C NMR (125 MHz, δ , CDCl₃, 298 K): 23.8, 25.0, 28.0, 44.5, 44.8, 61.5, 71.6, 81.7, 96.8, 125.7, 126.5, 127.7, 128.0, 128.1, 129.1, 135.3, 140.9, 159.2, 163.7 ppm; IR (film): $\bar{\nu} = 3009$, 2984, 2935, 2868, 1715, 1652, 1433, 1395, 1364, 1333, 1253, 1223, 1204, 1074, 1053, 819, 755, 746, 705, 691, 635 cm⁻¹; HRMS (ESI): *m/z* calcd for C₂₅H₃₀N₂O₄: 423.2278 [M + H]⁺; found: 423.2287.

cis-N-Boc aziridine 19b. Obtained in trace amounts and lower purity during the isolation of

trans-19b. ¹H NMR (500 MHz, δ, CDCl₃, 298 K): 1.41 (s, 9H), 1.46 (s, 3H), 1.54 (s, 3H), 3.27 (d, 1H, *J* = 6.8 Hz), 3.33 (d, 1H, *J* = 6.8 Hz), 3.87 (dd, 1H, *J* = 8.9, 2.4 Hz), 4.29 (dd, 1H, *J* = 8.9, 6.5 Hz), 5.29 (dd, 1H, *J* = 6.5, 2.4 Hz), 7.02 – 7.09 (m, 2H), 7.18 – 7.25 (m, 4H), 7.34 –

7.40 (m, 4H) ppm; ¹³C NMR (125 MHz, δ, CDCl₃, 298 K): 22.9, 25.1, 27.8, 44.5, 45.6, 60.8, 71.6, 82.1, 96.8, 126.4, 127.6, 127.8, 127.9, 128.0, 129.0, 132.9, 141.7, 161.0, 162.1 ppm; HRMS (ESI): *m/z* calcd for C₂₅H₃₀N₂O₄: 423.2278 [M + H]⁺; found: 423.2282.

Olefine 20b. Obtained in minor amounts during the isolation of *trans*-19b. ¹H NMR (700 $Boc \longrightarrow H \longrightarrow O \\ Ph \longrightarrow O \\ Ph \longrightarrow O \\ 20b \end{pmatrix}$ MHz, δ , CDCl₃, 298 K): 1.34 (s, 9H), 1.72 (s, 3H), 1.91 (s, 3H), 3.91 (dd, 1H, J = 8.9, 3.2 Hz), 4.37 (dd, 1H, J = 8.9, 6.7 Hz), 4.86 (s, 1H), 4.91 (dd, 1H, J = 6.7, 3.2 Hz), 6.97 (d, 2H, J = 7.3 Hz), 7.21 (t, 2H, J = 7.8 Hz), 7.27 - 7.34 (m, 4H), 7.36 - 7.41 (m, 2H), 10.84 (s, 1H) ppm; ¹³C NMR (176 MHz, δ , CDCl₃, 298 K): 23.9, 25.8, 28.2, 61.9,

71.6, 80.9, 96.4, 101.6, 126.3, 127.2, 127.8, 128.1, 129.1, 129.2, 137.3, 141.4, 152.2, 152.9, 166.1 ppm; HRMS (ESI): *m/z* calcd for C₂₅H₃₀N₂O₄: 423.2278 [M + H]⁺; found: 423.2284.

trans-N-Boc aziridine 19c. Obtained in 63% as a mixture of trans and cis-aziridine (7.5:1).

 $[\alpha]_D^{23}$ (c = 2.6, DCM) = -99; ¹H NMR (500 MHz, δ , CDCl₃, 298 K): *major-trans*: 1.46 (s, 9H), 1.74 (s, 3H), 1.92 (s, 3H), 2.21 (s, 3H), 2.94 (d, 1H, *J* = 2.2 Hz), 3.86 (d, 1H, *J* = 2.2 Hz), 4.00 (dd, 1H, *J* = 8.9, 2.1 Hz), 4.49 (dd, 1H, *J* = 8.9, 6.8 Hz), 5.31 (dd, 1H, J)

J = 6.8, 2.1 Hz), 6.53 (d, 1H, J = 7.5 Hz), 6.90 – 6.95 (m, 1H), 7.00 – 7.10 (m, 1H), 7.12 – 7.40 (m, 6H) ppm; ¹³C NMR (125 MHz, δ , CDCl₃, 298 K): 18.9, 23.5, 25.2, 27.9, 43.2, 43.4, 61.4, 71.5, 81.7, 96.8, 125.6, 125.8, 125.9, 127.7, 128.0, 129.2, 129.7, 133.4, 137.4, 141.5, 159.5, 163.9 ppm; IR (film): $\overline{\nu} = 2979$, 2934, 1725, 1652, 1429, 1390, 1365, 1328, 1305, 1284, 1249, 1205, 1151, 1083, 1069, 1050, 814, 765, 753, 703 cm⁻¹; HRMS (ESI): *m/z* calcd for C₂₆H₃₂N₂O₄: 437.2435 [M + H]⁺; found: 437.2433.

trans-N-Boc aziridine 19d. Obtained in 57% after neutral alumina column chromatography

(19d is relatively unstable and quickly decomposed at higher temperature or under more acidic conditions). $[\alpha]_D^{23}$ (c = 1.5, DCM) = -96; ¹H NMR (300 MHz, δ , CDCl₃, 298 K): 1.37 (s, 9H), 1.64 (s, 3H), 1.79 (s, 3H), 2.76 (d, 1H, J = 2.6 Hz), 3.56 (d, 1H, J = 2.6 Hz), 3.67 (s, 3H), 3.87 (dd, 1H,

J = 8.9, 3.4 Hz), 4.37 (dd, 1H, J = 8.9, 6.7 Hz), 5.19 (dd, 1H, J = 6.7, 3.4 Hz), 6.58 (d, 2H, J = 8.6 Hz), 6.69 (d, 2H, J = 8.6 Hz), 7.05 – 7.18 (m, 5H) ppm; ¹³C NMR (75 MHz, δ , CDCl₃, 298 K): 23.8, 25.0, 27.9, 44.2, 44.6, 52.2, 61.5, 81.6, 96.8, 113.5, 125.8, 127.4, 127.7, 128.0, 129.1, 141.0, 159.2, 159.3, 163.9 ppm; IR (film): $\overline{\nu} = 2933$, 1713, 1651, 1518, 1420, 1398, 1365, 1289, 1155, 1080, 1064, 1033, 815, 752, 703, 619 cm⁻¹; HRMS (ESI): *m/z* calcd for C₂₆H₃₂N₂O₅: 453.2384 [M + H]⁺; found: 453.2383.

trans-N-Boc aziridine 19e. Obtained in 58% as a colourless hygroscopic residue (containing

some co-eluting starting imine-based impurities). $[\alpha]_D^{23}$ (c = 0.2, DCM) = -93; ¹H NMR (300 MHz, δ , CDCl₃, 298 K): 1.49 (s, 9H), 1.75 (s, 3H), 1.91 (s, 3H), 2.97 (d, 1H, *J* = 2.6 Hz), 3.84 (d, 1H, *J* = 2.6 Hz), 3.96 (dd, 1H, *J* = 9.0,

3.6 Hz), 4.47 (dd, 1H, J = 9.0, 6.8 Hz), 5.29 (dd, 1H, J = 6.8, 3.6 Hz), 6.96 – 7.03 (m, 2H), 7.11 – 7.25 (m, 3H), 7.32 (s, 1H), 7.41 – 7.79 (m, 6H) ppm; ¹³C NMR (75 MHz, δ , CDCl₃, 298 K): 23.9, 25.0, 28.0, 44.7, 44.9, 61.5, 71.6, 81.8, 96.8, 124.0, 125.7, 125.8, 125.9, 126.1, 127.6, 127.7, 127.8, 128.0, 128.1, 129.1, 132.9, 133.0, 140.9, 159.3, 164.0 ppm; IR (film): $\overline{\nu}$ = 2970, 2929, 1725, 1651, 1435, 1324, 1249, 1148, 1050, 815, 753, 702 cm⁻¹; HRMS (ESI): m/z calcd for C₂₉H₃₂N₂O₄: 473.2435 [M + H]⁺; found: 473.2429. trans-N-Boc aziridine 19f. Obtained in 32% as a colourless solid (Olefine 20f could not be

isolated in pure form due to co-elution of different impurities and starting imine decomposition products). M.p.: 149 - 151 °C; $[\alpha]_D^{23}$ (c = 1.1, DCM) = -99; ¹H NMR (700 MHz, δ , CDCl₃, 298 K): 1.46 (s, 9H), 1.70 (s, 3H), 1.85 (s, 3H), 2.75 (d, 1H, *J* = 2.5 Hz), 3.56 (d, 1H, *J* = 2.5 Hz), 3.92 (dd, 1H, *J* =

9.1, 3.8 Hz), 4.43 (dd, 1H, J = 9.1, 6.8 Hz), 5.21 (dd, 1H, J = 6.8, 3.8 Hz), 6.70 (d, 2H, J = 8.3 Hz), 7.10 – 7.14 (m, 1H), 7.18 – 7.23 (m, 6H) ppm; ¹³C NMR (176 MHz, δ , CDCl₃, 298 K): 24.1, 25.0, 28.1, 43.9, 45.3, 61.8, 71.8, 82.1, 97.0, 121.8, 125.9, 127.8, 128.2, 128.3, 129.4, 131.3, 131.8, 134.8, 140.9, 159.2, 163.5 ppm; IR (film): $\bar{\nu} = 2981$, 2970, 1717, 1654, 1438, 1412, 1387, 1365, 1295, 1250, 1155, 1073, 1012, 873, 850, 806, 729, 705, 656 cm⁻¹; HRMS (ESI): m/z calcd for C₂₅H₂₉BrN₂O₄: 501.1383 [M + H]⁺; found: 501.1376.

Olefine 20g. Obtained in around 50% containing some co-eluting impurities that could not be

separated. ¹H NMR (300 MHz, δ , CDCl₃, 298 K): 1.38 (s, 9H), 1.76 (s, 3H), 1.94 (s, 3H), 3.96 (dd, 1H, J = 9.0, 3.7 Hz), 4.42 (dd, 1H, J = 9.0, 6.7 Hz), 4.93 (s, 1H), 4.94 (dd, 1H, J = 6.7, 3.7 Hz), 7.30 – 7.48 (m, 7H), 7.75 – 7.82 (m, 1H), 8.13 – 8.21 (m, 1H), 10.92 (s, 1H) ppm; ¹³C NMR (75 MHz, δ ,

CDCl₃, 298 K): 23.9, 25.4, 28.0, 61.9, 71.4, 81.5, 96.3, 102.9, 121.9, 123.7, 126.1, 128.3, 128.5, 129.3, 133.1, 138.7, 140.8, 147.8, 149.8, 152.0, 165.3 ppm; IR (film): $\bar{\nu} = 2979$, 2934, 2874, 1731, 1614, 1529, 1487, 1390, 1348, 1247, 1224, 1203, 1147, 1069, 1049, 836, 806, 735, 700, 666 cm⁻¹; HRMS (ESI): *m/z* calcd for C₂₅H₂₉N₃O₆: 468.2129 [M + H]⁺; found: 468.2124.

6. DFT Calculations:

Energies and geometries

All geometries (cartesian coordinates in Å) were obtained after geometry optimization at the B3LYP-d3/6-31G*(CH₂Cl₂) level of theory. Energies (in a.u.) were obtained after single point calculations at the indicated level of theory.

Frequency calculations have been carried out at the B3LYP/6-31G*(CH_2Cl_2) level of theory in order to check the correct nature of the point on the potential energy surface and to obtain the thermal and entropic contributions to free energy (at 298.15 K) and zero-point energies.

(Z)-Ylide ^{Re}				
E(B3L	YP-d3/6-31G*	$(\mathrm{CH}_{2}\mathrm{Cl}_{2})) = -884$	4.058884	
E(B3L	YP-d3/6-311+	$G^{**}(CH_2Cl_2)) =$	-884.304324	
G _{tot} (B3	3LYP-d3/6-310	$G^*(CH_2Cl_2)) = -8$	83.721283	
С	2.40502	7.82372	13.76974	
Η	1.77337	7.50810	12.94133	
0	-0.41306	6.11546	18.13832	
Ν	1.85360	6.11952	17.69753	
С	3.29982	8.88515	13.60265	
С	2.31899	7.16503	14.99629	
Н	1.62297	6.34286	15.13577	
С	3.12165	7.55918	16.07391	
С	3.10860	6.79372	17.38563	
Н	3.42559	7.46666	18.20151	
С	4.01016	8.62623	15.90261	
Н	4.63657	8.94224	16.73615	
С	4.10282	9.28486	14.67336	
Н	4.80204	10.10947	14.5527	
С	2.13022	4.80624	18.34157	
0	3.57135	4.71168	18.33590	
С	4.06211	5.58796	17.33152	
С	1.53025	3.66774	17.51384	
Н	1.75470	2.69646	17.97142	
Н	1.93980	3.68652	16.49774	
Н	0.44830	3.80875	17.45726	
С	1.71126	4.74211	19.80941	
Н	2.14404	5.58989	20.35099	
Н	2.08278	3.81157	20.25348	
Н	0.62468	4.78087	19.89369	
С	0.72954	8.20050	18.08835	
С	0.64512	6.81169	17.98597	
Ν	-0.52235	9.01278	18.13940	
Н	1.57756	8.77940	17.76344	
Н	-1.50090	7.65998	19.42303	
Н	-0.64718	8.99605	20.25204	
Н	-2.20873	9.31975	19.42245	
С	-1.28847	8.72784	19.41109	
С	-1.41970	8.74133	16.95151	
Н	-1.66189	7.67928	16.96874	
Н	-2.32276	9.35494	17.02399	
Н	-0.85876	8.98831	16.04957	
С	-0.14370	10.46694	18.13012	
Н	-1.04620	11.07501	18.22422	
Н	0.53232	10.65337	18.96785	
Н	0.36108	10.69252	17.18832	

Н	5.10019	5.84597	17.56208	
Н	4.02331	5.12212	16.33485	
Н	3.36953	9.39659	12.64492	
(Z)-Y	lide ^{Si}			
E(B3I	YP-d3/6-31G*	$(CH_{1}CI_{2})) = -88$	4 054861	
	VP 43/6 311	$G^{**}(CH C1)) = -00^{-1}$	884 301148	
C (P	211-05/0-511+ 21 VD 43/6 310	$C^{*}(C^{U}(C^{1})) = S^{*}(C^{U}(C^{1})) = S^{*}(C^{U}(C^{1})) = S^{*}(C^{U}(C^{1}))$	283 718214	
C tot(D	2 09292	$J^{*}(C\Pi_{2}CI_{2})) = -6$	12 74959	
U U	2.90302	7.91/94	13./4030	
н	2.48323	7.03943	12.82100	
U N	0.86283	7.93826	18.69050	
N	1.77007	6.13769	17.45347	
С	3.91177	8.96438	13.75665	
С	2.69371	7.22756	14.92688	
Н	1.96831	6.41895	14.93450	
С	3.32342	7.57183	16.13001	
С	3.08835	6.76633	17.39455	
Н	3.26797	7.40432	18.27259	
С	4.24422	8.62699	16.13156	
Н	4.73410	8.90797	17.06300	
С	4.54123	9.31769	14.95335	
Н	5.26249	10.13278	14.96970	
С	1.89965	4.81895	18.13812	
õ	3 31732	4 66306	18 37028	
č	3 99437	5 52938	17 46639	
C	1 /1376	3 60770	17 21107	
с u	1.55/38	2 71600	17.68087	
	1.06916	2.71009	16 26750	
п	1.90810	2.02506	16.20739	
Н	0.35015	3.83380	10.99017	
C	1.22322	4.75415	19.50683	
Н	1.54966	5.59520	20.12381	
H	1.48930	3.81403	20.00194	
Н	0.13641	4.79977	19.39391	
С	-0.50314	6.68263	17.19292	
С	0.67010	7.01365	17.84312	
Ν	-1.76903	7.42368	17.46759	
Н	-0.55218	6.01614	16.34698	
Η	-0.79450	9.27951	17.69117	
Н	-1.39663	8.94434	16.03968	
Н	-2.55628	9.41523	17.33126	
С	-1.62440	8.88643	17.10507	
Ċ	-2.14648	7.31487	18.92705	
й	-1 30788	7 70039	19 50555	
н	-3.05542	7.89522	19 11330	
и П	2 31180	6 25057	10 15086	
C II	2.5110	6 8 2 3 6 7	16 64140	
С П	-2.0/134	0.82307	16.04149	
п	-5.80500	7.53490	10.04943	
Н	-2.61256	6.92051	15.58388	
H	-2.96835	5./6/56	16.90337	
H	4.99232	5.74015	17.86209	
H	4.09551	5.07033	16.47035	
Н	4.14052	9.50162	12.83822	
	_			
(E)-Ylide ^{Ke}				
$E(B3LYP-d3/6-31G^*(CH_2Cl_2)) = -884.036428$				
$E(B3LYP-d3/6-311+G^{**}(CH_2Cl_2)) = -884.282907$				

		- (- 2-2/)	
G _{tot} (E	33LYP-d3/6-31G	$*(CH_2Cl_2)) = -8$	883.695308
С	4.84926	6.66759	14.07569
Н	5.56417	5.96809	13.64578
0	0.97095	7.10096	19.43915
Ν	1.76417	6.15252	17.40489

С	4.42430	7.77579	13.33568
С	4.36726	6.45441	15.36882
Η	4.71560	5.59782	15.93769
С	3.44510	7.34134	15.94790
С	2.88779	7.14400	17.35050
Н	2.50738	8.10118	17.71160
С	3.04295	8.45861	15.20202
Н	2.35103	9.17412	15.64419
С	3.52074	8.67485	13.90596
Н	3.19364	9.54988	13.34634
С	2.38640	4.84789	17.82410
0	3.76675	5.15035	18.16162
С	3.88474	6.55887	18.35513
С	2.45850	3.85101	16.65849
Η	3.20282	3.08052	16.88753
Η	2.74739	4.35597	15.73327
Η	1.49684	3.35160	16.50474
С	1.71272	4.19597	19.03491
Η	1.78996	4.84073	19.90986
Η	2.20511	3.23826	19.23718
Η	0.65363	4.00820	18.82975
С	-0.61105	6.67514	17.78958
С	0.68445	6.67250	18.28363
Η	3.58829	6.84301	19.37231
Η	4.92740	6.83943	18.17369
Η	4.80185	7.94078	12.32827
Η	-1.38896	7.10637	18.40433
Ν	-1.07082	6.45793	16.38033
С	-0.44519	7.45265	15.42740
Η	0.62979	7.28103	15.43251
Η	-0.85301	7.30639	14.42223
Η	-0.67186	8.45623	15.79030
С	-0.78164	5.06888	15.87275
Η	0.29667	4.95853	15.84012
Н	-1.22001	4.35196	16.56929
Η	-1.21174	4.95072	14.87379
С	-2.56578	6.65471	16.35152
Η	-2.92292	6.49429	15.33199
Η	-3.02302	5.93503	17.03268
Η	-2.79188	7.67352	16.67235

(E)-Ylide^{Si}

$E(B3LYP-d3/6-31G^*(CH_2Cl_2)) = -884.033835$				
$E(B3LYP-d3/6-311+G^{**}(CH_2Cl_2)) = -884.282209$				
G _{tot} (B	3LYP-d3/6-310	$G^*(CH_2Cl_2)) = -8$	83.695300	
С	2.00779	8.24398	14.44598	
Н	1.15368	8.21149	13.77245	
0	-0.24058	5.90651	17.69680	
Ν	2.04936	5.81307	18.09589	
С	3.06408	9.12294	14.19204	
С	2.03621	7.40440	15.56257	
Н	1.20408	6.73627	15.76352	
С	3.12611	7.43633	16.44126	
С	3.26082	6.48244	17.61811	
Н	3.75595	7.02761	18.43455	
С	4.17575	8.33200	16.18888	
Н	5.02444	8.37117	16.87186	
С	4.15049	9.16708	15.07027	
Н	4.97617	9.85147	14.88533	
С	2.16790	4.35342	17.87396	
0	3.59368	4.15734	17.93009	

С	4.17183	5.27039	17.26040
С	1.63973	3.86791	16.51441
Н	1.87191	2.80393	16.38629
Η	2.09686	4.42646	15.69180
Η	0.56239	4.02816	16.47012
С	1.55368	3.56778	19.02588
Н	2.00447	3.88574	19.97098
Н	1.72930	2.49512	18.88810
Н	0.47665	3.75107	19.05703
С	0.59717	7.56206	19.07324
С	0.76348	6.42561	18.28112
Н	5.19871	5.39561	17.61596
Н	4.19798	5.11680	16.17298
Н	3.03939	9.77265	13.31972
Н	-0.38134	8.02096	19.06624
Ν	1.47926	8.16807	20.11931
С	2.38507	9.24684	19.55858
Η	3.03250	8.81079	18.80395
Η	1.75058	10.00233	19.09247
Η	2.98202	9.69031	20.36244
С	2.28991	7.14082	20.87289
Н	2.88215	6.56201	20.17116
Н	2.93011	7.65244	21.59643
Η	1.59080	6.47382	21.37952
С	0.57878	8.83944	21.13306
Н	1.19473	9.29258	21.91455
Н	-0.00608	9.60919	20.62471
Н	-0.08626	8.08343	21.55343

7. X-Ray Crystallography:

Single-crystal structure analyses were carried out on a Bruker Smart X2S diffractometer operating with Mo-K_a radiation (λ = 0.71073 Å). Further crystallographic and refinement data can be found in Table 1. The structures were solved by direct methods (SHELXS-97)⁶ and refined by full-matrix least squares on F² (SHELXL-97).⁷ The H atoms were calculated geometrically, and a riding model was applied in the refinement process. The Flack parameter for the crystal structure of **17a** is 0.7(13) and hence not suitable for the determination of the absolute configuration. Therefore, the configurations of the three stereogenic carbon atoms were deduced from the known *R*-configuration of the absolute configuration of **19f** by refining the Flack parameter [0.002(13)]. The determined configuration is in agreement with the absolute configuration of stereogenic center of the starting material **6**C. The oxygen atoms of the oxazolidine rings of both compounds were found to be disordered over two positions

⁶ (a) G. M. Sheldrick, *SHELXS-97*, *Program for the Solution of Crystal Structures*, Göttingen, Germany, 1997. See also: G. M. Sheldrick, *Acta Crystallographica*, 1990, **A46**, 467-473.

⁷ (a) G. M. Sheldrick, *SHELXL-97, Program for crystal structure refinement*, Göttingen, Germany, 1997. See also: G. M. Sheldrick, *Acta Crystallographica*, 2008, **A64**, 112-122.

(refined occupancy 55:45 for **17a** and 65:35 for **19f**). CCDC 1023711 contains the supplementary crystallographic data for compound **17a**. CCDC 1030561 contains the supplementary crystallographic data for compound **19f**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre at <u>www.ccdc.cam.ac.uk</u>.

Crystal Data	17a	19f
Empirical formula	$C_{20}H_{21}NO_{3}$	$C_{25}H_{29}BrN_2O_4$
Formula weight	323.38	501.41
Crystal size (mm)	$0.87 \times 0.48 \times 0.42$	$0.67 \times 0.41 \times 0.30$
Crystal system	orthorhombic	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$
<i>a</i> (Å)	7.4058(6)	7.880(2)
<i>b</i> (Å)	12.3833(12)	12.465(3)
<i>c</i> (Å)	18.9412(18)	25.404(4)
$V(Å^3)$	1737.1(3)	2495.2(9)
$D_{\text{calcd}} (\text{g cm}^{-1})$	1.237	1.335
Z	4	4
$\mu (\mathrm{mm}^{-1})$	0.08	1.68
<i>T</i> (K)	233	300
θ range (°)	2.7 - 25.1	2.3 - 23.3
No. of reflections measured	19092	17475
No. of independent reflections	3073	3589
Parameters refined/restraints	230/0	304/0
$R_{ m int}$	0.053	0.079
Absorption correction	multi scan	multi scan
T_{min}, T_{max}	0.93, 0.97	0.44, 0.63
Largest diff. peak and hole (e Å ⁻³)	0.15 / -0.16	0.20 / -0.30
Flack parameter	0.7(13)	0.002(13)
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.035$	$R_1 = 0.047$
	$wR_2 = 0.098$	$wR_2 = 0.108$
CCDC no.	1023711	1030561

Table 1: Crystal Data and Data Collection and Structure Refinement Details forCompounds 17a and 19f.

8. Copies of selected NMR spectra:

