Phosphate binding by a novel Zn(II) complex featuring a *trans*-1,2diaminocyclohexane ligand. Effective anion recognition in water

Oscar Francesconi,^a Matteo Gentili,^a Francesco Bartoli,^a Andrea Bencini,^{*a} Luca Conti,^a Claudia Giorgi,^a and Stefano Roelens^{*b}

 ^a Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Polo Scientifico e Tecnologico, I-50019 Sesto Fiorentino, Firenze, Italy. E-mail: andrea.bencini@unifi.it
^b CNR, Istituto di Metodologie Chimiche (IMC), Università di Firenze, Polo Scientifico e Tecnologico, I-50019 Sesto Fiorentino, Firenze, Italy. E-mail: stefano.roelens@unifi.it

Supporting Information

Table of contents

General	S2
Potentiometric measurements	S2
Materials	S3
Abbreviations	S3
Synthesis	S 4
Copies of NMR spectra	S11
Tables and figures	S18

General.

ESI-MS mass spectra were recorded on a LCQ-Fleet Ion Trap equipped with a standard Ionspray interface from Thermo Scientific. NMR spectra were recorded on Varian Gemini 200, Gemini 300, Mercury Plus 400 (all equipped with a direct detection probe), Inova 400, Bruker Avance 400 and 500 (all equipped with an indirect detection probe) instruments. For D₂O solutions, the spectra were recorded at different pH at 308 K. pD was adjusted by the addition of small amounts of 0.01 M NaOD and DCI. The pH was calculated by the measured pD values by using the following formula: $pH = pD-0.40^{-1}$ Chemical shifts are reported in part per million (δ) relative to TMS, using the residual solvent line as secondary internal reference (7.26 ppm for spectra run in CDCl₃, 1.96 ppm for spectra run in CD₃CN, 4.65 for spectra run in D₂O, 3.34 ppm for spectra run in CD₃OD and 2.54 ppm for spectra run in DMSO-d6). ¹³C NMR spectra were obtained at 50, 75, 100 and 125 MHz. Chemical shifts are reported in δ relative to TMS, using the central solvent line as secondary internal reference at 77.0 ppm for spectra run in CDCl₃, 49.86 ppm for spectra run in CD₃OD and 40.45 ppm for spectra run in DMSOd₆. Elemental analyses were performed with a Perkin-Elmer series II CHNS/O 2400 Elementary Analyzer. $[\alpha]_D$ values were measured using a JASCO DIP-370 instrument. Melting points were measured with a Melting Point Büchi 510.

Potentiometric measurements.

Equilibrium constants for protonation and complexation reactions were determined by means of potentiometric measurements (pH = -log [H⁺]), carried out in 0.1 M NMe₄Cl at 308 ± 0.1 K, in the pH range 2.5-10.5, by using the equipment that has been already described.² The reference electrode was an Ag/AgCl electrode in saturated KCl solution. The glass electrode was calibrated as a hydrogen concentration probe by titrating known amounts of HCl with CO₂-free NaOH solutions and determining the equivalent point by the Gran's method.³ This allows one to determine the standard potential E^o, and the ionic product of water (pK_w = 13.40 ± 0.01). 1×10^{-3} M ligand concentrations was generally employed in the potentiometric measurements. In the study on metal complexation, the metal to ligand molar ratio was varied from 0.5:1 to 3:1, while in the measurements with anions, the anion to ligand molar ratio was varied from 1:1 to 4:1. The sodium salts Na₂HPO₄, Na₄P₂O₇·10H₂O and Na₅P₃O₁₀·6H₂O, Na₃HATP·3H₂O and Na₂HADP·3H₂O were used in the titrations to evaluate the anion binding ability of the ligand or of its Zn(II)complex. The computer program HYPERQUAD⁴ was used to calculate the stability

constants of the complexes from e.m.f. data. The analysis of the binding ability of the mononuclear Zn(II) complex towards phosphate anions was carried out by performing potentiometric titrations on solutions containing on solution containing Zn^{2+} and the ligand in 1 x 10^{-3} M concentrations and varying the anion to Zn(II) molar ratio from 1 to 4:1. At least three measurements (about 100 experimental points each one) were performed for each system. The titration curves for each system were treated either as a single set or as separated entities without significant variations in the values of the protonation or complexation constants.

Materials.

Reagents were purchased from commercial suppliers and used without purification. 1azidomethyl-3,5-diformyl-2,4,6-triethylbenzene (2),⁵ pyrrole-2,5-dicarbaldehyde, (1*R*,2*R*)-*N-tert*-butoxycarbonyl-1,2-*trans*-diaminocyclohexane, were prepared according to known methods. Unless otherwise stated, all air and moisture sensitive reactions were performed under inert atmosphere.

Abbreviations.

BOC	<i>tert</i> -butoxycarbonyl
DAC	trans-1,2-diaminocyclohexane
DMF	N,N-dimethylformamide
EA	Ethyl acetate
Et	Ethyl
Ме	Methyl
m.p.	Melting point
rt	room temperature
TFA	Trifluoroacetic acid
THF	Tetrahydrofurane
Ts	Toluenesulfonic
PE	Petroleum ether

1,3-bis-(5,5-dimethyl-1,3-dioxane)-5-azidomethyl-2,4,6-triethylbenzene (3).

To a solution of **2** (16.3 g; 59.6 mmol) in toluene (200 mL), neopentylglycol (33.4 g; 320 mmol) and a catalitic amount of p-toluenesulfonic acid were added and the mixture was refluxed overnight while removing water from the reaction with a Dean-Stark apparatus. The solution was cooled to rt, diluted with toluene, washed three times with a saturated solution of NaHCO₃, twice with water then dried over anhydrous Na₂SO₄ and concentrated to give crude **3** that was purified by filtration over a pad of silica (EA 5% in PE) to afford pure **3** (23.2 g, 87%) as a colourless glass. ¹H-NMR (200 MHz, CDCl₃): δ = 5.77 (s, 2H; CH acetal), 4.49 (s, 2H; CH₂N₃), 3.83-3.78 (m, ²J(H,H)=11.2 Hz, 4H; part A of an AB system, CH₂ acetal), 3.64-3.59 (m, ²J(H,H)=11.2 Hz, 4H; part B of an AB system, CH₂ acetal), 3.13-3.20 (m, 2H; CH₂ ethyl), 3.15-3.03 (m, 4H; CH₂ ethyl), 1.35 (s, 3H; CH₃ acetal), 1.28-1.17 (m, 9H; CH₃ ethyl), 0.81 (s, 3H; CH₃ acetal); ¹³C-NMR (50 MHz, CDCl₃): δ = 144.50, 143.57, 132.99, 130.57, 102.34, 78.85, 47.70, 30.29, 24.07, 22.96, 22.85, 22.32, 16.33, 16.10.

1,3-bis-(5,5-dimethyl-1,3-dioxane)-5-aminomethyl-2,4,6-triethylbenzene (4).

To a suspension of LiAlH₄ (4.23 g; 111.5 mmol) in freshly distilled dry THF (150 mL) at 0 °C, a solution of **3** (23.2 g; 52.1 mmol) in freshly distilled dry THF was added dropwise, followed by the evolution of gas. The suspension was vigorously stirred for 2.5 h, then cooled to 0 °C and quenched by the addition of H₂O (4.23 mL) then NaOH 15% w/w solution (4.23 mL) and finally H₂O (12.7 mL). The resulting precipitate was filtered and washed with CH₂Cl₂ three times, then the liquors were evaporated under reduced pressure to give crude **4** that was purified by flash column chromatography on silica gel (MeOH 20% in CH₂Cl₂) to afford pure **4** (20.2 g, 92%) as a white solid. m.p. = 64-65 °C; ¹H-NMR (200 MHz, CDCl₃): δ = 5.76 (s, 2H; CH acetal), 3.88 (s, 2H; CH₂NH₂), 3.81-3.75 (m, ²J(H,H)=11.4 Hz, 4H; part A of an AB system, CH₂ acetal), 3.63-3.57 (m, ²J(H,H)=11.4 Hz, 4H; part A of an AB system, CH₂ acetal), 1.26-1.16 (m, 9H; CH₃ ethyl), 0.78 (s, 3H; CH₃ acetal); ¹³C-NMR (50 MHz, CDCl₃): δ = 143.07, 141.81, 138.29, 132.78, 102.52, 78.84, 38.91, 30.28, 24.07, 22.82, 22.72, 22.31, 16.68, 16.48.

Compound (5).

To a solution of **4** (20.1 g; 47.9 mmol) in DMF (70 mL), KHCO₃ (19.2 g; 192 mmol) was added and the suspension was cooled to 0 °C followed by the addition of ethyl bromoacetate (32.0 g; 192 mmol). The mixture was stirred for 5 minutes, then it was allowed to warm to rt and stirred vigorously overnight. The suspension was poured on a saturated NaHCO₃ solution and extracted with CH₂Cl₂ three times. The combined organic layers were washed with water twice, dried over anhydrous Na₂SO₄ and concentrated to give crude **5** that was purified by flash column chromatography on silica gel (EA 20% in PE) to afford pure **5** (23.6 g, 83%) as a transparent oil. ¹H-NMR (200 MHz, CDCl₃): δ = 5.79 (s, 2H; CH acetal), 4.17-4.06 (m, 4H; CH₂ ethyl ester), 3.98 (s, 2H; CH₂N), 3.82-3.76 (m, ²J(H,H)=11.4 Hz, 4H; part A of an AB system, CH₂ acetal), 3.63-3.57 (m, ²J(H,H)=11.4 Hz, 4H; part A of an AB system, CH₂ acetal), 3.63-3.57 (m, ²J(H,H)=11.4 Hz, 4H; part B of an AB system, CH₂ acetal), 3.51 (s, 4H; CH₂COOEt), 3.35-3.24 (m, 2H; CH₂ ethyl), 3.19-3.08 (m, 4H; CH₂ ethyl), 1.34 (s, 3H; CH₃ acetal) 1.28-1.11 (m, 15H; CH₃ ethyl + CH₃ ethyl ester), 0.80 (s, 3H; CH₃ acetal); ¹³C-NMR (50 MHz, CDCl₃): δ = 171.12, 145.21, 142.44, 132.39, 132.03, 102.20, 78.51, 59.96, 52.60, 50.29, 30.05, 23.82, 22.44, 22.09, 16.04, 13.91.

Compound (6).

To a solution of 5 (12.5 g; 21.1 mmol) in THF (600 mL) at 0 °C, HCl 1 M (390 mL) was added and the solution was then allowed to warm to rt overnight. The mixture was cooled to 0 °C and neutralized by the addition of solid NaHCO₃. THF was evaporated under reduced pressure while the aqueous residue was extracted with CH₂Cl₂ three times. The combined organic layers were washed twice with water, dried over anhydrous Na₂SO₄ and concentrated to give the intermediate dialdehyde that was used for the next reaction without any further purification. A solution of this dialdehyde (8.04 g; 19.2 mmol) and (1R,2R)-N-tert-butoxycarbonyl-1,2-trans-diaminocyclohexane (16.5 g, 76.8 mmol) in CHCl₃ (200 mL) was refluxed overnight, then cooled to rt. A suspension of NaBH₄ (2.91 mg, 76.8 mmol) in MeOH (200 mL) was added, the mixture was stirred for 1 h at rt, then poured on water and extracted with CHCl₃ three times. The combined organic layers were washed with water twice, dried over anhydrous Na₂SO₄ and concentrated to give crude **6**, that was purified by flash column chromatography on silica gel (starting EA 50% in CH₂Cl₂ then MeOH 10% in CH_2Cl_2) to obtain pure **6** (10.8 g, 62% over two steps) as a white solid. m.p. = dec.; ¹H-NMR (200 MHz, CDCl₃): *δ*= 4.73 (bs, 2H; N*H*BOC), 4.16-4.06 (m, 4H; C*H*₂ ethyl ester), 3.95 (s, 2H; CH₂N), 3.85-3.79 (m, 2H; CH₂NH), 3.60-3.55 (m, 2H; CH₂NH), 3.52 (s, 4H; CH₂COOEt), 3.33-3.13 (m, 2H; CHNHBOC), 2.96-2.71 (m, 6H; CH₂ ethyl), 2.51-2.31 (m, 2H; CHNH), 2.27-2.06 (m, 4H), 1.81-1.59 (m, 6H), 1.41 (s, 18H; CH₃ tBu), 1.28-1.09 (m, 23H); 13 C-NMR (50 MHz, CDCl₃): δ = 171.46, 155.92, 143.81, 142.93, 134.21, 131.26, 79.02, 61.05, 60.25, 54.27, 53.19, 51.19, 44.33, 32.51, 31.20, 28.39, 24.55, 22.52, 22.40, 16.97, 16.60, 14.21.

Compound (7).

To a solution of **6** (4.34 g; 5.32 mmol) in CH₂Cl₂ (25 mL) at 0 °C, trifluoroacetic acid (26.6 mL; 345 mmol) was added and the solution was stirred for 5 minutes. The mixture was allowed to warm to rt and stirred for 2 hours, then it was diluted with CH₂Cl₂ and poured on a mixture of 2 M NaOH solution and ice. The organic layer was collected and the aqueous phase was extracted with CH₂Cl₂ three times. The combined organic layers were washed with water twice, dried over anhydrous Na₂SO₄ and concentrated to give crude **7**, which was purified by flash column chromatography on silica gel (MeOH 10% in CHCl₃ + 1.3% NH₃ sol. 33%) to afford pure **7** (2.60 g, 79%) as a white wax. ¹H-NMR (200 MHz, CDCl₃): δ = 4.17-4.06 (m, 4H; CH₂ ethyl ester), 3.96-3.90 (m, 4H; CH₂N + CH₂NH), 3.52-3.48 (m, 6H; CH₂NH + CH₂COOEt), 3.01-2.70 (m, 6H; CH₂ ethyl), 2.42-2.26 (m, 4H), 2.19-2.07 (m, 2H), 1.92-1.68 (m, 6H), 1.59 (bs, 6H, NH + NH₂), 1.34-0.99 (m, 23H); ¹³C-NMR (50 MHz, CDCl₃): δ = 171.58, 143.62, 142.80, 134.51, 131.20, 64.63, 60.29, 55.27, 53.20, 51.08, 44.92, 35.54, 31.29, 25.46, 25.15, 22.51, 22.26, 16.88, 16.56, 14.22.

Compound (8).

To a solution of **7** (2.48 g, 4.02 mmol) and pyrrole-2,5-dicarbaldehyde (495 mg, 4.02 mmol) in CHCl₃ (80 mL), a catalytic amount of acetic acid was added. The solution was stirred overnight at rt, then cooled to 0 °C. A suspension of NaBH₄ (1.72 g, 46.4 mmol) in

MeOH (80 mL) was added followed by a strong gas evolution. The solution was stirred for 1 h at rt, then it was poured on water/brine 1:1 and extracted with CHCl₃ three times. The combined organic layers were washed with water twice, dried over anhydrous Na₂SO₄ and concentrated to give crude **8**, which was purified by flash column chromatography on silica gel (MeOH 10% in CHCl₃ + 1% NH₃ sol. 33%) to afford pure **8** (2.20 mg, 70%) as a white glass. ¹H-NMR (200 MHz, CDCl₃): δ = 8.97 (bs, 1H; N*H* pyrr), 5.83 (m, 2H; C*H* pyrr), 4.16-4.08 (m, 4H; C*H*₂ ethyl ester), 3.99-3.91 (m, 5H), 3.75 (s, 2H), 3.55 (s, 4H), 3.51-3.44 (m, 2H), 3.40-3.37 (m, 1H), 3.18-2.96 (m, 3H), 2.88-2.74 (m, 3H), 2.59-2.50 (m, 1H), 2.35-2.14 (m, 8H), 2.12-1.70 (m, 6H), 1.46-1.40 (m, 2H), 1.35-1.11 (m, 20H), 1.00-0.92 (m, 2H); ¹³C-NMR (50 MHz, CDCl₃): δ = 171.60 (2C), 143.94, 143.34, 142.39, 134.68, 134.25, 131.19, 130.92, 130.16, 105.32, 105.07, 63.84, 60.72, 60.34, 59.30, 58.36, 53.28, 51.25, 45.77, 45.74, 44.15, 43.83, 39.95, 39.93, 31.93, 31.81, 31.44, 30.72, 25.45, 25.41, 25.30, 25.24, 25.21, 24.87, 22.34, 22.25, 17.00, 16.42, 16.19, 14.21.

Receptor (1).

To a solution of **8** (514 mg, 0.727 mmol) in EtOH (5 mL), a solution of NaOH (495 mg; 12.4 mmol) in H₂O (5 mL) was added and the obtained suspension rapidly became a solution, which was stirred overnight at rt. The solvent was evaporated under reduced pressure and the residue was suspended in CH₂Cl₂, dried over anhydrous Na₂SO₄ and filtered on paper to afford pure **1** (411 mg, 81%) as a white solid. **1**: m.p. = >300 °C; $[\alpha]_D^{31}$ = -58.6 (c = 0.185, H₂O); ¹H-NMR (400 MHz, D₂O): δ = 5.81-5.78 (m, 2H, CH pyrr), 3.92-3.89 (m, 1H), 3.73-3.66 (m, 6H), 3.54-3.49 (m, 2H), 3.39-3.22 (m, 5H), 3.18-3.01 (m, 6H), 2.70-2.65 (m, 2H), 2.60-2.38 (m, 4H), 2.22-1.97 (m, 6H), 1.65 (bs, 4H), 1.43-1.29 (m, 1H), 1.24-1.10 (m, 4H), 1.06-0.93 (m, 12H); ¹³C-NMR (100 MHz, D₂O): δ = 179.87 (2C), 144.97, 144.51, 143.20, 133.69, 132.82, 131.97, 130.93, 130.63, 106.12, 105.59, 62.40, 60.26, 57.98 (2C), 57.67, 57.13, 50.70, 44.59, 44.57, 42.82, 40.81, 39.33, 39.30, 30.41, 30.29,

29.79, 29.46, 24.69, 24.61, 24.40, 22.70, 22.28, 15.75 (2C), 15.71; ESI-MS *m/z* (%): 651.39 (100) $[M+H]^+$; HR-MS *m/z* (%): calcd. $[M+H]^+$ 651.4592, found $[M+H]^+$ 651.4589 (100); elemental analysis calcd. (%) for C₃₇H₅₆N₆Na₂O₄: C, 63.95; H, 8.12; N, 12.09; Na, 6.62; O, 9.21; found: C, 63.87; H, 8.18; N, 11.89; Na, 6.50.

References.

- 1 S. Bartoli, C. Bazzicalupi, S. Biagini, L. Borsari, A. Bencini, E. Faggi, C. Giorgi, C. Sangregorio, B. Valtancoli *Dalton Trans.* 2009, 1223.
- 2 a) G. Gran, *Analyst* 1952, 77, 661; b) F. J. Rossotti, H. Rossotti. *J. Chem. Educ.* 1965, 42, 375
- 3 P. Gans, A. Sabatini, A. Vacca, J. Chem. Soc., Dalton Trans. 1985, 1195.
- 4 K. Covington, M. Paabo, R. A. Robinson, R. G. Bates Anal. Chem. 1968, 40, 700
- 5 O. Francesconi, C. Nativi, G. Gabrielli, M. Gentili, M. Palchetti, B. Bonora, S. Roelens *Chem. Eur J.* 2013, **19**, 11742-11752.

Copies of NMR spectra of the described compounds.

Table S1. Protonation and Zn(II) binding constants of ligand MIDA (NMe₄Cl 0.1 M, 308 K; L^{2-} indicates the dianionic form of MIDA).

Equilibrium	LogK
$H^{+} + 1^{2-} = H1^{-}$	8 59 (5)
$H^+ + HL^- = H_2L$	2.40 (5)
	()
$Zn^{2+} + L^{2-} = [ZnL]$	8.64(3)
$[ZnL]+OH^{-} = [ZnL(OH)]^{-}$	5.43(2)

Table S2. Addition constants of TP to the Zn(II) complex with MIDA (NMe₄Cl 0.1 M, 308 K; [ZnL] indicates the Zn²⁺ complex with the dianionic form of MIDA, L²⁻).

$[ZnL] + P_3O_{10}^{5-} = [ZnLP_3O_{10}]^{5-} $	1.45 ((2)
---	--------	-----

$$[ZnL] + HP_{3}O_{10}^{4-} = [ZnLHP_{3}O_{10}]^{4-}$$
 4.35(3)

$$[ZnL] + H_2 P_3 O_{10}^{3-} = [ZnLH_2 P_3 O_{10}]^{3-}$$
 4.07 (4)

Figure S1. Distribution diagram of the species formed by MIDA as a function of pH $(NMe_4CI 0.1 \text{ M}, 308 \text{ K}: \text{L}^{2-} \text{ indicates the dianionic form of MIDA}).$

Figure S2. Distribution diagram of the complexes formed by MIDA as a function of pH $(NMe_4CI \ 0.1 \ M, \ 308 \ K; \ H_2L \ and \ HL^- \ indicate the neutral and the monoanionic forms of MIDA, respectively, while [ZnL] indicates the Zn²⁺ complex with the dianionic form of MIDA, L²⁻).$

Fig. S3. Plot of the chemical shifts of the signal MP in the presence of increasing amount of the Zn(II) complex with receptor **1** at pH 7 and 308 K.

Fig. S4. Plot of the chemical shifts of the signal PP in the presence of increasing amount of the Zn(II) complex with receptor **1** at pH 7 and 308 K.

Fig. S5. Plot of the chemical shifts of the signals of the terminal (P_{β}) and central (P_{α}) phosphate groups of ADP in the presence of increasing amount of the Zn(II) complex with receptor **1** at pH 7 and 308 K.

Fig. S6. Plot of the chemical shifts of the signals of the P_{α} , and P_{β} and P_{γ} phosphate groups of ATP in the presence of increasing amount of the Zn(II) complex with receptor **1** at pH 7 and 308 K.

Fig. S7. Distribution diagrams of the complexes formed by MP with the Zn(II) complexes with receptor **1** (L^{2-} in the figure, [**1**] = [Zn²⁺] = [MP] 1⁻¹10⁻³ M, NMe₄Cl 0.1 M, 308 K).

Fig. S8. Distribution diagrams of the complexes formed by ADP with the Zn(II) complexes with receptor **1** (L^{2-} in the figure, [**1**] = [Zn²⁺] = [ADP] = 1.10⁻³ M, NMe₄Cl 0.1 M, 308 K).

Fig. S9. Distribution diagrams of the complexes formed by TP with the Zn(II) complex with MIDA (indicated as H₂L in the figure, [MIDA] = $[Zn^{2+}] = [TP] = 1.10^{-3}$ M, NMe₄Cl 0.1 M, 308 K).

Fig. S10. pH dependence of the ³¹P NMR signal of MP in the presence (filled symbols) and in the absence (empty symbols) of the Zn(II) complex with receptor **1** ([**1**] = $[Zn^{2+}] = [MP] = 5 \times 10^{-3} M$, 308 K).

Fig. S11. pH dependence of the ¹H NMR signals of the H8 (top) and H2 (middle) adenine protons and of the anomeric H1' (bottom) proton of the sugar moiety of ADP in the presence (filled symbols) and in the absence (empty symbols) of the Zn(II) complex of **1**. Conditions: $[1] = [Zn^{2+}] = [ATP] = 5 \times 10^{-3} M$, 308 K.