Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

Cyclopeptides containing the DEKS motif as conformationally restricted collagen telopeptide analogues: synthesis and conformational analysis

Robert Wodtke,^{a,d} Gloria Ruiz-Gómez,^b Manuela Kuchar,^{a,d} M. Teresa Pisabarro,^b Pavlina Novotná,^c Marie Urbanová,^c Jörg Steinbach,^{a,d} Jens Pietzsch^{a,d} and Reik Löser^{a,d}

^aInstitute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany

^bStructural Bioinformatics, BIOTEC, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany

^cDepartment of Physics and Measurements, Institute of Chemical Technology, 166 28 Prague, Czech Republic

^dDepartment of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany

Table of Contents

Figure S1	
Figure S2	5
Table S1	6
Table S2.	8
Table S3.	
Figure S3	12
Figure S4	
Figure S5	14
Figure S6	
Figure S7	
NMR Spectra of Products	

Figure S1.

A.	δ_{NH} -	and	$\Delta \delta/T$ -values	and	${}^{3}J_{\rm NH,C\alpha H}$ -coupling	constants	for	the	amide	protons	of	the
cyc	lohexa	pepti	des 3, 3a, 8, 9	and th	e linear hexapeptic	le 10 in DM	ISO (or wa	ter (ma	rked with	*).	

compoup	$\delta_{\rm NH}~({\rm ppm})^{\rm a}$ / $\Delta\delta/T~({\rm ppb/K})$ / ${}^{3}J_{\rm NH,C\alpha H}~({\rm Hz})^{\rm a}$								
d	Lys (FBz) C _a NH	Lys (FBz) C _e NH	Asp	Glu	Xaa	Ser	Lys		
3 (Xaa=Lys)	8.51/-4.6/8.4	8.46/-4.2/5.6	7.98/-1.4/9.3	8.21/-3.7/3.0	7.87/-2.2/8.6	6.83/3.6/6.0	-		
3 * (Xaa=Lys)	8.72/2.0/7.4	8.46/3.0/5.8	8.24/6.6/9.1	8.41/4.8/4.0	8.31/4.4/7.5	7.46/10.0/6.5	-		
3a* (Xaa=Lys)	-	-	8.27/6.9/9.1	8.44/4.0/4.0	8.31/4.0/7.4	7.45/9.0/6.7	8.77/2.4/7.5		
8 (Xaa=Hnl)	8.52/-4.6/8.2	8.46/-4.0/5.4	7.97/-1.4/9.4	8.17/-3.6/2.6	7.82/-2.6/8.4	6.79/3.4/6.1	-		
9 (Xaa=Aly)	8.51/-5.0/8.2	8.46/-5.0/5.4	7.97/-1.6/9.3	8.19/-4.0/2.5	7.86/-2.6/8.8	6.83/4.0/6.2	-		
10 (Xaa=Lys)	8.09/-4.3/6.9	8.46/-4.7/5.5	8.29/-5.2/7.7	7.65/-2.0/8.1	7.85/-4.7/7.8	8.20/-6.0/6.8	-		

^a at 298 K.

B. Temperature dependence of chemical shifts for the amide protons of 3, 3a, 8, 9 and 10 in DMSO or water (marked with *).

Figure S2.

Left: summary of $\Delta\delta/T$ amide NH temperature coefficients (> -2 ppb/K shown by \oplus), ${}^{3}J_{\text{NHCH}\alpha}$ coupling constants (> 8 Hz represented by \uparrow and < 6 Hz shown by \downarrow) and ROEs correlations summary in DMSO at 298 K; right: 20-lowest energy structures of 8 (top) and 9 (bottom). Grey bars indicate protons not stereospecifically assigned. For clarity only the side chain of pro is shown.

Table S1.

Distance restraints used in the structure calculation of compound 3

A. ROE derived distance restraints used for calculating the solution structure of compound 3 cyclo(Ser-D-Pro-Lys(FBz)-Asp-Glu-Lys) in DMSO- d_6 at 298 K.

Atom A	Atom B	Upper distance restraint (Å) and comment
Ser1 Ha	Ser1 HN	\leq 5.0 Å, weak
Ser1 Ha	Ser1 H _β 1	\leq 3.5 Å, medium
Ser1 Ha	Ser1 H _{β2}	\leq 5.0 Å, weak
Ser1 H _β 1	Ser1 HN	\leq 6.0 Å, very weak
Ser1 H _β 2	Ser1 HN	\leq 5.0 Å, weak
Ser1 Ha	D-Pro2 HD1	\leq 2.7 Å, strong
Ser1 Ha	D-Pro2 HD2	\leq 3.5 Å, medium
Ser1 Hβ1	D-Pro2 HD1	\leq 6.0 Å, very weak
Ser1 HN	Asp4 HN	\leq 6.0 Å, very weak
D-Pro2 Ha	Lys(FBz)3 HN	\leq 3.5 Å, medium
D-Pro2 Ha	Lys(FBz)3 H ^{ortho} *	\leq 6.0 Å, very weak (+ 0.5 Å correction)
Lys(FBz)3 Ha	Lys(FBz)3 HN	\leq 5.0 Å, weak
Lys(FBz)3 HE*	Lys(FBz)3 HZ	\leq 3.5 Å, medium (+ 1 Å correction)
Lys(FBz)3 HZ	Lys(FBz)3 H ^{ortho} *	\leq 2.7 Å, strong (+ 1 Å correction)
Lys(FBz)3 Ha	Asp4 HN	\leq 5.0 Å, weak
Lys(FBz)3 HN	Asp4 HN	\leq 3.5 Å, medium
Asp4 Ha	Asp4 HN	\leq 5.0 Å, weak
Asp4 Hβ2	Asp4 HN	\leq 5.0 Å, weak
Asp4 Ha	Asp4 Hβ1	\leq 5.0 Å, weak
Asp4 Ha	Asp4 Hβ2	\leq 5.0 Å, weak
Asp4 Ha	Glu5 HN	\leq 3.5 Å, medium
Asp4 Hβ1	Glu5 HN	\leq 3.5 Å, medium
Glu5 Ha	Glu5 HN	\leq 3.5 Å, medium
Glu5 Ha	Glu5 Hβ1	\leq 3.5 Å, medium
Glu5 Ha	Glu5 H _{β2}	\leq 3.5 Å, medium
Glu5 Hα	Glu5 HG*	\leq 3.5 Å, medium (+ 1 Å correction)

Glu5 Hβ1	Glu5 HN	\leq 5.0 Å, weak
Glu5 Hβ2	Glu5 HN	\leq 6.0 Å, very weak
Glu5 HG*	Glu5 HN	\leq 5.0 Å, weak (+ 1 Å correction)
Glu5 Hα	Lys6 HN	\leq 5.0 Å, weak
Glu5 HN	Lys6 HN	\leq 3.5 Å, medium
Glu5 Hβ1	Lys6 HN	\leq 6.0 Å, very weak
Lys6 Ha	Lys6 HN	\leq 5.0 Å, weak
Lys6 Hβ1	Lys6 HN	\leq 6.0 Å, very weak
Lys6 Hβ2	Lys6 HN	\leq 6.0 Å, very weak
Lys6 Ha	Ser1 HN	\leq 6.0 Å, very weak
Lys6 HN	Ser1 HN	\leq 2.7 Å, strong

*Represents protons not stereospecifically assigned. Their distance restraints have been adjusted with standard pseudoatom corrections. (K. Wüthrich, M. Billeter and W. Braun, *J. Mol. Biol.*, 1983, **169**, 949-961.)

B. ϕ angle restrains (Å) used for calculating the solution structure of compound **3** cyclo(Ser-D-Pro-Lys(FBz)-Asp-Glu-Lys) in DMSO-d₆ at 298 K.

Residue	$^{3}J_{\mathrm{NHCHa}}\left(\mathrm{Hz}\right)$	ø restraints
Ser	6.0	
D-Pro	-	
Lys(FBz)	8.4	$-120^{\circ} \pm 30$
Asp	9.3	$-120^{\circ} \pm 30$
Glu	3.0	$-65^{\circ} \pm 30$
Lys	8.6	$-120^{\circ} \pm 30$

C. H-bonds distance restrains (Å) used for calculating the solution structure of compound 3 cyclo(Ser-D-Pro-Lys(FBz)-Asp-Glu-Lys) in DMSO- d_6 at 298 K.

Carbonyl group	Amide NH group	Distance	Lower bound	Upper bound
Ser1-CO	Asp4-NH	1.88	0.30	0.32
Ser1-CO	Asp4-N	2.88	0.30	0.32
Asp4-CO	Ser1-NH	1.88	0.30	0.32
Asp4-CO	Ser1-N	2.88	0.30	0.32

Table S2.

Distance restraints used in the structure calculation of compound 8

A. ROE derived distance restraints used for calculating the solution structure of compound 8 in cyclo(Ser-D-Pro-Lys(FBz)-Asp-Glu-Hnl) in DMSO-d₆ at 298 K.

Atom A	Atom B	Upper distance restraint (Å) and comment
Ser1 Ha	Ser1 HN	\leq 3.5 Å, medium
Ser1 Ha	Ser1 Hβ1	\leq 3.5 Å, medium
Ser1 Ha	Ser1 Hβ2	\leq 5.0 Å, weak
Ser1 H _β 1	Ser1 HN	≤ 6.0 Å, very weak
Ser1 Hβ2	Ser1 HN	\leq 5.0 Å, weak
Ser1 Ha	D-Pro2 HD1	\leq 2.7 Å, strong
Ser1 Ha	D-Pro2 HD2	\leq 2.7 Å, strong
D-Pro2 Ha	D-Pro2 Hβ1	\leq 5.0 Å, weak
D-Pro2 Ha	D-Pro2 Hβ2	\leq 3.5 Å, medium
D-Pro2 Ha	Lys(FBz)3 HN	\leq 3.5 Å, medium
Lys(FBz)3 Ha	Lys(FBz)3 HN	\leq 5.0 Å, weak
Lys(FBz)3 Ha	Lys(FBz)3 Hβ1	\leq 3.5 Å, medium
Lys(FBz)3 HE*	Lys(FBz)3 HZ	\leq 3.5 Å, medium (+ 1 Å correction)
Lys(FBz)3 HZ	Lys(FBz)3 H ^{ortho} *	\leq 2.7 Å, strong (+ 1 Å correction)
Lys(FBz)3 Ha	Asp4 HN	\leq 5.0 Å, weak
Lys(FBz)3 HN	Asp4 HN	\leq 2.7 Å, strong
Asp4 Ha	Asp4 HN	\leq 3.5 Å, medium
Asp4 Hβ2	Asp4 HN	\leq 5.0 Å, weak
Asp4 Hα	Asp4 Hβ1	\leq 3.5 Å, medium
Asp4 Hα	Asp4 Hβ2	\leq 5.0 Å, weak
Asp4 Hα	Glu5 HN	\leq 2.7 Å, strong
Asp4 Hβ1	Glu5 HN	\leq 3.5 Å, medium
Glu5 Ha	Glu5 HN	\leq 3.5 Å, medium
Glu5 Ha	Glu5 Hβ*	\leq 3.5 Å, medium (+ 1 Å correction)
Glu5 Ha	Glu5 HG*	\leq 3.5 Å, medium (+ 1 Å correction)
Glu5 Hβ*	Glu5 HN	\leq 6.0 Å, very weak (no correction)

Glu5 HG*	Glu5 HN	\leq 5.0 Å, weak (+ 1 Å correction)
Glu5 Hα	Hnl6 HN	\leq 5.0 Å, weak
Glu5 HN	Hnl6 HN	\leq 3.5 Å, medium
Hnl6 Ha	Hnl6 HN	\leq 3.5 Å, medium
Hnl6 Ha	Hnl6 Hβ1	\leq 5.0 Å, weak
Hnl6 Ha	Hnl6 Hβ2	\leq 5.0 Å, weak
Hnl6 Ha	Ser1 HN	\leq 6.0 Å, very weak
Hnl6 HN	Ser1 HN	\leq 3.5 Å, medium

*Represents protons not stereospecifically assigned. Their distance restraints have been adjusted with standard pseudoatom corrections. (K. Wüthrich, M. Billeter and W. Braun, *J. Mol. Biol.*, 1983, **169**, 949-961.)

B. ϕ angle restrains (Å) used for calculating the solution structure of compound **8** in cyclo(Ser- D-Pro-Lys(FBz)-Asp-Glu-Hnl) in DMSO-d₆ at 298 K.

Residue	$^{3}J_{\rm NHCH\alpha}({\rm Hz})$	
Ser	6.1	
D-Pro	-	
Lys(FBz)	8.2	$-120^{\circ} \pm 30$
Asp	9.4	$-120^{\circ} \pm 30$
Glu	2.6	$-65^{\circ} \pm 30$
Hnl	8.4	$-120^{\circ} \pm 30$

C. H-bonds distance restrains (Å) used for calculating the solution structure of compound 8 in cyclo(Ser- D-Pro-Lys(FBz)-Asp-Glu-Hnl) in DMSO-d₆ at 298 K.

Carbonyl group	Amide NH group	Distance	Lower bound	Upper bound
Ser1-CO	Asp4-NH	1.88	0.30	0.32
Ser1-CO	Asp4-N	2.88	0.30	0.32
Asp4-CO	Ser1-NH	1.88	0.30	0.60
Asp4-CO	Ser1-N	2.88	0.30	0.48

Table S3.

Distance restraints used in the structure calculation of compound 9

A. ROE derived distance restraints used for calculating the solution structure of compound **9** in cyclo(Ser-D-Pro-Lys(FBz)-Asp-Glu-Aly) in DMSO-d₆ at 298 K.

Atom A	Atom B	Upper distance restraint (Å) and comment
Ser1 Ha	Ser1 HN	\leq 5.0 Å, weak
Ser1 Ha	Ser1 Hβ1	\leq 3.5 Å, medium
Ser1 Ha	D-Pro2 HD1	\leq 2.7 Å, strong
Ser1 Ha	D-Pro2 HD2	\leq 2.7 Å, strong
D-Pro2 Ha	D-Pro2 Hβ1	\leq 2.7 Å, strong
D-Pro2 Ha	D-Pro2 Hβ2	\leq 3.5 Å, medium
D-Pro2 Ha	Lys(FBz)3 HN	\leq 2.7 Å, strong
Lys(FBz)3 Ha	Lys(FBz)3 HN	\leq 5.0 Å, weak
Lys(FBz)3 Ha	Lys(FBz)3 Hβ*	\leq 3.5 Å, medium (+ 1 Å correction)
Lys(FBz)3 HE*	Lys(FBz)3 HZ	\leq 3.5 Å, medium (+ 1 Å correction)
Lys(FBz)3 HZ	Lys(FBz)3 H ^{ortho} *	\leq 2.7 Å, strong (+ 1 Å correction)
Lys(FBz)3 Ha	Asp4 HN	\leq 5.0 Å, weak
Lys(FBz)3 HN	Asp4 HN	\leq 3.5 Å, medium
Asp4 Ha	Asp4 HN	\leq 5.0 Å, weak
Asp4 Hβ2	Asp4 HN	\leq 5.0 Å, weak
Asp4 Hα	Asp4 Hβ1	\leq 5.0 Å, weak
Asp4 Hα	Asp4 Hβ2	\leq 5.0 Å, weak
Asp4 Hα	Glu5 HN	\leq 3.5 Å, medium
Asp4 Hβ1	Glu5 HN	\leq 5.0 Å, weak
Glu5 Ha	Glu5 HN	\leq 3.5 Å, medium
Glu5 Ha	Glu5 Hβ*	\leq 3.5 Å, medium (+ 1 Å correction)
Glu5 Hβ*	Glu5 HN	\leq 3.5 Å, medium (+ 1 Å correction)
Glu5 HG*	Glu5 HN	\leq 5.0 Å, weak (+ 1 Å correction)
Glu5 Ha	Aly6 HN	\leq 5.0 Å, weak
Glu5 HN	Aly6 HN	\leq 5.0 Å, weak
Aly6 Ha	Aly6 HN	\leq 5.0 Å, weak

Aly6 Hα	Aly6 Hβ1	\leq 5.0 Å, weak
Aly6 Hα	Ser1 HN	\leq 6.0 Å, very weak
Aly6 HN	Ser1 HN	\leq 3.5 Å, medium

*Represents protons not stereospecifically assigned. Their distance restraints have been adjusted with standard pseudoatom corrections. (K. Wüthrich, M. Billeter and W. Braun, *J. Mol. Biol.*, 1983, **169**, 949-961.)

B. ϕ angle restrains (Å) used for calculating the solution structure compound **9** in cyclo(Ser- D-Pro-Lys(FBz)-Asp-Glu-Aly) in DMSO-d₆ at 298 K.

Residue	$^{3}J_{\rm NHCH\alpha}({\rm Hz})$	ø restraints	
Ser	6.2		
D-Pro	-		
Lys(FBz)	8.2	$-120^{\circ} \pm 30$	
Asp	9.3	$-120^{\circ} \pm 30$	
Glu	2.5	$-65^{\circ} \pm 30$	
Aly	8.8	$-120^{\circ} \pm 30$	

C. H-bonds distance restrains (Å) used for calculating the solution structure of compound 9 in cyclo(Ser- D-Pro-Lys(FBz)-Asp-Glu-Aly) in DMSO-d₆ at 298 K.

Carbonyl group	Amine group	Distance	Lower bound	Upper bound
Ser1-CO	Asp4-NH	1.88	0.30	0.32
Ser1-CO	Asp4-N	2.88	0.30	0.32
Asp4-CO	Ser1-NH	1.88	0.30	0.32
Asp4-CO	Ser1-N	2.88	0.30	0.32

Figure S3.

2D ROESY spectrum for the amide region of cyclohexapeptide 3 in water. The highlighted cross peaks indicate the observed $d_{NN}(i,i+1)$ correlations.

Figure S4.

Comparison of ECD spectra of 3, 8 and 10 at varying concentrations. Similar shapes and molar ellipticities at different concentrations indicate no aggregation in solution. Compound **9** was only measured at a concentration of 0.125 mg/mL in order to reduce substance consumption.

Figure S5.

Violin plot representation of Phi (ϕ) and Psi (ψ) dihedral angles of cyclo(Ser-pro-Lys(FBz)-Asp-Glu-Xaa) involved in β -turns around pro (D-Pro) and Lys(FBz), and Glu and Xaa, extracted from four 100 ns MD simulations. Xaa = Lys (3): a) and b) in DMSO, c) and d) in water; Xaa = Aly (9): e) and f) in DMSO, g) and h) in water.

Figure S6.

Representative structures of the cyclohexapeptides 3 and 9 from the clusters obtained using the means algorithm* along 100 ns MD simulations in DMSO. Dashed black lines stand for hydrogen bond contacts.

*J. Shao, S. W. Tanner, N. Thompson and T. E. Cheatham, III. J. Chem. Theory Comput. 2007, 3, 2312-2334.

Figure S7.

B-factors representation derived from 100 ns trajectory of cyclo(Ser-pro-Lys(FBz)-Asp-Glu-Lys) (3) and cyclo(Ser-pro-Lys(FBz)-Asp-Glu-Aly) (9) in DMSO and water. Low B-factors represent high structural order.

Figure S8.

Stability of linear hexapeptide **10** against cleavage by trypsin as determined by RP-HPLC. Compound **10** was incubated with bovine trypsin at varying concentrations over a time of 30 min.

NMR Spectra of Products

S19

-40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -2 f1 (ppm)

