Electronic Supplementary Information

Facile and High-yield Formation of Dipyrrin-Boronic Acid Dyads and Triads: Light-Harvesting System in the Visible Region Based on Efficient Energy Transfer

Masaki Yamamura,^a Shinya Yazaki,^a Motofumi Seki,^a Yasunori Matsui,^b Hiroshi Ikeda,^b Tatsuya Nabeshima*^a

^a Graduate School of Pure and Applied Sciences & Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8571, Japan

^b Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Sakai, Osaka 599-8531, Japan

E-mail: nabesima@chem.tsukuba.ac.jp

Table of contents

(1) ¹ H and ¹³ C NMR spectra	S2
(2) ESI-TOF mass spectra	S5
(3) Electrochemical studies	S6
(4) Photophysical studies	S9
(5) Computational details	S13
(6) References	S16

(1) ¹H and ¹³C NMR spectra

Figure S1. ¹H NMR spectrum of 2 (400 MHz, CDCl₃).

Figure S2. ¹³C NMR spectrum of 2 (100 MHz, CDCl₃).

Figure S3. ¹H NMR spectrum of 3 (600 MHz, CDCl₃).

Figure S4. ¹³C NMR spectrum of 3 (100 MHz, CDCl₃).

Figure S5. ¹H NMR spectrum of 4 (600 MHz, CDCl₃).

Figure S6. ¹³C NMR spectrum of 4 (100 MHz, CDCl₃).

(2) ESI-TOF mass spectra

Figure S7. ESI-TOF MS of 3.5. The observed ion peaks: [3.5+H]⁺.

Figure S8. ESI-TOF MS of 4.5. The observed ion peaks: [4.5+H]⁺.

(3) Electrochemical Studies

Figure S9. Cyclic (upper) and differential pulse (lower) voltammograms of **3** in CH_2Cl_2 (0.1 M TBAClO₄). Working: glassy carbon, counter: Pt, reference: Ag/Ag⁺, Scan rate: 0.1 V/s. Potential vs Fc/Fc⁺ = +0.20 V.

Figure S10. Cyclic (upper) and differential pulse (lower) voltammograms of **4** in CH_2Cl_2 (0.1 M TBAClO₄). Working: glassy carbon, counter: Pt, reference: Ag/Ag⁺, Scan rate: 0.1 V/s. Potential vs Fc/Fc⁺ = +0.20 V.

Figure S11. Cyclic voltammogram of **5'** (= **5**·pyridine) in CH_2Cl_2 (0.1 M TBAClO₄). Working: glassy carbon, counter: Pt, reference: Ag/Ag⁺, Scan rate: 0.1 V/s. Potential vs Fc/Fc⁺ = +0.20 V.

(4) Photophysical studies

Figure S12. Absorption and excitation (650 nm) spectra of 3.5 (*n*-hexane, 1.0×10^{-5} M, rt).

Figure S13. Absorption and excitation (650 nm) spectra of 4.5 (*n*-hexane, 5.0×10^{-6} M, rt).

Figure S14. Absorption and excitation (550 nm) spectra of 5 (*n*-hexane, 1.0×10^{-5} M, rt).

Figure S15. Photoluminescence spectrum of 5 (degassed methylcyclohexane-glass-matrix, 77 K, $\lambda_{ex} = 420$ nm) and delayed spectrum (delay time: 20 msec).

Figure S16. Fluorescence decay of 2, 3, 4, 5, 3.5, and 4.5 at the λ_{max} (*n*-hexane, 1.0×10^{-5} M, $\lambda_{\text{ex}} = 371$ nm, rt).

Figure S17. Transient absorption spectra of 3.5 (*n*-hexane, 1.0×10^{-5} M, $\lambda_{ex} = 355$ nm, rt).

Figure S18. Transient absorption spectra of 5 (*n*-hexane, 1.0×10^{-5} M, $\lambda_{ex} = 355$ nm, rt).

Figure S19. UV–vis spectroscopic titration of **4** with the addition of **5** (*n*-hexane, $[4] = 2.0 \times 10^{-5}$ M).

(5) Computational details

The geometry optimization and time-dependent calculation of **3** and **5** · pyridine were performed at the RM06- $2X^{S1}/6-31G(d,p)$ level using Gaussian09 program.^{S2} Coordinates for the optimized structures were shown in Table S1–S2.

Figure S20. Model structure of 3.5.

Figure S21. Model structure of 4.5.

Table S1. Coordinates of the optimized **3**.

					38
Center	Atom	Coordin	ates (Angstro	oms)	59
Number	<u> </u>	X 0.519226	Y 2 260094	<u> </u>	60
1	C	-0.518230	-2.209984	-0.412814	61
2	с u	0.300183	-3.1/01/3	-0.438239	62
3	П	0.409887	-4.24/312	-0.336924	63
4	U U	1.723630 2.740110	-2.423949	-0.343798	64
5	Г	2.749110	-2.//103/	-0.34/181	65
07	C	1.555410	-1.008072	-0.2020//	66
/	C	2.140139	0.073221	-0.140995	67
8	C	1.544/01	1.331899	-0.077655	68
9	U U	2.051278	2.655949	-0.190090	69
10	H	3.100136	2.914830	-0.241201	70
11	U U	0.963201	3.503339	-0.2/6839	71
12	H	0.977306	4.5/4848	-0.411/93	72
13	C	-0.20513/	2.688720	-0.20/4/5	
14	C	-1.960948	-2.568305	-0.433199	
15	C	-2.759108	-2.093041	-1.489019	Table S2
16	C	-4.143119	-2.257922	-1.438233	5. nuridina
17	Н	-4.772278	-1.877070	-2.234026	3 pyriallie
18	С	-4.717248	-2.933750	-0.361724	Center
19	Н	-5.795519	-3.055185	-0.330803	Number
20	С	-3.931288	-3.453843	0.659597	1
21	Н	-4.386442	-3.971496	1.495913	2
22	С	-2.552230	-3.266226	0.616788	3
23	Н	-1.922274	-3.614694	1.429914	4
24	С	-1.625041	2.955724	-0.359519	5
25	С	-2.466183	1.851155	-0.645907	6
26	С	-3.824751	2.076018	-0.887268	7
27	Н	-4.457032	1.214253	-1.078518	8
28	С	-4.340433	3.363392	-0.845539	9
29	Н	-5.400243	3.518691	-1.021698	10
30	С	-3.515604	4.455872	-0.563388	11
31	Н	-3.927373	5.458045	-0.525001	12
32	С	-2.166906	4.245466	-0.325479	13
33	Н	-1.512145	5.082855	-0.100831	14
34	F	-1.996111	0.592913	-0.730746	15
35	Ν	-0.059768	-1.011367	-0.318422	16
36	Ν	0.169957	1.416705	-0.066015	17
37	В	-0.851373	0.268947	0.125315	18
38	С	3.623975	-0.058828	-0.157059	19
39	С	4.326313	-0.058196	1.057060	20
40	С	5.713947	-0.190937	1.025858	21
41	Н	6.262888	-0.200938	1.964874	22
42	С	6.411498	-0.313886	-0.174546	23
43	С	5.687362	-0.310438	-1.366256	24
44	Н	6.216171	-0.408992	-2.311796	25
45	С	4.299069	-0.186363	-1.381497	20
46	С	3.594684	0.071343	2.369043	27
47	Н	4.277962	-0.058994	3.210357	28
48	Н	2.798956	-0.676517	2.450762	30
49	Н	3.124111	1.056244	2.459640	31
50	С	7.914598	-0.421705	-0.188041	37
51	Ĥ	8.258541	-1.048298	-1.014589	33
52	Н	8.289766	-0.847908	0.745215	34
53	Н	8 373601	0.564953	-0.309569	35
54	C	3 540847	-0 190393	-2 684948	36
55	н	2 880323	0 679195	-2.757743	37
56	Н	2.000323	-1 080145	-2 770404	38
50	11	2.90910/	-1.000143	-2.110404	20

57	н	4 227922	-0 173796	-3 532949
58	C	_1 297228	0 108438	1 669888
50	C	-1.2)7220	0.100450	1.00/000
59	С	-2.607789	-0.253934	2.006778
60	Н	-3.343847	-0.386741	1.212940
61	Ν	-3.052074	-0.464445	3.249404
62	С	-2.172618	-0.307724	4.240621
63	Н	-2.549679	-0.480422	5.247217
64	С	-0.844331	0.058769	4.041333
65	Н	-0.176298	0.179370	4.888042
66	С	-0.410161	0.266797	2.736726
67	Н	0.621524	0.562106	2.545928
68	F	-2.093159	-1.522282	-2.517285
69	С	-2.830900	-0.716447	-3.409556
70	Н	-3.386558	0.054557	-2.865220
71	Н	-3.519095	-1.315964	-4.017741
72	Н	-2.099169	-0.240764	-4.062018

Table	S2 .	Coordinates	of	the	optimized
5∙pvrid	line.				

-0.361724					
-0.330803	Center	Atom	Coordi	inates (Angsti	roms)
0 659597	Number		<u>X</u>	<u>Y</u>	<u>Z</u>
1 495913	1	C	4.901261	-1.461082	-0.512029
0.616788	2	C	3.346308	0.820029	-0.397637
1 429914	3	C	3.651270	-1.569437	0.071216
-0.350510	4	C	5.435892	-0.264938	-1.046014
0.645007	5	C	4.631574	0.850228	-0.981351
-0.043907	6	C	2.830059	-0.394111	0.162487
-0.88/208	7	Н	4.977301	1.798968	-1.390469
-1.0/8518	8	С	2.602646	2.044581	-0.424808
-0.845539	9	Н	3.125977	2.894364	-0.881726
-1.021698	10	Ν	1.388401	2.222227	-0.004548
-0.563388	11	С	0.773815	3.485578	-0.051280
-0.525001	12	С	-0.634167	5.901179	-0.045997
-0.325479	13	С	-0.639304	3.484149	-0.122689
-0.100831	14	С	1.455964	4.700794	0.032274
-0.730746	15	С	0.757053	5.902623	0.020015
-0.318422	16	С	-1.328280	4.697781	-0.103149
-0.066015	17	Η	2.535537	4.702998	0.142755
0.125315	18	Η	-2.413416	4.701809	-0.108271
-0 157059	19	Ν	-1.238082	2.212149	-0.168589
1 057060	20	С	-2.417411	2.026922	-0.668987
1.025858	21	Η	-2.970544	2.890888	-1.059227
1.025050	22	С	-3.101065	0.769639	-0.779369
0.174546	23	С	-4.588870	-1.537447	-1.054997
1 266256	24	С	-2.444486	-0.493180	-0.607640
-1.500250	25	С	-4.474410	0.833000	-1.124139
-2.311/96	26	С	-5.243824	-0.295290	-1.258680
-1.381497	27	С	-3.251831	-1.681681	-0.751075
2.369043	28	Н	-4.907459	1.819933	-1.266880
3.210357	29	F	-1.183702	-0.600713	-0.355780
2.450762	30	F	1.677439	-0.447481	0.745051
2.459640	31	Н	-1.182196	6.837190	-0.028041
-0.188041	32	Н	1.298379	6.840068	0.091173
-1.014589	33	Н	-5.190933	-2.435636	-1.151294
0.745215	34	Н	5.512176	-2.353420	-0.567760
-0.309569	35	Zn	0.065729	0.653085	0.483182
-2.684948	36	Ν	-0.544065	0.398871	2.478312
-2.757243	37	С	-1.402531	-0.263059	5.023719
-2.770404	38	С	0.343367	0.082104	3.427497
	39	С	-1.850515	0.381869	2.766916

40	С	-2.323491	0.056552	4.030974
41	С	-0.045630	-0.251090	4.718820
42	Н	1.382521	0.081633	3.111337
43	Н	-2.525059	0.626320	1.949098
44	Н	-3.389491	0.048605	4.224617
45	Н	0.703033	-0.502239	5.460918
46	Н	-1.739179	-0.524781	6.021752
47	С	3.112670	-2.907162	0.595407
48	C	-2.605062	-3.057997	-0.555951
49	C	6.824940	-0.186249	-1.688349
50	Ċ	-6 732494	-0 279349	-1 605040
51	Č	-7.531012	-0.946246	-0.472292
52	Н	-7 384557	-0 409293	0 470021
53	Н	-7 221344	-1 984374	-0 319338
54	н	-8 600925	-0.946272	-0 707663
55	C	-6 966297	-1.052871	-2.913622
56	н	-6 414677	-0 590725	-3 737838
57	н	-8.031626	-1.056171	-3 169069
58	н	-6 638000	-2 093014	-2 830862
59	C	-7 259009	1 146740	-1 789943
60	ч	-6 737870	1 663327	-2 602235
61	и Ц	-7.145671	1 736801	-0.874720
62	и Ц	-8 323874	1 11780/	-2.040197
63	C II	-3 627123	-1 102721	-0.695470
64	н	-3 120690	-5.151214	-0.093470
65	н	-4 084577	-4 209620	-1 690318
66	н	-4 424022	-4 116583	0.052404
67	C II	-1 516114	-3 274557	-1 623174
68	н	-1 025562	-4 241987	-1 463764
69	н	-0 761743	-2 488858	-1 578236
70	н	-1 962797	-3 279884	-2 623184
71	C	-1 991543	-3 162778	0.853979
72	н	-1 563119	-4 161374	0.996341
73	Н	-2.763680	-3 013071	1 617373
74	Н	-1.202144	-2 424952	1 000542
75	C	2.816879	-2.814728	2 104005
76	н	3 715228	-2 515783	2 655001
77	Н	2 498099	-3 793889	2.055001
78	Н	2.498099	-2 092897	2.479033
79	C	4 118677	-4 046176	0.391005
80	н	4 355008	-4 194819	-0.667730
81	Н	3 686680	-4 977944	0.768322
82	Н	5 053393	-3 867759	0.933577
83	C	1 821812	-3 277412	-0 159361
84	Н	2 023912	-3 400082	-1 228907
85	Н	1 057776	-2 508452	-0.034815
86	Н	1 426305	-4 226795	0 221620
87	C	7.567892	-1.525035	-1.625767
88	Н	8.556212	-1.416212	-2.083059
89	Н	7.033224	-2.310019	-2.169784
90	Н	7.710737	-1.858011	-0.592633
91	С	7.673846	0.865805	-0.955809
92	Н	8.670285	0.933874	-1.406160
93	Н	7.788919	0.603317	0.100206
94	Н	7.214665	1.857285	-1.008316
95	С	6.684920	0.217474	-3.165473
96	Н	7.670447	0.281396	-3.640157
97	Н	6.197744	1.191667	-3.267459
98	Н	6.084793	-0.516700	-3.711320

_

(6) References

- (S1) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
- (S2) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *GAUSSIAN 09, Revision A.02*, Gaussian, Inc., Wallingford CT, 2009.