Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Differentiation of Small Alkane and Alkyl Halide Constitutional Isomers via Encapsulation

Matthew R. Sullivan, and Bruce C. Gibb

Department of Chemistry, Tulane University, New Orleans, LA 70118, USA

Table of contents

Materials and Instrumentation	S2-S3
NMR Data for Capsular Complexes between Host 1 and Guests 2-6	S3-S5
¹ H NMR Shift Data ($\Delta\delta$, ppm) for Guests 2-6 Encapsulated in 1	S6
Competition Experiments for Guests 2-6	S6-S8
¹ H NMR Analysis of Chloropentane Isomer Guests 7-14	S9-13
Select 2-D NMR Analysis of Chloropentane Isomer Guests 7-14	S14-15
Purity Analysis of Chloropentane Isomer Guests 7-14	S16-19
¹ H NMR Shift Data ($\Delta\delta$, ppm) for Guests 7-14 Encapsulated in 1	S19
Competition Experiments for Guests 7-14	S20-S23
Diffusion coefficient data for guests upon encapsulation within 1	S24
References	S25

Materials and Instrumentation

Octa-acid host **1** was synthesized as previously reported.¹ All guests **2-6** (\geq 99% pure) were purchased from Aldrich Chemical Company and were used without further purification. Guests **7**, **8**, **10**, **11**, **12**, and **14** were purchased from Aldrich Chemical Company, guest **9** was purchased from BroadPharm and guest **13** was purchased from Enamine. All NMR spectra were recorded on a 500 MHz Bruker NMR spectrometer regulated at 25°C. All competitions were performed in deuterium oxide (Cambridge Isotopes, 99.9%+) with each solution prepared on the day of analysis. Host **1** and guests **2-14** are displayed below with number assignments.

10

13

NMR Data for Capsular Complexes between Host 1 and Guests 2-6

A 1.0 mM stock solution of host **1** in 10 mM sodium borate/D₂O buffer was prepared. To analyze host-guest complexation, 0.6 mL of the host **1** stock solution was added to an NMR tube, followed by 1.0 μ L (excess) of a pure guest. The resulting suspension was mixed thoroughly. A spectrum was recorded within 10 minutes of mixing, and again after 24 hours to confirm equilibrium. The ¹H NMR spectra utilized presaturation parameters for water suppression. The ¹H NMR of the complexes formed between **1** and guest **2-6** are displayed in Figures S1-S5.

Figure S1: ¹H NMR of the complex formed between host 1 and guest 2.

Figure S4: ¹H NMR of the complex formed between host 1 and guest 5.

Figure S5: ¹H NMR of the complex formed between host 1 and guest 6.

¹H NMR Shift Data ($\Delta\delta$, ppm) for Guests 2-6 Encapsulated in Host 1

All ¹H NMR data listed in Table S1 were calculated in reference to free guest peaks found in D_2O and corresponding bound guest peaks encapsulated within **1**.

Proton						
Guest	H1	H2	H3	H4	H5	H6
2	-2.68	-2.13	-2.13	-2.13	-2.13	-2.68
3	-2.00	-2.04	-2.37	-2.38	-3.45	-2.00
4	-2.65	-2.75	-1.97	-2.75	-2.65	-2.67
5	-1.46	-1.91	-1.91	-1.46	-1.46	-1.46
6	-3.07	NA	-2.59	-1.91	-3.07	-3.07

Table S1: ¹H NMR Shift Data ($\Delta \delta$, ppm) for guests **2-6** encapsulated in **1**.

Competition Experiments

All competition experiments were performed with excess guest and 1.0 mM stock solution of **1** in 10 mM sodium borate/D₂O buffer. For the competitions, 0.6 mL of the **1** stock solution was added to an NMR tube and 1.0 μ L each of two guests were added and mixed thoroughly. A spectrum was recorded within 10 minutes of mixing, and again after 24 hours to confirm equilibrium. The NMR spectra utilized presaturation parameters for water suppression. The ¹H NMR spectra of selected competitions are displayed in Figures S6-S10.

Figure S6: ¹H NMR of the complexes formed between host **1** and guest **2** and **5**.

Figure S7: ¹H NMR of the complexes formed between host 1 and guest 2 and 6.

Figure S9: ¹H NMR of the complexes formed between host 1 and guest 3 and 6.

Figure S10: ¹H NMR of the complexes formed between host 1 and guest 4 and 5.

¹H NMR Analysis of Chloropentane Isomer Guests 7-14

The procedure for analysis of guests **7-14** was the same as that described previously for guests **2-6**. The ¹H NMR spectra for guests **7-14** encapsulated in **1** are shown in Figures S11-S18. Additionally, COSY or NOESY experiments were carried out when necessary to determine unidentified peaks from ¹H NMR. Select 2-D NMR spectra are displayed in Figures S19-S22.

Figure S13: ¹H NMR of the complex formed between host 1 and guest 9.

Figure S15: ¹H NMR of the complex formed between host **1** and guest **11**.

Figure S16: ¹H NMR of the complex formed between host 1 and guest 12.

Figure S17: ¹H NMR of the complex formed between host 1 and guest 13 *(R/S) complex).

Select 2-D NMR Analysis of Chloropentane Isomer Guests 7-14

Figure S19: COSY NMR of the complex formed between host 1 and guest 7 (top). COSY NMR of the complex formed between host 1 and guest 8 (bottom).

Figure S20: COSY NMR of the complex formed between host 1 and guest 9 (top). COSY NMR of the complex formed between host 1 and guest 10 (bottom).

Figure S21: COSY NMR of the complex formed between host 1 and guest 11 (top). COSY NMR of the complex formed between host 1 and guest 13 (bottom).

Figure S22: NOESY NMR of the complex formed between host 1 and guest 14.

Purity Analysis of Chloropentane Isomer Guests 7-14

¹H NMR spectra were collected for each guest in deuterated chloroform (Cambridge Isotopes, 99.8%+). The purity of the guests was determined by comparing integration of known peaks. Guests **7**, **10**, **11**, **12**, and **14** arrived with little or no compromise to purity. Guests **8**, **9**, and **13** had more obtrusive amounts of impurity upon arrival. The spectra of impurities for guests **8**, **9** and **13** are shown in Figures S23-S25.

Figure S24: ¹H NMR of the guest 9 in CDCl₃.

^1H NMR Shift Data ($\Delta\delta,$ ppm) for Guests 7-14 Encapsulated in 1

All ¹H NMR data listed in Table S2 were calculated in reference to free guest peaks found in D_2O and corresponding encapsulated guest peaks in host **1**. Number assignments of protons are labeled in previous figures.

Proton					
Guest					
	H1	H2	H3	H4	H5
7	-1.85	-1.50	-2.03	-2.18	-2.98
8	-2.09	-2.08	-2.04	-1.99	-2.21
9	-1.93	-1.74	-2.08	-1.74	-1.93
10	-2.25	-2.10	-2.11	-2.41	-2.01
11	-1.97	-2.16	-2.02	-2.12	-2.12
12	-1.57	NA	-1.64	-2.05	-1.57
13 (R/R)(S/S)	-1.60	-0.86	-2.06	-2.23	-2.41
13 (R/S)	-1.89	-0.93	-1.78	-1.94	-2.23
14	-2.45	NA	-1.87	-1.87	-1.87

Table S2: ¹H NMR Shift Data ($\Delta\delta$, ppm) for guests **7-14** encapsulated in **1**.

¹H NMR Spectra of Selected Competition Experiments for Guests 7-14

Competition experiments were performed for each combination of guests **7-14** using the same procedure described previously for guests **2-6**. From these experiments, select ¹H NMR of competitions are displayed in Figures S26-S32.

Diffusion coefficient data for guests upon encapsulation within 1

DOSY (Diffusion-Ordered spectroscopy) NMR experiments were performed to confirm the formation of 2:2 capsular complexes rather than 1:1 complexes. The experiments were run at 25 °C with a host concentration of 1mM (in 10 mM sodium tetraborate) and a slight excess of guest. Diffusion coefficient data was determined using at least five of the aromatic host signals in each system examined. Selected data are presented below for free octa-acid host **1** as well as guests **4** and **7** encapsulated within host **1** (Table S3).

System	Diffusion Constant (x 10 ⁻⁶ cm ² s ⁻¹)	Hydrodynamic Volume (nm³) ^a
Host 1	1.82	7.2
1.4	1.34	18.1
1.7	1.34	18.1

Table S3: Selected NMR Diffusion data for host 1 and its complexes.

^a As determined using the Stokes-Einstein Equation: $R_H = \frac{k_B T}{6\pi\eta D}$, where η is the viscosity, R_H *is* the hydrodynamic radius, k_B is the Boltzmann constant, *T* is the temperature, and *D* is the diffusion constant. In this study we assumed the particles examined have spherical shape and thus the corresponding hydrodynamic volume can be determined from: $V = \frac{4}{3}\pi R_H^3$.

References

1) Liu, S., Whisenhunt-Ioup, S. E., Gibb, C. L. D. & Gibb, B. C. An improved synthesis of 'octaacid' deep-cavity cavitand. *Supramolecular Chemistry* **24**, 480-485 (2011).