Supporting Information

Highly Enantioselective Catalytic 1, 3-Dipolar Cycloaddition of α-Alkyl Diazoacetates: Efficient Synthesis of Functionalized 2-Pyrazolines

Sung Il Lee^{†,§}, Ka Eun Kim[§], Geum-Sook Hwang^{*,†} and Do Hyun Ryu^{*,§}

[†] Western Seoul Center, Korea Basic Science Institute, Seoul 120-140, Korea.

[§] Department of Chemistry, Sungkyunkwan University, Suwon 440-746.

Corresponding author dhryu@skku.edu, gshwang@kbsi.re.kr

General Methods

Unless stated otherwise, reactions were carried out under a dry argon atmosphere in vacuum-flame dried glassware. Dichloromethane, toluene and THF were purified by ULVAC solvent purification system. Thin layer chromatography was carried out on Merck silica gel 60 F254. Column chromatography was carried out on Merck silica gel 60 (230-400 mesh).

¹H NMR spectra were recorded on a Varian at 300 or 600 MHz and Bruker 500 MHz. ¹³C NMR spectra were recorded on a Varian at 75 or 150 MHz and Bruker 125 MHz. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CHCl₃: δ 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s=singlet, d=doublet, t=triplet, q=quartet, spd = septet of doublet, dd=doublet of doublet, dt=doublet of triplet, qd=quartet of doublet, br=broad, m=multiplet), coupling constants (Hz), integration. Infrared spectra were recorded on a Bruker Vertex 70. LRMS data were obtained by Varian LC/MS 500 system.

Synthesis of α-Substituted tert-Butyl diazoacetates

2-Substituted tert-Butyl Acetoacetate

2-Substituted tert-Butyl Acetoacetates were prepared according to the literature.¹

A 100 ml round bottom flask fitted with a rubber septum was charged with NaH (60%, dispersion in mineral oil, 1.56 g, 39 mmol) in 30 ml of freshly distilled THF. At 0 °C *tert*-butyl acetoacetate (30 mmol) was added dropwise and the solution was stirred for 10min. The reaction mixture was moved to ambient temperature then R-X (33 mmol) was added to the mixture in one portion. The resulting solution was refluxed and monitored by TLC. After completion of the reaction, the reaction mixture was quenched with saturated NH₄Cl_(aq)(20 ml) and H₂O (2 ml). The product was extracted with CH₂Cl₂ (3 × 15 ml) and dried with Na₂SO₄. The volatiles were evaporated and the residue was purified by silica gel column chromatography (hexane:ethyl acetate = 9:1) to give 2-substituted *tert*-butyl acetoacetates as clear colorless liquid.

2-Substituted tert-Butyldiazoacetate

2-Substituted tert-Butyl diazoacetates were prepared according to the literature.¹

To a stirred solution of 2-substituted *tert*-butyl acetoacetate (10 mmol) in MeCN(30 ml) were added a 4-acetamidobenzenesulfonyl azide (2.88 g, 12 mmol) and DBU (2.24 ml, 15 mmol) at 0 °C. The reaction mixture was stirred under ambient temperature and monitored by TLC. After completion of the reaction, the reaction mixture was quenched with saturated $NH_4Cl_{(aq)}(10 \text{ ml})$. The product was extracted with hexanes (2 × 10 ml) and dried with Na_2SO_4 . The volatiles were evaporated and the residue was purified by silica gel column chromatography (hexane:ethyl acetate = 20:1) to give corresponding 2-substituted *tert*-butyl diazoacetate as clear yellow liquid.

¹ T. Hashimoto, Y. Naganawa, K. Maruoka, J. Am. Chem. Soc. 2011, 133, 8834.

(S)-Oxazaborolidine (0.05M PhMe solution)

A 50 ml, one-necked, round-bottomed flask and a Dean-Stark apparatus (containing ca. 10 g of 4 Å molecular sieves) fitted on top with a reflux condenser and a nitrogen inlet adaptor were charged with (*S*)-(-)- α , α -di-2-naphthyl-2-pyrrolidinemethanol (0.707 g, 2.0 mmol), tri-1-naphthylboroxine (0.308 g, 0.67 mmol), and 35 ml of toluene. The resulting mixture was heated to reflux (bath temperature 145 °C). After 3 h, the reaction mixture was cooled to ca. 60 °C, and the Dean-Stark apparatus and condenser were quickly replaced with a short-path distillation head. The mixture was concentrated to a volume of ca. 5 ml by distillation (aircooling). This distillation protocol was repeated three times by re-charging with 20 ml of toluene. The solution was then allowed to cool to room temperature, and the distillation head was quickly replaced with a vacuum adaptor. Concentration in *vacuo* (ca. 0.1 mmHg, 1 h) afforded the corresponding oxazaborolidine as clear oil. Oxazaborolidine was dissolved in 40 ml of PhMe and stored at -40 °C.

General procedure for oxazaborolidinium catalyzed asymmetric 1,3-

dipolar cycloaddition reaction

A freshly prepared solution of trifluoromethanesulfonic acid in PhMe (0.20 M solution, 0.25 mL, 0.05 mmol) was added dropwise to an oxazaborolidine solution (0.05M for oxazaborolidine in PhMe, 1.2 ml, 0.06 mmol for oxazaborolidine) at -40 °C under nitrogen. After stirring for 20 min at -40 °C, a pale yellow homogeneous solution of oxazaborolidinium catalyst was obtained. Enone (0.30 mmol) was then added in one portion to the solution of oxazaborolidinium catalyst at -78 °C. After 20 min of stirring, diazoester (0.25 mmol) was added in one portion. TLC was used to monitor the reaction. After completion, the reaction was quenched at -78 °C by adding Et₃N (14 μ l, 0.1 mmol). The reaction mixture was directly purified by flash chromatography on silica gel by eluting with ethyl acetate/hexanes (v/v, 1/9) to give a 2-pyrazoline product.

A freshly prepared solution of trifluoromethanesulfonic acid in PhMe (0.20M solution, 0.25 mL, 0.05 mmol) was added dropwise to an oxazaborolidine solution (0.05M for oxazaborolidine in PhMe, 1.2 ml, 0.06 mmol for oxazaborolidine) at -40 °C or -20 °C under nitrogen. After stirring for 20 min (10 min at -20 °C), a pale yellow homogeneous solution of oxazaborolidinium catalyst was obtained. Enone (0.30 mmol) was then added in one portion to the solution of oxazaborolidinium catalyst. After 10 min of stirring, diazoester (0.25 mmol) was added in one portion. TLC was used to monitor the reaction. After completion, the reaction was quenched by adding Et_3N (14 µl, 0.1 mmol). The reaction mixture was directly purified by flash chromatography on silica gel by eluting with ethyl acetate/hexanes (v/v, 1/9) to give a 2-pyrazoline product.

(S)-tert-butyl 5-benzyl-3-propionyl-4,5-dihydro-1H-pyrazole-5-carboxylate (3a)

¹**H NMR** (600 MHz, CDCl₃) δ 7.24-7.31 (m, 3H), 7.20-7.21 (m, 2H), 6.66 (s, 1H), 3.34 (d, *J*=18.0 Hz, 1H), 3.23 (d, *J*=13.2 Hz, 1H), 3.03 (d, *J*=13.8 Hz, 1H), 2.87 (d, *J*=18.0 Hz, 1H), 2.80 (ddd, *J*_{AB}=22.2 Hz, *J*_{AC}=7.2 Hz, *J*_{AD}=3.0 Hz, 2H), 1.40 (s, 9H), 1.09 (t, *J*=7.2 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 197.56, 172.22, 149.84, 135.35, 130.10, 128.61, 127.48, 83.17, 74.06, 43.68, 39.28, 30.97, 28.02, 8.39.

IR v_{max} 3729, 3334, 2979, 1729, 1665, 1370, 1151, 843, 702 cm⁻¹.

LRMS (APCI): m/z (%) = 317 (M+1, 16), 276 (20), 261 (100), 205 (42), 159 (22).

HRMS (FAB): m/z calcd for $C_{18}H_{25}N_2O_3^+$: 317.1865, found: 317.1865.

HPLC AS-H, (2-propanol: Hexane=1:9): Hexane=1:9, flow: 1.0ml/min, $T_R = 14.6 \text{ min (minor)}$ and $T_R = 15.7 \text{ min (major)}$.

 $[\alpha]^{25}_{D} = +165.2 (c \ 0.89 \ \text{CHCl}_3)$

(S)-tert-butyl 5-allyl-3-propionyl-4,5-dihydro-1H-pyrazole-5-carboxylate (3b)

¹**H NMR** (600 MHz, CDCl₃) δ 6.69 (s, 1H), 5.64-5.71 (m, 1H), 5.14-5.18 (m, 2H), 3.30 (d, *J*=18.0 Hz, 1H), 2.82 (q, *J*=7.2 Hz, 2H), 2.80 (d, *J*=16.2 Hz, 1H), 2.62 (ddt, *J*_{AB}=13.8 Hz, *J*_{AC}=6.6 Hz, *J*_{AD}=1.2 Hz, 1H), 2.48 (ddt, *J*_{AB}=13.8 Hz, *J*_{AC}=7.8 Hz, *J*_{AD}=1.2 Hz, 1H), 1.46 (s, 9H) 1.11 (t, *J*=7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 197.58, 172.26, 149.84, 131.53, 120.10, 83.04, 72.76, 42.41, 38.32, 31.00, 28.08, 8.39.

IR v_{max} 3728, 3703, 3627, 3599, 3340, 2980, 1732, 1666, 1556, 1370, 1153, 845 cm⁻¹.

LRMS (APCI): m/z (%) = 267 (M+1, 22), 228 (56), 211 (100), 196 (53), 155 (51), 113 (29).

HPLC AS-H, (2-propanol: Hexane=1:9):Hexane=1:9, flow: 1.0ml/min, $T_R = 10.5 \text{ min (minor)}$ and $T_R = 12.2 \text{ min (major)}$. $[\alpha]^{25}_{D} = +203.3 (c \ 0.63 \text{ CHCl}_3)$ (S)-tert-butyl 5-hexyl-3-propionyl-4,5-dihydro-1H-pyrazole-5-carboxylate (3c)

¹**H NMR** (600 MHz, CDCl₃) δ 6.72 (s, 1H), 3.34 (d, *J*=18.0 Hz, 1H), 2.82 (q, *J*=7.2 Hz, 2H), 2.73 (d, *J*=18.0 Hz, 1H), 1.82-1.86 (m, 1H), 1.72-1.77 (m, 1H), 1.46 (s, 9H), 1.27-1.29 (m, 8H), 1.11 (t, *J*=7.2 Hz, 3H), 0.88 (t, *J*=7.2 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ 197.66, 173.06, 149.87, 82.79, 73.49, 38.65, 38.30, 31.65, 30.99, 29.35, 28.06, 24.53, 22.61, 14.15,

8.42.

IR v_{max} 3344, 2932, 2859, 1729, 1665, 1459, 1370, 1253, 1151, 844 cm⁻¹.

LRMS (APCI): m/z (%) = 311 (M+1, 3), 274 (17), 255 (100), 215 (42), 199 (32), 153 (26).

HPLC AS-H, (2-propanol: Hexane=1:9):Hexane=1:9, flow: 1.0ml/min, $T_R = 6.9 \text{ min (minor)}$ and $T_R = 8.1 \text{ min (major)}$.

 $[\alpha]_{D}^{25} = +125.0 (c \ 1.17 \ \text{CHCl}_3)$

(S)-tert-butyl 5-methyl-3-propionyl-4,5-dihydro-1H-pyrazole-5-carboxylate (3d)

¹**H NMR** (600 MHz, CDCl₃) δ 6.74 (s, 1H), 3.40 (d, *J*=17.4 Hz, 1H), 2.82 (q, *J*=7.2 Hz, 2H), 2.70 (d, *J*=18.0 Hz, 1H), 1.50 (s, 3H), 1.46 (s, 9H), 1.11 (t, *J*=7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 197.58, 173.30, 149.92, 82.76, 69.99, 39.93, 30.95, 27.96, 24.52, 8.38.

IR v_{max} 3338, 2979, 1732, 1664, 1551, 1371, 1153, 842 cm⁻¹.

LRMS (APCI): m/z (%) = 241 (M+1, 25), 228 (100), 196 (86), 185 (93), 129 (42).

HRMS (FAB): m/z calcd for $C_{12}H_{20}N_2O_3^+$: 241.1552, found: 241.1552.

HPLC OD-H, (2-propanol: Hexane=1:9):Hexane=1:9, flow: 1.0ml/min, $T_R = 7.9 \text{ min (major)}$ and $T_R = 8.8 \text{ min (minor)}$.

 $[\alpha]_{D}^{25} = +311.8 \ (c \ 0.52 \ \text{CHCl}_3)$

(S)-tert-butyl 3-acetyl-5-benzyl-4,5-dihydro-1H-pyrazole-5-carboxylate (3e)

¹H NMR (600 MHz, CDCl₃) δ 7.24-7.31 (m, 3H), 7.18-7.21 (m, 2H), 6.71 (s, 1H), 3.34 (d, *J*=17.4 Hz, 1H), 3.23 (d, *J*=13.2 Hz, 1H), 3.03 (d, *J*=13.2 Hz, 1H), 2.87 (dd, *J*_{AB}=17.4 Hz, *J*_{AC}=1.2 Hz, 1H), 2.37 (s, 3H), 1.40 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 194.50, 172.12, 150.27, 135.26, 130.09, 128.62, 127.49, 83.22, 74.33, 43.67, 38.97, 28.03, 25.41. IR v_{max} 3333, 2979, 1728, 1665, 1252, 1151, 1080, 832, 702 cm⁻¹. LRMS (APCI): m/z (%) = 301 (M-1, 28), 288 (53), 215 (100), 187 (35), 139 (32). HRMS (FAB): m/z calcd for C₁₇H₂₃N₂O₃⁺: 303.1709, found: 303.1710. HPLC AS-H, (2-propanol: Hexane=1:9):Hexane=2:8, flow: 1.0ml/min, *T*_R = 12.4 min (major) and *T*_R = 14.2 min (minor). [α]²⁵_D = +204.7 (*c* 0.68 CHCl₃)

(S)-tert-butyl 3-acetyl-5-allyl-4,5-dihydro-1H-pyrazole-5-carboxylate (3f)

¹**H NMR** (600 MHz, CDCl₃) δ 6.76 (s, 1H), 5.64-5.70 (m, 1H), 5.14-5.18 (m, 2H), 3.30 (d, *J*=17.4 Hz, 1H), 2.80 (dd, *J*_{AB}=17.4 Hz, *J*_{AC}=0.6 Hz, 1H), 2.62 (ddt, *J*_{AB}=13.8 Hz, *J*_{AC}=7.2 Hz, *J*_{AD}=1.2 Hz, 1H), 2.48 (ddt, *J*_{AB}=13.8 Hz, *J*_{AC}=7.8 Hz, *J*_{AD}=1.2 Hz, 1H), 2.39 (s, 3H), 1.46 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 194.50,172.14, 150.22, 131.43, 120.15, 83.07, 73.05, 42.39, 37.99, 28.07, 25.42.

IR v_{max} 3335, 2980, 1731, 1665, 1551, 1416, 1251, 1152, 843 cm⁻¹.

LRMS (APCI): m/z (%) = 251 (M-1, 45), 233 (46), 213 (100), 209 (69), 165 (38), 109 (36).

HPLC AS-H, (2-propanol: Hexane=1:9):Hexane=1:9, flow: 1.0ml/min, $T_R = 11.6 \text{ min (minor)}$ and $T_R = 12.6 \text{ min (major)}$. $[\alpha]^{25}_D = +165.3 (c \ 0.94 \text{ CHCl}_3)$ (S)-tert-butyl 3-acetyl-5-hexyl-4,5-dihydro-1H-pyrazole-5-carboxylate (3g)

¹H NMR (600 MHz, CDCl₃) δ 6.78 (s, 1H), 3.34 (d, *J*=17.4 Hz, 1H), 2.72 (dd, *J*_{AB}=18.0 Hz, *J*_{AC}=0.6 Hz, 1H), 2.39 (s, 3H), 1.82-1.85 (m, 1H), 1.72-1.77 (m, 1H), 1.46 (s, 9H), 1.23-1.32 (m, 8H), 0.88 (t, *J*=6.6 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 194.59, 172.93, 150.26, 82.82, 73.79, 38.28, 31.63, 29.32, 28.04, 25.43, 25.41, 24.47, 22.59, 14.13. IR ν_{max} 3337, 2930, 2859, 1730, 1665, 1551, 1252, 1152, 762 cm⁻¹. LRMS (APCI): m/z (%) = 297 (M+1, 24), 273 (16), 241 (100), 199 (29), 153 (38). HRMS (FAB): m/z calcd for C₁₆H₂₉N₂O₃⁺: 297.2178, found: 297.2179. HPLC AS-H, (2-propanol: Hexane=1:9):Hexane=1:9, flow: 1.0ml/min, *T*_R = 7.5 min (minor) and *T*_R = 8.2 min (major). [α]²⁵_D = +196.5 (*c* 0.31 CHCl₃)

(45,55)-tert-butyl 3-acetyl-5-benzyl-4-methyl-4,5-dihydro-1H-pyrazole-5-carboxylate (3h)

¹**H NMR** (300 MHz, CDCl₃) δ 7.27-7.30 (m, 3H), 7.16-7.19 (m, 2H), 6.45 (s, 1H), 3.24 (q, *J*=7.2 Hz, 1H), 3.18 (d, *J*=13.2 Hz, 1H), 2.82 (d, *J*=13.2 Hz, 1H), 2.39 (s, 3H), 1.45 (s, 9H), 1.18 (d, *J*=7.2 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 194.30, 169.40, 152.20, 135.05, 130.11, 128.64, 127.54, 83.20, 77.77, 46.91, 42.52, 28.20, 25.79, 12.80.

IR v_{max} 3381, 2981, 2859, 1710, 1661, 1153, 736, 706 cm⁻¹.

LRMS (APCI): m/z (%) = 315 (M-1, 30), 279 (100), 233 (39), 199 (45), 162 (60).

HRMS (FAB): m/z calcd for $C_{18}H_{25}N_2O_3^+$: 317.1865, found: 317.1865.

HPLC AS-H, (2-propanol: Hexane=1:9):Hexane=2:8, flow: 1.0ml/min, $T_R = 9.3$ min (major) and $T_R = 14.7$ min (minor).

 $[\alpha]_{D}^{25} = -36.36 (c \ 1.00 \text{ CHCl}_3)$

(4S,5S)-tert-butyl 3-acetyl-5-allyl-4-methyl-4,5-dihydro-1H-pyrazole-5-carboxylate (3i)

¹H NMR (300 MHz, CDCl₃) δ 6.57 (s, 1H), 5.60-5.73 (m, 1H), 5.13-5.21 (m, 2H), 3.13 (q, *J*=7.2 Hz, 1H), 2.57 (dd, *J*_{AB}=13.5 Hz, *J*_{AC}=6.0 Hz, 1H), 2.38 (s, 3H), 2.30 (dd, *J*_{AB}=13.5 Hz, *J*_{AC}=8.4 Hz, 1H), 1.50 (s, 9H), 1.16 (d, *J*=7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 194.34, 169.62, 152.38, 131.29, 120.72, 82.97, 46.02, 42.10, 28.21, 25.83, 12.91. IR v_{max} 3346, 2979, 1727, 1658, 1370, 1235, 1145, 996, 921, 844, 620 cm⁻¹. LRMS (APCI): m/z (%) = 267 (M+1, 20), 246 (84), 229 (86), 211 (100), 169 (49). HRMS (FAB): m/z calcd for C₁₄H₂₃N₂O₃⁺: 267.1709, found: 267.1709. HPLC AY-H, 2-propanol: Hexane=1:9, flow: 1.0ml/min, *T*_R = 8.0 min (major) and *T*_R = 19.5 min (minor). [α]²⁵_D = -59.88 (*c* 1.00 CHCl₃)

(45,55)-tert-butyl 3-acetyl-5-hexyl-4-methyl-4,5-dihydro-1H-pyrazole-5-carboxylate (3j)

¹**H NMR** (300 MHz, CDCl₃) δ 6.62 (s, 1H), 3.10 (q, *J*=7.2 Hz, 1H), 2.38 (s, 3H), 1.55-1.85 (m, 2H), 1.49 (s, 9H), 1.26-1.37 (m, 8H), 1.17 (d, *J*=7.2 Hz, 3H), 0.88 (t, *J*=6.6 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 194.25, 170.27, 152.08, 82.57, 77.42, 46.55, 38.15, 31.46, 29.23, 28.02, 25.69, 23.80, 22.42, 13.94, 13.02.

IR v_{max} 3348, 2933, 1728, 1644, 1455, 1394, 1135, 1029, 843 cm⁻¹.

LRMS (APCI): m/z (%) = 311 (M+1, 9), 271 (39), 267 (30), 255 (100), 183 (23), 167 (27).

HRMS (FAB): m/z calcd for $C_{17}H_{31}N_2O_3^+$: 311.2335, found: 311.2335.

HPLC AY-H, 2-propanol: Hexane=1:9, flow: 1.0ml/min, $T_R = 8.0 \text{ min (major)}$ and $T_R = 13.6 \text{ min (minor)}$.

 $[\alpha]^{25}_{D} = 36.80 (c \ 1.00 \text{ CHCl}_3)$

(4S,5S)-tert-butyl 3-acetyl-5-(4-bromobenzyl)-4-methyl-4,5-dihydro-1H-pyrazole-5-carboxylate (3k)

¹**H NMR** (300 MHz, CDCl₃) δ 7.42 (d, *J*=8.1 Hz, 2H), 7.06 (d, *J*=8.4 Hz, 2H), 6.41 (s, 1H), 3.22 (q, *J*=7.2 Hz, 1H), 3.14 (d, *J*=13.2 Hz, 1H), 2.78 (d, *J*=13.5 Hz, 1H), 2.38 (s, 3H), 1.45 (s, 9H), 1.19 (d, *J*=7.2 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 194.26, 169.27, 152.17, 134.07, 131.83, 131.70, 121.64, 83.49, 77.42, 47.13, 42.02, 28.21, 25.83, 12.90.

IR v_{max} 3373, 2978, 2932, 1712, 1561, 1416, 1241, 1156, 1013, 618 cm⁻¹.

LRMS (APCI): m/z (%) = 393 (M-1, 19), 395 (19), 352 (68), 255 (45), 233 (100).

HPLC AS-H, (2-propanol: Hexane=1:9):Hexane=2:8, flow: 1.0ml/min, $T_R = 16.1 \text{ min (major)}$ and $T_R = 20.4 \text{ min (minor)}$.

 $[\alpha]_{D}^{25} = -34.1 \ (c \ 1.00 \ \text{CHCl}_3)$

(4S,5S)-tert-butyl 3-acetyl-4,5-dimethyl-4,5-dihydro-1H-pyrazole-5-carboxylate (3I)

¹**H NMR** (300 MHz, CDCl₃) δ 6.46 (s, 1H), 3.08 (q, *J*=7.2 Hz, 1H), 2.38 (s, 3H), 1.49 (s, 9H), 1.40 (s, 3H), 1.16 (d, *J*=7.2 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 194.52, 170.85, 151.99, 82.68, 74.20, 46.96, 28.14, 25.82, 24.62, 12.86.

 $\label{eq:IR} IR \, \upsilon_{max} \, 3292, \, 2978, \, 2935, \, 1733, \, 1636, \, 1394, \, 1370, \, 1124, \, 924, \, 816, \, 627 \ \text{cm}^{\text{-1}}.$

LRMS (APCI): m/z (%) = 239 (M-1, 34), 187 (36), 185 (100), 172 (36), 141 (57), 127 (50).

HRMS (FAB): m/z calcd for $C_{12}H_{21}N_2O_3^+$: 241.1552, found: 241.1552.

HPLC AY-H, 2-propanol: Hexane=1:9, flow: 1.0ml/min, $T_R = 8.3 \text{ min}$ (major) and $T_R = 13.2 \text{ min}$ (minor).

 $[\alpha]^{25}_{D} = +47.8 \ (c \ 1.00 \ \text{CHCl}_3)$

(4S,5S)-tert-butyl 3-acetyl-5-ethyl-4-methyl-4,5-dihydro-1H-pyrazole-5-carboxylate (3m)

¹**H NMR** (300 MHz, CDCl₃) δ 6.66 (s, 1H), 3.11 (q, *J*=7.2 Hz, 1H), 2.38 (s, 3H), 1.79-1.91 (m, 1H), 1.62-1.74 (m, 1H), 1.50 (s, 9H), 1.18 (d, *J*=7.2 Hz, 3H), 0.89 (t, *J*=7.2 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 194.39, 170.30, 152.31, 82.76, 77.92, 46.32, 31.16, 28.18, 25.83, 13.24, 8.31. **IR** v_{max} 3252, 2970, 2924, 1732, 1624, 1437, 1253, 1160, 1129, 936, 836 cm⁻¹. **LRMS** (APCI): m/z (%) = 255 (M+1, 46), 211 (57), 199 (100), 181 (30), 157 (24), 127 (27). **HPLC** OZ-H, (2-propanol: Hexane=1:9):Hexane=1:9, flow: 1.0ml/min, *T*_R = 14.0 min (major) and *T*_R = 15.0 min (minor).

 $[\alpha]_{D}^{25} = +112.7 (c \ 1.00 \ \text{CHCl}_3)$

(4S,5S)-tert-butyl 3-acetyl-5-isopropyl-4-methyl-4,5-dihydro-1H-pyrazole-5-carboxylate (3n)

¹**H NMR** (300 MHz, CDCl₃) δ 6.61 (s, 1H), 3.28 (q, *J*=7.2 Hz, 1H), 2.36 (s, 3H), 2.05-2.18 (m, 1H), 1.50 (s, 9H), 1.20 (d, *J*=7.2 Hz, 3H), 0.91 (d, *J*=6.6 Hz, 3H), 0.83 (d, *J*=6.6 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 194.19, 170.54, 151.96, 82.94, 80.16, 44.16, 35.82, 28.21, 25.91, 17.51, 16.44, 14.48.

IR v_{max} 3318, 2973, 2933, 1730, 1634, 1430, 1371, 1277, 1168, 1128, 939 cm⁻¹.

LRMS (APCI): m/z (%) = 269 (M+1, 39), 213 (100), 167 (9), 125 (14).

HPLC AY-H, (2-propanol: Hexane=1:9):Hexane=5:5, flow: 1.0ml/min, $T_R = 16.8 \text{ min (major)}$ and $T_R = 31.1 \text{ min (minor)}$. $[\alpha]^{25}_{D} = +154.8 (c \ 1.00 \text{ CHCl}_3)$ (4S,5S)-tert-butyl 3-acetyl-5-benzyl-4-ethyl-4,5-dihydro-1H-pyrazole-5-carboxylate (3o)

¹**H NMR** (300 MHz, CDCl₃) δ 7.28-7.34 (m, 3H), 7.13-7.16 (m, 2H), 6.41 (s, 1H), 3.23 (t, *J*=5.4 Hz, 1H), 3.13 (d, *J*=13.2 Hz, 1H), 2.83 (d, *J*=13.2 Hz, 1H), 2.41 (s, 3H), 1.69-1.85 (m, 2H), 1.44 (s, 9H), 0.83 (t, *J*=7.5 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 194.55, 169.51, 151.18, 134.80, 130.18, 128.64, 127.58, 83.14, 77.35, 52.68, 43.50, 28.13, 25.73, 20.86, 10.74.

IR v_{max} 3402, 3382, 2979, 2932, 1712, 1651, 1153, 846, 738, 704 cm⁻¹.

LRMS (APCI): m/z (%) = 331 (M+1, 40), 330 (90), 276 (57), 275 (100), 233 (16), 187 (18).

HPLC AS-H, (2-propanol: Hexane=1:9):Hexane=2:8, flow: 1.0ml/min, $T_R = 7.6 \text{ min (major)}$ and $T_R = 11.7 \text{ min (minor)}$.

 $[\alpha]_{D}^{25} = -87.24 \ (c \ 1.00 \ \text{CHCl}_3)$

(4*S*,5*S*)-*tert*-butyl 3-acetyl-5-benzyl-4-ethyl-4,5-dihydro-1H-pyrazole-5-carboxylate (**3p**)

¹**H NMR** (300 MHz, CDCl₃) δ 6.52 (s, 1H), 5.58-5.72 (m, 1H), 5.11-5.22 (m, 2H), 3.12 (t, *J*=5.1 Hz, 1H), 2.53 (ddt, *J*_{AB}=13.5 Hz, *J*_{AC}=7.5 Hz, *J*_{AD}=0.9 Hz, 1H), 2.40 (s, 3H), 2.30 (dd, *J*_{AB}=13.2 Hz, *J*_{AC}=8.4 Hz, 1H), 1.67-1.84 (m, 2H), 1.51 (s, 9H), 0.83 (t, *J*=7.8 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 194.57, 169.76, 151.29, 131.07, 120.86, 82.93, 76.12, 51.77, 43.23, 28.14, 25.76, 20.90, 10.57. IR ν_{max} 3343, 2978, 1727, 1661, 1543, 1165, 1144, 1131, 843, 758, 623 cm⁻¹.

LRMS (APCI): m/z (%) = 281 (M+1, 14), 269 (92), 255 (100), 246 (44), 225 (41), 167 (36).

HPLC OZ-H, (2-propanol: Hexane=1:9):Hexane=2:8, flow: 1.0ml/min, $T_R = 7.1 \text{ min (major)}$ and $T_R = 15.5 \text{ min (minor)}$. $[\alpha]^{25}_{D} = -161.7 (c \ 1.00 \text{ CHCl}_3)$ (4S,5S)-tert-butyl 3-acetyl-4-ethyl-5-hexyl-4,5-dihydro-1H-pyrazole-5-carboxylate (3q)

¹**H NMR** (300 MHz, CDCl₃) δ 6.61 (s, 1H), 3.09 (t, *J*=4.8 Hz, 1H), 2.39 (s, 3H), 1.63-1.81 (m, 4H), 1.51 (s, 9H), 1.26 (br s, 8H), 0.87 (t, *J*=6.6 Hz, 3H), 0.80 (t, *J*=7.5 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 194.56, 170.54, 150.97, 82.68, 76.99, 52.45, 39.57, 31.63, 29.37, 28.12, 25.75, 23.69, 22.58, 20.90, 14.10, 10.64.

IR v_{max} 3336, 2934, 2860, 1727, 1648, 1370, 1134, 1032, 843 cm⁻¹.

LRMS (APCI): m/z (%) = 325 (M+1, 33), 323 (74), 269 (100), 228 (29), 182 (34).

HPLC OZ-H, (2-propanol: Hexane=1:9):Hexane=1:9, flow: 1.0ml/min, $T_R = 7.6$ min (major) and $T_R = 11.6$ min (minor).

 $[\alpha]_{D}^{25} = -48.9 (c \ 1.00 \ \text{CHCl}_3)$

(4S,5S)-tert-butyl 3-acetyl-5-benzyl-4-phenyl-4,5-dihydro-1H-pyrazole-5-carboxylate (3r)

¹**H NMR** (300 MHz, CDCl₃) δ 7.13-7.34 (m, 10H), 6.61 (s, 1H), 4.22 (s, 1H), 3.28 (d, *J*=13.5 Hz, 1H), 2.99 (d, *J*=13.5 Hz, 1H), 2.36 (s, 3H), 0.99 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 193.32, 168.29, 151.74, 136.45, 134.67, 130.12, 128.66, 128.60, 127.78, 127.66, 82.65, 78.69, 77.36, 58.15, 43.98, 27.40, 25.75.

IR v_{max} 3350, 2941, 2831, 1727, 1650, 1454, 1156, 1027, 756, 701 cm⁻¹.

LRMS (APCI): m/z (%) = 379 (M+1, 89), 378 (92), 323 (100), 281 (54), 235 (37).

HRMS (FAB): m/z calcd for $C_{23}H_{27}N_2O_3^+$: 379.2022, found: 379.2021.

HPLC OD-H, (2-propanol: Hexane=1:9):Hexane=5:5, flow: 1.0ml/min, $T_R = 7.8 \text{ min (major)}$ and $T_R = 8.9 \text{ min (minor)}$.

 $[\alpha]_{D}^{25} = -235.6 \ (c \ 1.00 \ \text{CHCl}_3)$

(45,55)-tert-butyl 3-acetyl-5-allyl-4-phenyl-4,5-dihydro-1H-pyrazole-5-carboxylate (3s)

¹H NMR (300 MHz, CDCl₃) δ 7.16-7.26 (m, 3H), 7.09-7.12 (m, 2H), 6.72 (s, 1H), 5.62-5.76 (m, 1H), 5.19-5.25 (m, 2H), 4.10 (s, 1H), 2.68 (dd, *J*_{AB}=13.2 Hz, *J*_{AC}=6.3 Hz, 1H), 2.47 (dd, *J*_{AB}=13.5 Hz, *J*_{AC}=8.4 Hz, 1H), 2.37 (s, 3H), 1.01 (s, 9H).
¹³C NMR (75 MHz, CDCl₃) δ 193.40, 168.68, 151.97, 136.79, 130.96, 128.63, 128.48, 127.72, 120.99, 82.40, 77.69, 57.41, 43.72, 27.40, 25.84.
IR ν_{max} 3316, 2925, 2854, 1729, 1669, 1458, 1370, 1166, 1139, 699 cm⁻¹.

LRMS (APCI): m/z (%) = 329 (M+1, 20), 328 (100), 311 (62), 274 (11), 273 (55).

HPLC OD-H, (2-propanol: Hexane=1:9):Hexane=2:8, flow: 1.0ml/min, $T_R = 8.9 \text{ min (major)}$ and $T_R = 10.6 \text{ min (minor)}$.

 $[\alpha]_{D}^{25} = -195.8 \ (c \ 1.00 \ \text{CHCl}_3)$

(4*S*,5*S*)-*tert*-butyl 3-acetyl-5-hexyl-4-phenyl-4,5-dihydro-1H-pyrazole-5-carboxylate (**3t**)

¹**H NMR** (300 MHz, CDCl₃) δ 7.15-7.26 (m, 3H), 7.06-7.09 (m, 2H), 6.72 (s, 1H), 4.08 (s, 1H), 2.36 (s, 3H), 1.74-1.95 (m, 2H), 1.26-1.31 (m, 8H), 1.00 (s, 9H), 0.88 (t, *J*=6.6 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 193.23, 169.31, 151.58, 137.13, 128.41, 128.21, 127.42, 82.00, 78.55, 57.98, 39.90, 31.46, 29.19, 27.19, 25.66, 23.68, 22.42, 13.94.

IR v_{max} 3323, 2923, 2861, 1728, 1662, 1140, 1055, 1033, 1018, 698 cm⁻¹.

LRMS (APCI): m/z (%) = 373 (M+1, 16), 372 (97), 318 (9), 317 (34), 118 (100).

HRMS (FAB): m/z calcd for $C_{22}H_{33}N_2O_3^+$: 373.2491, found: 373.2490.

HPLC OZ-H, (2-propanol: Hexane=1:9):Hexane=2:8, flow: 1.0ml/min, $T_R = 9.3$ min (major) and $T_R = 35.8$ min (minor).

 $[\alpha]_{D}^{25} = -157.4 \ (c \ 1.00 \ \text{CHCl}_3)$

(4S,5S)-tert-butyl 3-acetyl-5-benzyl-4-cyclohexyl-4,5-dihydro-1H-pyrazole-5-carboxylate (3u)

¹**H** NMR (300 MHz, CDCl₃) δ 7.24-7.34 (m, 3H), 7.09-7.12 (m, 2H), 6.35 (s, 1H), 3.08 (d, *J*=13.2 Hz, 1H), 3.06 (s, 1H), 2.76 (d, *J*=13.2 Hz, 1H), 2.44 (s, 3H), 1.70-1.76 (m, 3H), 1.56-1.64 (m, 2H), 1.45 (s, 9H), 1.08-1.31 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 194.91, 169.48, 151.62, 134.60, 130.14, 128.69, 127.62, 83.02, 78.63, 56.78, 42.94, 39.03, 33.50, 28.33, 28.21, 27.33, 26.40, 26.14, 25.92. IR v_{max} 3362, 2925, 2854, 1725, 1660, 1154, 1030 cm⁻¹. LRMS (APCI): m/z (%) = 385 (M+1, 24), 384 (94), 373 (79), 330 (19), 329 (100), 317 (39), 273 (29). HRMS (FAB): m/z calcd for C₂₃H₃₂N₂O₃⁺: 385.2491, found: 385.2491. HPLC OZ-H, (2-propanol: Hexane=1:9):Hexane=2:8, flow: 1.0ml/min, *T*_R = 9.3 min (major) and *T*_R = 18.8 min (minor). [α]²⁵_D = -115.7 (*c* 0.50 CHCl₃)

(4S,5S)-tert-butyl 3-acetyl-5-benzyl-4-isopropyl-4,5-dihydro-1H-pyrazole-5-carboxylate (3u)

¹H NMR (300 MHz, CDCl₃) δ 7.26-7.34 (m, 3H), 7.09-7.12 (m, 2H), 6.37 (s, 1H), 3.14 (d, *J*=2.4 Hz, 1H), 3.09 (d, *J*=13.2 Hz, 1H),
2.76 (d, *J*=13.2 Hz, 1H), 2.44 (s, 3H), 2.11-2.22 (m, 1H), 1.43 (s, 9H), 1.01 (d, *J*=7.2 Hz, 3H), 0.80 (d, *J*=6.6 Hz, 3H).
¹³C NMR (75 MHz, CDCl₃) δ 194.85, 169.47, 150.89, 134.58, 130.15, 128.67, 127.60, 83.02, 78.48, 57.13, 43.03, 28.53, 28.09,
25.85, 23.24, 17.82.

IR v_{max} 3353, 2941, 2832, 1724, 1651, 1155, 1027, 703 cm⁻¹.

LRMS (APCI): m/z (%) = 345 (M+1, 17), 326 (16), 318 (19), 242 (22), 146 (13), 118 (100).

HPLC AS-H, (2-propanol: Hexane=1:9):Hexane=2:8, flow: 1.0ml/min, $T_{\rm R} = 5.8 \text{ min (major)}$ and $T_{\rm R} = 8.2 \text{ min (minor)}$. [α]²⁵_D = -57.84 (*c* 1.00 CHCl₃)

	RT	[mV*s]	[%]
1	10.6650	3921.3906	49.16
2	11.5867	4055.1348	50.84
		7976.5250	

2	RT	[mV*s]	[%]
3 Î	14.5600	126.8881	4.72
2	15.6600	2560.7672	95.28
	5)	2687.6553	

	RT	[mV•s]	[%]
t.	10.0700	1925.6408	49.95
2	12.0550	1929.4213	50.05
		3855.0621	6

	RT	[mV*s]	[%]
1	10.4717	450.6677	7.06
2	12.2183	5936.1879	92.94
	8	6386.8555	-

E	RT	[mV*s]	[%]
1	6.0683	1214.8153	49.70
2	7.2267	1229.7101	50,30
125		2444,5254	

	RT	[mV*s]	[%]
1	6.8950	814.1473	9.03
2	8.0933	8202.2336	90.97
	A	9016.3813	

	RT	[mV*s]	[%]
1	8.0083	6228.1406	49.83
2	8.7767	6270,5059	50.17
		12498.6469	

5	RT	[mV*s]	[%]
. î	7.8733	16324.5281	91.07
2	8,7850	1599.7766	8.93
	5	17924.3047	

5	RT	[mV*s]	[%]
1	12.3950	10849.4680	95.38
2	14,1817	525.4703	4.62
	5	11374.9383	

Chiral HPLC Analysis

	AT	[mV*s]	[%]
1	11.6083	152.3510	4.46
2	12.5683	3261.1062	95.54
		3413.4570	

8		RT	[mV*s]	[%]
5	1	7.5383	100.8119	5.88
1	2	8.2017	1614.8868	94.12
			1715.6986	10

	RT	[mV*s]	[%]
1	9.2883	990.7404	50.59
2	14.6783	967.5701	49.41
		1958.3105	

	RT	[mV*s]	[%]
1	9.2433	3471.6176	100.00
		3471.6176	

	RT	[mV*s]	[%]
3	8.2033	2946.9354	48.10
2	19:0567	3179.5820	51.90
		6126.5172	

	RT	[mV*s]	[%]
1	8.0383	15668.2750	98.46
2	19.5417	245.5514	1.54
		15913.8266	

	RT	[mV*s]	[%]
1	8.0217	1945.4344	50.51
2	13.4817	1906.4836	49.49
		3851.9180	

	RT	[mV*s]	[%]
° 1	7.9917	13684.1563	98.54
2	13.6267	202.4490	1.46
2		13886.6047	

KAR-2-87

	RT	[a*Vm]	[%]
1	16.0883	12111.1875	98.80
2	20.4383	146.6214	1.20
		12257.8086	

ю	KE-3-56		
	\bigwedge	Me ^N , NH Me ^N , YCO ₂ t- 3l	Bu
		 \sim	

69 19	RT	[mV*s]	[%]
1	8.3283	2661.2391	97.03
2	13.2567	81.5013	2.97
		2742.7404	

	BT	[mV*s]	[%]
18	14.0583	154.9771	50.05
2	15.0700	154.6506	49.95
		309.6278	

	RT	[mV*s]	[%]
1	13.9850	4180.7391	97.28
2	15.0567	116,9641	2.72
	3 3	4297.7031	

	RT	[mV*s]	[%]
1	16.8117	137.1303	50.61
2	31.0200	133.8309	49.39
		270.9612	

	RT	[mV*s]	[%]
1	16.7883	1792.0451	91.35
2	31.0867	169.7857	8.65
Q		1961.8309	

	RT	[a*Vm]	[%]
1	7.6667	231.3148	49.88
2	11.9283	232,4312	50.12
	4	463.7460	

	RT	[mV*s]	[%]
1	7.6333	255.4964	95.28
2	11,7433	12.6467	4.72
	- C	268.1432	

	RT	[mV*s]	[%]
1	7.1250	159.1054	93.75
2	15.5117	10.6055	6.25
	1	169.7109	J

-	RT	[mV*s]	[%]
. <u> </u>	7.6850	344,2479	50.65
2	11,7317	335.4061	49.35
		679.6540	

	BT	[mV*s]	[%]
1	7.6550	1098.4383	94.58
2	11.6233	62.9270	5.42
		1161.3652	0.000

	BT	[mV+s]	[%]
1	7.8033	923.0334	93:58
2	8.9433	63.3450	6.42
	Ĩ	986,3784	

	RT	[mV*s]	[%]
1	10.2817	211.9730	50.33
2	11.9183	209,1969	49.67
		421.1699	

	RT	[mV*s]	[%]
1	9.6583	3247.8363	94.29
2	11.7000	196.6766	5.71
		3444.5129	

	RT	[mV*s]	[%]
1	9.3000	655.3310	50.15
2	35.2433	651.4099	49.85
		1306.7408	

-	AT	[mV*s]	[%]
	9.3450	3914.2773	94.58
2	35.7733	224,4389	5.42
		4138.7164	

	RT	[mV*s]	[%]
1	9.4933	234.3335	49.48
2	19.0383	239.2315	50.52
		473.5650	

	RT	[mV*s]	[%]
(a	9.3567	949.2372	85.71
2	18.7800	158.2483	14.29
	1	1107.4855	

	RT	[mV*s]	[%]
1	5.9117	761.3275	51.54
2	8.3467	715.8251	48.46
		1477,1526	

	RT	[a*Vm]	[%]
1	5.8183	264,4437	72.38
2	8.2350	100.9219	27.62
		365.3656	

Synthesis of 2,4-diamino carbonyl compound

(S)-tert-butyl 1-acetyl-5-methyl-3-propionyl-4,5-dihydro-1H-pyrazole-5-carboxylate (7)

A 100 ml round bottom flask was charged with enone **3d** (1.9 g, 8.1 mmol), a magnetic stir bar and freshly distilled THF (50 ml). The mixture was cooled to 0 °C. To this solution was added a NaH (0.39 g 60% dispersion in mineral oil, 9.7 mmol) and Ac₂O (1.1 ml, 11.3 mmol). After completion of reaction, the reaction was quenched with saturated $NH_4Cl_{(aq)}$. The aqueous layer was extracted with dichloromethane (3 × 20 ml) and the combined organic layers were dried over Na_2SO_4 , filtered and concentrated under reduced pressure. Flash chromatography (ethyl acetate:hexane=1:10) provided **7** (2.28 g, 8.1 mmol, 99% yield) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃) δ 3.28 (d, *J*=18.5 Hz, 1H), 2.87-2.99 (m, 3H), 2.35 (s, 3H), 1.64 (s, 3H), 1.44 (s, 9H), 1.16 (t, *J*=7.0 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 197.31, 169.83, 169.62, 150.39, 82.47, 68.21, 44.82, 31.37, 27.75, 22.08, 21.94, 7.89.

IR v_{max} 2981, 2939, 1741, 1681, 1579, 1369, 1227, 1136, 865, 734 cm⁻¹.

LRMS (APCI): m/z (%) = 283 (M+1, 16), 282 (21), 248 (100), 227 (70), 195 (90), 162 (41), 105 (52).

 $[\alpha]^{25}_{D} = +167.7 (c \ 1.61 \ \text{CHCl}_3).$

(3S,5R)-tert-butyl 2-acetyl-3-methyl-5-propionylpyrazolidine-3-carboxylate (7)

A 100 ml round bottom flask was charged with 7 (515 mg, 1.82 mmol), a magnetic stir bar and anhydrous MeOH (23 ml). The mixture was cooled to -78 °C. To this solution was added a samarium(II) iodide solution (46 ml, 0.1M in THF, 4.56 mmol). The reaction was stirred -78 °C for 10min. The reaction was quenched with 20 ml saturated NaHCO_{3(aq)}. The aqueous layer was extracted with ethyl acetate (3 × 30 ml) and the combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. Flash chromatography (ethyl acetate:hexane=1:1) provided **8** (481 mg, 1.69 mmol, 93% yield) as a white solid.

¹**H NMR** (600 MHz, CDCl₃) δ 4.96 (d, *J*=10.2 Hz, 1H), 3.93-3.97 (m, 1H), 2.66-2.73 (m, 1H), 2.56-2.62 (m, 1H), 2.46 (br s, 1H), 2.30 (dd, *J*_{AB}=12.6 Hz, *J*_{AC}=7.2 Hz, 1H), 2.18 (s, 3H), 1.62 (s, 3H), 1.42 (s, 9H), 1.11 (t, *J*=7.2 Hz, 3H).

¹**H NMR** (600 MHz, CD₃OD) δ 3.86 (dd, *J*_{AB}=8.4 Hz, *J*_{AC}=1.8 Hz, 1H), 2.90 (dq, *J*_{AB}=18.6 Hz, *J*_{AC}=7.2 Hz, 1H), 2.83 (d, *J*=13.2 Hz, 1H), 2.61 (dq, *J*_{AB}=18.6 Hz, *J*_{AC}=7.2 Hz, 1H), 2.26 (dd, *J*_{AB}=13.2 Hz, *J*_{AC}=8.4 Hz, 1H), 2.20 (s, 3H), 1.51 (s, 3H), 1.36 (s, 9H), 1.03 (t, *J*=7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 208.42, 171.32, 168.33, 82.05, 66.66, 64.94, 45.95, 34.03, 27.85, 22.36, 21.77, 7.37.

IR v_{max} cm⁻¹ 3212, 2982, 1736, 1720, 1618, 1455, 1291, 1150, 1131, 931, 853, 747.

LRMS (APCI): m/z (%) = 285 (M+1, 4), 284 (2), 277 (8), 248 (20), 119 (100), 211 (17), 187 (30), 170 (21), 141 (51). $[\alpha]^{25}{}_{D} = -19.11 (c \ 0.27 \ CHCl_3).$

(35,5R)-tert-butyl 2-acetyl-3-methyl-5-propionyl-1-(2,2,2-trifluoroacetyl)pyrazolidine-3-carboxylate (9)

Amine (8) (450 mg, 1.58 mmol) was dissolved in 20 ml of dichloromethane. The mixture was cooled to 0 °C. To this solution was added a triethylamine (0.44 ml, 3.16 mmol), trifluoroacetic anhydride (0.33ml, 2.37 mmol) and reaction mixture was kept at 0 °C for 30 min. The mixture was quenched with 10 mL saturated NaHCO_{3(aq)} and extracted with CH₂Cl₂ (3×5 mL). The organic layer was dried on Na₂SO₄. The solvent was removed and the obtained oil was purified by flash chromatography (ethyl acetate:hexane=1:5) which yielded **9** (600 mg, 1.58 mmol, 99% yield) as colorless oil.

¹**H NMR** (500 MHz, CDCl₃) δ 4.75 (s, 1H), 3.00 (d, *J*=13.5 Hz, 1H), 2.64-2.72 (m, 1H), 2.62 (br s, 1H), 2.31 (dd, *J*_{AB}=13.5 Hz, *J*_{AC}=9.5 Hz, 1H), 2.17 (s, 3H), 1.58 (s, 3H), 1.40 (s, 9H), 1.13 (t, *J*=7.5 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 203.59, 169.35, 168.19, 157.70, 115.93 (q, *J*=286.2 Hz), 83.14, 66.80, 65.57, 42.57, 31.92, 27.58, 23.00, 21.13, 7.21.

IR v_{max} 2985, 1729, 1679, 1372, 1212, 1150, 844, 725 cm⁻¹.

LRMS (APCI): m/z (%) = 379 (M-1, 28), 323 (84), 194 (100), 124 (27), 69 (8)

 $[\alpha]_{D}^{25} = +84.74 \ (c \ 2.5 \ \text{CHCl}_3).$

(2R,4R)-tert-butyl 2-acetamido-2-methyl-5-oxo-4-(2,2,2-trifluoroacetamido)heptanoate (10)

A 100 ml frame-dried round bottom flask was charged with **9** (600 mg, 1.58 mmol). The flask was purged with nitrogen, and samarium(II) iodide solution (32 ml, 0.1M in THF, 3.16 mmol) was added. The reaction was stirred r.t for 10min. The reaction was quenched with 20 ml saturated NaHCO_{3(aq)} and vigorously stirred for 10 min at room temperature. The aqueous layer was extracted with ethyl acetate (3×10 ml) and the combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. Flash chromatography (ethyl acetate:hexane=1:1) provided **10** (603 mg, 1.58 mmol, 99% yield) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 6.96 (d, *J*=8.5 Hz, 1H), 6.56 (s, 1H), 4.60-4.64 (m, 1H), 2.94 (dd, *J*_{AB}=14.5 Hz, *J*_{AC}=3.0 Hz, 1H), 2.69 (dq, *J*_{AB}=18.0 Hz, *J*_{AC}=7.0 Hz, 1H), 2.49 (dq, *J*_{AB}=18.0 Hz, *J*_{AC}=7.0 Hz, 1H), 2.14 (dd, *J*_{AB}=14.5 Hz, *J*_{AC}=11.5 Hz, 1H), 2.06 (s, 3H), 1.58 (s, 3H), 1.47 (s, 9H), 1.08 (t, *J*=7.0 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 207.97, 172.86, 170.50, 157.4 (q, *J*=37.1 Hz), 115.66 (q, *J*=286.0 Hz), 83.72, 58.75, 55.43, 36.25, 33.07, 27.83, 24.70, 24.09, 7.65.

IR v_{max} 2983, 1720, 1658, 1543, 1306, 1167, 1045, 847 cm⁻¹.

LRMS (APCI): m/z (%) = 381 (M-1, 100), 325 (17), 306 (6), 265 (1), 194 (4), 112 (1).

 $[\alpha]_{D}^{25} = -29.62 (c \ 1.19 \text{ CHCl}_3).$

Absolute structure determination of 2-pyrazoline

 $[\alpha]^{25}_{D}$ = +95.17 (c 0.60, MeOH)

(S)-tert-butyl 1-acetyl-3-(3-hydroxypentan-3-yl)-5-methyl-4,5-dihydro-1H-pyrazole-5-carboxylate (11)

To a -78 °C solution of 7 (1 g, 3.54 mmol) in 40ml of CH_2Cl_2 was added ethylmagnesium bromide (2.3 ml, 4.6 mmol) as a 2 M solution in THF via sylinge. The reaction was maintained for 30 min, quenched by adding 20 ml of saturated $NH_4Cl_{(aq)}$ and extracted with dichloromethane (3 × 10 ml) and the combined organics were dried over Na_2SO_4 , filtered, and concentrated. Flash chromatography (ethyl acetate:hexane=1:5) provided tertiary alcohol **11** (0.497 g, 1.59 mmol, 45% yield) as a colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 3.06 (d, *J*=18.0 Hz, 1H), 2.88 (s, 1H), 2.67 (d, *J*=18.0 Hz, 1H), 2.26 (s, 3H), 1.70-1.76 (m, 2H), 1.63 (s, 3H), 1.59-1.63 (m, 2H), 1.43 (s, 9H), 0.89 (t, *J*=7.2 Hz, 3H), 0.89 (t, *J*=7.2 Hz, 3H).

(S)-1-acetyl-3-(3-hydroxypentan-3-yl)-5-methyl-4,5-dihydro-1H-pyrazole-5-carboxylic acid (12)

To a solution of **11** (144 mg, 0.48 mmol) in 5 ml CH₂Cl₂ was added ZnBr₂ (935 mg, 4.15 mmol) and the solution stirred for 24 h at room temperature². At this time, 5 ml of water was added and the mixture was stirred for 3 h. The aqueous layer was extracted with ethyl acetate (10×5 ml) and the combined organics were dried over Na₂SO₄, filtered, and concentrated. Flash chromatography (ethyl acetate:MeOH:AcOH=95:5:0.5) provided carboxylic acid **12** (60 mg, 0.24 mmol, 49% yield) as a colorless oil.

¹**H NMR** (600 MHz, CD₃OD) δ 3.24 (d, *J*=18.6 Hz, 1H), 2.86 (d, *J*=18.0 Hz, 1H), 2.24 (s, 3H), 1.67-1.79 (m, 4H), 1.58 (s, 3H), 0.90 (td, *J*_{AB}=7.2 Hz, *J*_{AC}=1.8 Hz, 6H).

² (1) Y.-q. Wu, D. C. Limburg, D. E. Wilkinson, M. J. Vaal, G. S. Hamilton, *Tetrahedron Lett.* **2000**, *41*, 2847. (2) R. Kaul, Y. Brouillette, Z. Sajjadi, K. A. Hansford, W. D. Lubell, J. Org. Chem. **2004**, *69*, 6131.

ent-12

[α]²⁵_D = -91.0 (c 0.33, MeOH)

(*R*)-ethyl 1-(*tert*-butyldimethylsilyl)-5-((*tert*-butyldimethylsilyloxy)methyl)-5-methyl-4,5-dihydro-1H-

pyrazole-3-carboxylate (**17**)

To a -40 °C solution of 16^3 (154 mg, 0.83 mmol) and triethylamine (577 µl, 4.14 mmol) in 5.0 ml of CH₂Cl₂ was added TBSOTF (0.76 ml, 3.32 mmol). The reaction was stirred for 15 min. The reaction was quenched by adding 3 ml of saturated NH₄Cl_(aq) and the layer were stirred and separated. The aqueous layer was extracted with CH₂Cl₂ (3 × 3 ml) and the combined organics were dried over Na₂SO₄, filtered, and concentrated. The crude product was purified by flash chromatography (ethyl acetate:hexane=1:30) to afford the desired product **17** (172 mg, 0.43 mmol, 52 % yield) as colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 4.19-4.27 (m, 2H), 3.42 (d, *J*=10.2 Hz, 1H), 3.40 (d, *J*=9.6 Hz, 1H), 3.04 (d, *J*=17.4 Hz, 1H), 2.58 (d, *J*=17.4 Hz, 1H), 1.30 (s, 3H), 1.30 (t, *J*=6.9 Hz, 3H), 0.95 (s, 9H), 0.87 (s, 9H), 0.24 (s, 6H), 0.04 (s, 6H).

³ Gao, L.; Hwang, G.-S.; Lee, M. Y.; Ryu, D. H. Chem. Commun. 2009, 5460.

(*R*)-1-(5-((*tert*-butyldimethylsilyloxy)methyl)-3-(3-hydroxypentan-3-yl)-5-methyl-4,5-dihydro-1*H*-pyrazol-1yl)ethanone (**18**)

The ethylmagnesium bromide in 1 M THF solution (1 ml, 1 mmol) was added dropwise to a 0 °C solution of **17** (41 mg, 0.1 mmol) in 1 ml THF for 30 min. After completion of dropwise addition, the resulting mixture was quenched by adding 2 ml of saturated NaHCO_{3(aq)} and extracted with dichloromethane (3 × 2 ml) and the combined organics were dried over Na₂SO₄, filtered, and concentrated. The crude product was dissolved in 1 ml of dichloromethane. To this solution was added a Ac₂O (7.8 μ l, 0.11 mmol) and reaction mixture was kept at room temperature for 40 min. The mixture was quenched with 1 mL saturated NaHCO_{3(aq)} and extracted with CH₂Cl₂ (3 × 2 mL). The organic layer was dried on Na₂SO₄. The solvent was removed and the obtained oil was purified by flash chromatography (ethyl acetate:hexane=1:5) which yielded **18** (32 mg, 0.09 mmol, 88% yield) as colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 4.29 (d, *J*=10.2 Hz, 1H), 3.56 (d, *J*=10.2 Hz, 1H), 3.16 (d, *J*=18.0 Hz, 1H), 3.02 (s, 1H), 2.43 (d, *J*=18.0 Hz, 1H), 2.25 (s, 3H), 1.67-1.76 (m, 2H), 1.56-1.63 (m, 2H), 1.47 (s, 3H), 0.87 (t, *J*=7.2 Hz, 6H), 0.86 (s, 9H), 0.04 (s, 3H), 0.02 (s, 3H).

(R)-1-(5-(hydroxymethyl)-3-(3-hydroxypentan-3-yl)-5-methyl-4,5-dihydro-1H-pyrazol-1-yl)ethanone (19)

To a 0 °C solution of **18** (28 mg, 0.077 mmol) in 1.0 ml of THF was added tetrabutylammonium fluoride (230 μ l, 0.23 mmol) as a 1 M solution in THF via microsylinge. The reaction was maintained for 2 h, quenched by adding 1 ml of saturated NH₄Cl_(aq) and extracted with CH₂Cl₂ (3 × 2 mL) and the combined organics were dried over Na₂SO₄, filtered, and concentrated. The crude product was purified by flash chromatography (ethyl acetate:hexane=1:1) to afford the desired product **19** (19 mg, 0.077 mmol, 99%) as colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 4.91 (br s, 1H), 3.75 (s, 2H), 2.92 (br s, 1H), 2.72 (d, *J*=16.0 Hz, 1H), 2.60 (d, *J*=17.4 Hz, 1H), 2.30 (s, 3H), 1.57-1.78 (m, 4H), 1.47 (s, 3H), 0.90 (t, *J*=7.2 Hz, 3H), 0.86 (t, *J*=7.2 Hz, 3H).

(R)-1-acetyl-3-(3-hydroxypentan-3-yl)-5-methyl-4,5-dihydro-1H-pyrazole-5-carboxylic acid (ent-12)

The Johns reagent is prepared by dissolving CrO₃ (24 mg, 0.24 mmol) in 0.5 ml of distilled water. To this solution is added H₂SO₄ (21 μ l, 0.4 mmol). The Johns reagent is added to a 1 ml Acetone solution of **19** (14.5 mg, 0.06 mmol) and the solution stirred for 18 h at room temperature. The reaction was quenched by adding small porting of 2-isoprropanol and 1 ml of saturated NH₄Cl_(aq) and the layer were stirred and separated. The aqueous layer was extracted with ethyl acetate (10 × 3 ml) and the combined organics were dried over Na₂SO₄, filtered, and concentrated. The crude product was purified by flash chromatography (ethyl acetate:MeOH:AcOH=95:5:0.5) to afford the desired product *ent*-**12** (4.3 mg, 0.016 mmol, 28 % yield) as colorless oil.