Electronic Supplementary Information

Solvent- and Phase-Controlled Photochirogenesis. Enantiodifferentiating Photoisomerization of (Z)-Cyclooctene Sensitized by Cyclic Nigerosylnigerose-Based Nanosponges with Pyromellitate Crosslinker

Xueqin Wei,^a Wenting Liang,^b Wanhua Wu,^a Cheng Yang,^{*a} Francesco Trotta,^{*c} Fabrizio Caldera,^c Andrea Mele,^d Tomoyuki Nishimoto^e and Yoshihisa Inoue^{*f}

^a State Key Laboratory of Biotherapy, West China Medical School and Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China. E-mail: yangchengyc@scu.edu.cn

⁹ Institute of Environmental Sciences, Shanxi University, Taiyuan 030006, China

^c Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy. E-mail: francesco.trotta@unito.it

^{*a} Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy*</sup>

^e Hayashibara Co., 675-1 Fujisaki, Naka-ku, Okayama 702-8006, Japan

^{*t*} Department of Applied Chemistry, Osaka University, 2-1Yamada-oka, Suita 565-0871, Japan. *E-mail: inoue@chem.eng.osaka-u.ac.jp*

Table of Contents

Elemental analysis	1
ATR-FTIR analysis	2
Thermogravimetric analysis	4

Elemental analysis

Instrument: Thermo Scientific - FlashEA1112.

CNN-NS	Sample #	% N	% C	% H	% S	
6	1	3.20	49.46	6.75	0.00	
	2	3.16	49.30	6.75	0.00	
7	1	3.01	50.89	5.95	0.00	
	2	3.09	51.36	6.07	0.00	

Discussion: Two independent analyses of each CNN-NS gave essentially the same results, indicating the homogeneity of the polymer samples obtained. The nitrogen detected for both CNN-NSs arise from the triethylamine employed as a base in the CNN-NS synthesis, which eventually forms an ammonium salt with the carboxylic group remaining in CNN-NS. From the nitrogen contents observed (3.0-3.2%), 44% and 27% of the four carboxylic groups in pyromellitic acid are considered to form ammonium salt in CNN-NSs **6** and **7**, respectively.

ATR-FTIR analysis

Instrument: PerkinElmer Spectrum 100 FT-IR.

Figure S1. ATR-FTIR spectrum of CNN-NS 6.

Figure S2. ATR-FTIR spectrum of CNN-NS 7.

Figure S3. Comparison of the ATR-FTIR spectra of CNN-NSs 6 (bottom) and 7 (top).

Discussion: As can be seen from Figure S3, the relative intensity of carbonyl stretching band at ca. 1720 cm⁻¹, against the C-O stretching band at ca. 1000 cm⁻¹, is stronger by a factor of 1.5 for CNN-NS **7** (prepared by using the CNN:PDA raio of 1:4) than for CNN-NS **6** (prepared by using the CNN:PDA raio of 1:2), indicating the presence of a larger content of pyromellitate unit in **7**.

Thermogravimetric analysis (TGA)

Instrument: TA Instruments 2050 TGA V5.4A. Program: equilibrate at 40°C, ramp 10°C/min to 700°C under nitrogen atmosphere.

Figure S4. TGA of CNN (green line) and derivative curve (blue line). Amount of adsorbed water: 11.01 %.

Figure S5. TGA of CNN-NS 6 (green line) and derivative curve (blue line). Amount of adsorbed water: 8.89 %.

Figure S6. TGA of CNN-NS 7 (green line) and derivative curve (blue line). Amount of adsorbed water: 6.77%

Figure S7. Comparison of TGAs for CNN-NSs 6 and 7.

Discussion: In both polymers, degradation started at 250-260°C but CNN-NS 7 gave a larger residue at 680°C than CNN-NS 6, indicating more extensive crosslinking for 7.