Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

S1

Supporting Information

Synthesis, Binding Affinity and Structure-Activity Relationships of Novel, Selective and Dual Targeting CCR2 and CCR5 Receptor Antagonists

Anna Junker, Artur Kamil Kokornaczyk, Annelien J.M. Zweemer, Bastian Frehland, Dirk Schepmann, Junichiro Yamaguchi, Kenichiro Itami, Andreas Faust, Sven Hermann, Stefan Wagner, Michael Schäfers, Michael Koch, Christina Weiss, Laura H. Heitman, Klaus Kopka, Bernhard Wünsch^{*}

Content	page
1. Purity data of the test compounds	S3
2. Experimental, Chemistry	S4
2.1. General	S4
2.2. Synthetic procedures	S4
3. Experimental Pharmacology	S24
4. ¹ H and ¹³ C and gHSQC NMR spectra, HPLC analysis and MS spectra	S28

compd.	purity by HPLC
6	99 %
8a	99 %
8b	99 %
8c	>97 %
8d	>95 %
8e	97 %
8f	>95 %
9a	95 %
9b	95 %
9c	99 %
9d	98 %
9e	99 %
9f	99 %
9g	>99 %
9h	96 %
9j	98 %
9k	99 %
91	97 %
9m	98 %
90	96 %
9p	96 %
9v	98 %
14a	95 %
14b	95 %
14d	97 %
14g	>97 %
14h	95 %

1. Purity data of the test compounds

2. Experimental, Chemistry

2.1. Chemistry General

Unless otherwise noted, moisture-sensitive reactions were conducted under dry nitrogen. THF and 1,4-dioxane were dried with sodium/benzophenone and freshly distilled before use. Flash column chromatography (fc): Silica gel 60, 40-64 µm; parentheses include: eluent, Rf value. Melting point: melting point apparatus Stuart Scientific[®] SMP 3, uncorrected. IR: IR spectrophotometer FT-ATR-IR (Jasco[®]). ¹H NMR (400 MHz): Unity Mercury Plus 400 spectrometer (Varian®), AV400 (Bruker®), JEOL JNM-ECA-400. ¹³C NMR (100 MHz): Unity Mercury plus 400 spectrometer (Varian[®]) JEOL JNM-ECA-400; δ in ppm relative to tetramethylsilane; coupling constants are given with 0.5 Hz resolution, the assignments of ¹³C and ¹H NMR signals were supported by 2D NMR techniques; MS: APCI = atmospheric pressure chemical ionization, EI = electron impact, ESI = electro-spray ionization: MicroTof (Bruker Daltronics, Bremen), calibration with sodium formate clusters before measurement. HPLC method for determination of the product purity: Merck Hitachi Equipment; UV detector: L-7400; autosampler: L-7200; pump: L-7100; degasser: L-7614; Method: column: LiChrospher[®] 60 RP-select B (5 µm), 250x4 mm² column; flow rate: 1.00 mL/min; injection volume: 5.0 μ L; detection at $\ddot{e} = 210$ nm; solvents: A: water with 0.05 % (v/v) trifluoroacetic acid; B: acetonitrile with 0.05 % (v/v) trifluoroacetic acid: gradient elution: (A %): 0-4 min: 90 %, 4-29 min: gradient from 90 % to 0 %, 29-31 min: 0 %, 31-31.5 min: gradient from 0 % to 90 %, 31.5-40 min: 90 %. Thin layer chromatography (tlc): all reactions were monitored by tlc. Tlc aluminium foils (by Merck[®], silica gel 60 F₂₅₄) were used in tlc chambers in saturated atmosphere at rt. The spots were visualized using UV light (254 nm). The reported Rf values should be taken as approximate values. The ratio of (highly volatile) solvent mixtures strongly depend on temperature and opening the tlc chamber might change the solvent composition and hence the R_f value.

2.2. Synthetic procedures

General procedure A: Suzuki-Miyaura cross-coupling

A 20 mL Schlenk flask was equipped with a Dimroth condenser, a magnetic stirring bar and closed. The flask was flame-dried *in vacuo* and filled with N₂. Under a permanent flow of N₂, amide **7** (1 eq.), PdCl₂(dppf) (5 mol%), base (K₂CO₃, KOAc, NaOCH₃) (2 eq.) and arylboronic acid (1.1-1.5 eq.) were suspended in dry dimethoxyethane (5-15 mL). The flask was sealed and heated to reflux for 12 h. After cooling to rt, the mixture was filtered through a short silica pad (EtOAc). The filtrate was concentrated *in vacuo* to give the crude product, which was purified by fc. Recrystallization from acetonitrile afforded the final product.

2-(4-Methylphenyl)-6,7-dihydro-5*H*-benzo[7]annulene-8-carboxylic acid³⁷ (6)

A 50 mL Schlenk flask was equipped with a Dimroth condenser, a magnetic stirring bar and closed. The flask was flame-dried in vacuo and filled with N2. Under a permanent flow of N₂, ester **3** (1.0 g, 3.5 mmol), PdCl₂(dppf) (130 mg, 0.17 mmol, 5 mol%), KOAc (700 mg, 7.0 mmol, 2 eq.) and 4-methylphenylboronic acid (525 mg, 3.85 mmol, 1.1 eq.) were suspended in dry dimethoxyethane (10 mL). The flask was sealed and heated to reflux for 12 h. After cooling down to rt, the mixture was filtered through a short silica pad (EtOAc). The filtrate was concentrated in vacuo to give the crude product as a brown oil, which was purified by fc (EtOAc : MeOH = 95:5) to yield 1.02 g (99 %) of the ester 5 as a colorless oil. The ester 5 (1.02 g, 3.48 mmol) was dissolved in MeOH (50 mL) and 5 M NaOH (50 mL) was added. The mixture was heated to reflux for 3 h. After cooling down to rt, the mixture was concentrated in vacuo and acidified with conc. HCl to give a precipitate. The solid was filtered off, washed with 1 M HCl, water, dried and recrystallized from acetonitrile to give 6 as a colorless solid. $R_f = 0.42$ (CH₂Cl₂ : MeOH= 95:5), mp 189-190 °C, yield 950 mg (97 %), C₁₉H₁₈O₂ (278.3 g/mol). Purity (HPLC): 99 %, t_R = 21.40 min. HRMS (APCI): m/z = calcd. for C₁₉H₁₉O₂ [MH⁺] 279.1380, found 279.1381. ¹H NMR (CDCl₃): δ (ppm) = 1.92-2.17 (m, 2H, 6-CH₂), 2.40 (s, 3H, CH_{3tolyl}), 2.70 (t, J = 5.6 Hz, 2H, 7-CH₂), 2.89 (t, J = 5.6 Hz, 2H, 5-CH₂), 7.18-7.30 (m, 3H, 3-CH_{phenyl}, 5-CH_{phenyl}, 4-CH), 7.46 (dd, J = 7.8/2.1 Hz, 1H, 3-CH), 7.49 (d, J = 8.1 Hz, 2H, 2-CH_{phenyl}, 6-CH_{phenyl}), 7.57 (d, J = 2.0 Hz, 1H, 1-CH), 7.92 (s, 1H, 9-CH). ¹³C NMR $(CDCI_3)$: δ (ppm) = 21.6 (CH_{3tolyl}), 27.6 (C-6), 30.6 (C-7), 35.4 (C-5), 127.2 (C-2_{tolyl}, C-6tolyl.), 128.0 (C-3), 130.0 (C-3tolyl., C-5tolyl), 130.4 (C-4), 132.1 (C-1), 132.2 (C-4tolyl), 134.7 (C-4a), 137.6 (C-1_{tolyl}), 137.9 (C-2), 139.6 (C-9a), 142.3 (C-9), 142.6 (C-8), 174.3 (O=C-OH). FT-IR (neat): \tilde{v} (cm⁻¹) = 2920, 2840 (C-H_{alkyl}), 2634, 2549 (COOH), 1732, 1680 (C=O).

2-(4-Methyphenyl)-*N*-{4-[*N*-methyl-*N*-(tetrahydro-2*H*-pyran-4-

yl)aminomethyl]phenyl}-6,7-dihydro-5*H*-benzo[7]annulene-8-carboxamide³⁹ (8a)

According to general procedure A amide **7** (200 mg, 0.42 mmol), PdCl₂(dppf) (20 mg, 0.02 mmol, 5 mol%), K₂CO₃ (174 mg, 1.26 mmol, 3 eq.) and 4-methylphenylboronic acid

(86 mg, 0.63 mmol, 1.5 eq.) were suspended in dry dimethoxyethane (15 mL). The crude product was purified by fc (EtOAc : MeOH = 95:5) and recrystallized from acetonitrile to give **8a** as a colorless solid. $R_f = 0.28$ (CH₂Cl₂ : MeOH = 95:5), mp 160-162 °C, yield 74 mg (90 %). C₃₂H₃₆N₂O₂ (480.6 g/mol). Purity (HPLC): 99 %, t_R = 21.31 min. HRMS (APCI): m/z = calcd. for $C_{32}H_{37}N_2O_2$ [MH⁺] 481.2850, found 481.2835. ¹H NMR (CDCl₃): δ (ppm) = 1.52-1.79 (m, 4H, 3-CH_{2pyran}, 5-CH_{2pyran}), 2.03-2.11 (m, 2H, 6-CH₂), 2.15 (s, 3H, N-CH₃), 2.33 (s, 3H, CH_{3tolyl}), 2.51-2.68 (m, 3H, 4-H_{pyran}, 7-CH₂), 2.74-2.89 (m, 2H, 5-CH₂), 3.30 (td, J = 11.5/2.5 Hz, 2H, CH_{2axial}-O-CH_{2axial}), 3.52 (s, 2H, N-CH₂), 3.89-4.02 (m, 2H, CH_{2equat.}-O-CH_{2equat.}), 7.13-7.18 (m, 3H, 4-CH, 3-H_{tolyl}, 5-H_{tolyl}), 7.25 (d, J = 8.4 Hz, 2H, 3-H_{phenyl}, 5-H_{phenyl}), 7.31-7.39 (m, 2H, 3-CH, 9-CH), 7.41 (d, J = 8.1 Hz, 2H, 2-Htolyl, 6-Htolyl), 7.44 (d, J = 1.9 Hz, 1H, 1-CH), 7.50 (d, J = 8.5 Hz, 2H, 2- H_{phenyl} , 6- H_{phenyl}), 7.65 (s, 1H, N-H). ¹³C NMR (CDCl₃): δ (ppm) = 21.6 (CH_{3tolyl}), 28.4 (C-6), 29.6 (C-3_{pyran}, C-5_{pyran}), 30.9 (C-7), 35.1 (C-5), 38.0 (N-CH₃), 57.8 (Ph-CH₂), 60.0 (C-4pyran), 68.2 (C-2pyran, C-6pyran), 120.5 (C-2phenyl, C-6phenyl), 127.2 (C-2tolyl, C-6tolyl), 127.3 (C-3), 129.8 (C-3tolyl, C-5tolyl), 130.0 (C-3phenyl, C-5phenyl), 130.3 (C-4), 130.3 (C-4tolyl), 131.1 (C-1), 134.7 (C-9), 135.1 (C-4a), 137.3 (C-4phenyl), 137.6 (C-1tolyl), 138.0 (C-2), 138.4 (C-1_{phenyl}), 139.6 (C-9a), 141.9 (C-8), 168.5 (O=C-NH). FT-IR (neat): \tilde{v} (cm⁻¹) = 3298 (N-H), 2970, 2920 (C-Halkyl), 1644 (C=O), 1095, 1014 (C-O).

N-[4-Diethylamino)phenyl]-2-(4-methylphenyl)-6,7-dihydro-5*H*-benzo[7]annulene-8carboxamide (8b)

N¹,N¹-Diethylbenzene-1,4-diamine (60 mg, 0.36 mmol, 1 eq.) was added to a vigorously stirred mixture of acid **6** (100 mg, 0.36 mmol), triethylamine (73 mg, 0.72 mmol, 2 eq.) and HATU[™] (153 mg, 0.40 mmol. 1.1 eq.) in THF (5 mL). The mixture was stirred overnight at rt. The mixture was concentrated *in vacuo* and the residue was purified by fc (EtOAc : $CH_2CI_2 = 1:2 + 5\%$ MeOH) and recrystallized from acetonitrile to give **8b** as a colorless solid. R_f = 0.91 (MeOH : $CH_2CI_2 = 5:95$), mp 153-155 °C , yield 86 mg (56 %). C₂₉H₃₂N₂O (424.6 g/mol). Purity (HPLC): 99 %, t_R = 21.33 min. HRMS (EI): *m/z* = calcd. for C₂₉H₃₃N₂O [MH⁺] 425.2587, found 425.2608. ¹H NMR (CDCI₃): δ (ppm) = 1.15 (t, *J* = 7.2 Hz, 6H, N(CH₂CH₃)₂), 2.15 (quint, *J* = 6.3 Hz, 2H, 6-CH₂), 2.40 (s, 3H, CH_{3tolyl}), 2.71 (t, *J* = 6.6 Hz, 2H, 7-CH₂), 2.81-2.92 (m, 2H, 5-CH₂), 3.34 (q, *J* = 7.0 Hz, 4H, N(CH₂CH₃)₂), 6.68 (d, *J* = 9.0 Hz, 2H, 3-CH_{holyl}, 5-CH_{holyl}), 7.38-7.44 (m, 4H, 3-CH, 9-CH, 2-CH_{phenyl}), 7.47-7.50 (m, 3H, 2-CH_{holyl}, 6-CH_{holyl}, 1-CH), 7.51 (s, 1H, NH). ¹³C

NMR (CDCl₃): δ (ppm) = 13.0 (N(CH₂CH₃)₂), 21.6 (CH_{3tolyl}), 28.5 (C-6), 30.9 (C-7), 35.0 (C-5), 45.0 (N(CH₂CH₃)₂), 112.9 (C-3_{phenyl}, C-5_{phenyl}), 122.8 (C-2_{phenyl}, C-6_{phenyl}), 127.1 (C-3), 127.2 (C-1), 129.9 (C-2_{tolyl}, C-6_{tolyl}), 130.2 (C-3_{tolyl}, C-5_{tolyl}), 131.1 (C-4), 134.2 (C-9) 135.4 (C-8), 137.5 (C-9a), 138.1 (C-1_{tolyl}), 138.6 (C-4_{tolyl}), 139.6 (C-2), 141.6 (C-4a), 145.7 (C-4_{phenyl}), 164.9 (O=C-NH). A signal for the atom C-1_{phenyl} is not visible. FT-IR (neat): $\tilde{\nu}$ (cm⁻¹) = 3344 (N-H), 2785 (C-H_{alkyl}), 1627 (C=O).

2-(4-Methylphenyl)-*N*-{4-[4-(tetrahydro-2*H*-pyran-4-yl)piperazin-1-yl]phenyl}-6,7dihydro-5*H*-benzo[7]annulene-8-carboxamide (8c)

4-[4-(Tetrahydro-2H-pyran-4-yl)piperazin-1-yl]aniline (78 mg, 0.36 mmol, 1 eq.) was added to a vigorously stirred mixture of acid 6 (100 mg, 0.36 mmol), triethylamine (110 mg, 1.08 mmol, 3 eq.) and COMU[™] (232 mg, 0.54 mmol. 1.5 eq.) in acetonitrile (5 mL). The mixture was stirred overnight at rt, during which a precipitate was formed. The solid was filtered off, washed with acetonitrile and water, dried and recrystallized from acetonitrile to afford 8c as a colorless solid. Rf = 0.34 (MeOH : CH₂Cl₂ = 5:95), mp 248-250 °C (dec.), yield 107 mg (53 %). C₃₄H₃₉N₃O₂ (521.7 g/mol). Purity (HPLC): >97 %, t_R = 21.05 min. HRMS (APCI): m/z = calcd. for C₃₄H₄₀N₃O₂ [MH⁺] 522.3115, found 522.3092. ¹H NMR (CDCl₃): δ (ppm) = 1.62 (qd, J = 12.0/4.3 Hz, 2H, 3-CH_{2pyran-axial}, 5- $CH_{2pyran-axial}$, 1.76-1.86 (m, 2H, 3- $CH_{2pyran-equat}$, 5- $CH_{2pyran-equat}$), 2.15 (quint. m, J = 6.3Hz, 2H, 6-CH₂), 2.40 (s, 3H, CH_{3tolyl}), 2.48 (tt, J = 10.0/2.9 Hz, 1H, 4-H_{pyran}), 2.67-2.78 (m, 6H, 7-CH₂, 3-CH_{2piperazin}, 5- CH_{2piperazin}), 2.82-2.92 (m, 2H, 5-CH₂), 3.13-3.28 (m, 4H, 2-CH_{2piperazin}, 6-CH_{2piperazin}), 3.41 (td, J = 11.9/1.9 Hz, 2H, CH_{2axial}-O-CH_{2axial}), 4.05 (dd, J = 11.5/3.9 Hz, 2H, CH_{2equat.}-O-CH_{2equat.}), 6.93 (d, J = 8.9 Hz, 2H, 3-CH_{phenyl}, 5-CH_{phenyl}), 7.18-7.25 (m, 3H, 4-CH, 3-CHtolyl, 5-CHtolyl), 7.40 (s, 1H, 9-CH), 7.43 (dd, J = 7.8/1.9 Hz, 1H, 3-CH), 7.45-7.52 (m, 5H, 1-CH, 2-CHphenyl, 6-CHphenyl, 2-CHtolyl, 6-CHtolyl), 7.53 (s, 1H, N*H*). ¹³C NMR (CDCl₃): δ (ppm) = 21.6 (CH_{3tolyl}), 28.4 (C-6), 30.0 (C-3_{pyran}, C-5_{pyran}), 30.9 (C-5), 35.0 (C-7), 49.5 (C-2piper., C-6piper.), 50.3 (C-3piper, C-5piper), 61.4 (C-4pyran), 67.9 (C-2pyran, C-6pyran), 117.1 (C-3phenyl, C-5phenyl), 121.9 (C-2phenyl, C-6phenyl), 127.2 (C-2tolyl, C-6tolyl), 129.1 (C-1phenyl), 130.0 (C-3tolyl, C-5tolyl), 130.3 (C-3), 131.0 (C-1), 131.1 (C-4), 134.5 (C-9), 135.2 (C-8), 137.6 (C-9a), 138.0 (C-1tolyl), 138.4 (C-4tolyl), 139.6 (C-2), 141.7 (C-4a), 148.8 (C-4_{phenyl}), 168.6 (O=C-NH). FT-IR (neat): $\tilde{\nu}$ (cm⁻¹) = 3290 (N-H), 2831, 2769 (C-Halkyl), 1635 (C=O).

2-(4-Methylphenyl)-*N*-{4-[*N*-(thiazol-2-yl)sulfamoyl]phenyl}-6,7-dihydro-5*H*benzo[7]annulene-8-carboxamide (8d)

4-Amino-N-(1,3-thiazol-2-yl)benzenesulfonamide (Sulfathiazole) (92 mg, 0.36 mmol, 1 eq.) was added to a vigorously stirred mixture of acid 6 (100 mg, 0.36 mmol), triethylamine (75 mg, 0.72 mmol, 2 eq.) and COMU[™] (171 mg, 0.4 mmol. 1.1 eq.) in acetonitrile (15 mL). The mixture was concentrated in vacuo and the residue was purified by fc (EtOAc : $CH_2CI_2 = 1:2 + 5\%$ MeOH) and recrystallized from acetonitrile to afford **8d** as a colorless solid. $R_f = 0.28$ (MeOH : CH₂Cl₂ = 5:95), mp 222-224 °C (dec.), yield 45 mg (25 %). $C_{28}H_{25}N_3O_3S_2$ (515.6 g/mol). Purity (HPLC): >95 %, $t_R = 21.48$ min. HRMS (APCI): m/z = calcd. for C₂₈H₂₆N₃O₂S₂ [MH⁺] 516.1410, found 516.1448. ¹H NMR $(DMSO-d_6)$: δ (ppm) = 1.95-2.05 (m, 2H, 6-CH₂), 2.34 (s, 3H, CH_{3tolyl}), 2.62 (t, J = 6.5) Hz, 2H, 7-CH₂), 2.79-2.89 (m, 2H, 5-CH₂), 6.82 (d, J = 4.6 Hz, 1H, 5-CH_{thiazol}), 7.23-7.31 (m, 4H, 4-CH_{thiazol}, 4-CH, 3-CH_{tolyl}, 5-CH_{tolyl}), 7.39 (s, 1H, 9-CH), 7.52 (dd, J = 7.8/2.0 Hz, 1H, 3-CH), 7.58 (d, J = 8.2 Hz, 2H, 2-CH_{tolvl}, 6-CH_{tolvl}), 7.68 (d, J = 2.0 Hz, 1H, 1-CH), 7.76 (d, J = 8.8 Hz, 2H, 2-CH_{phenyl}, 6-CH_{phenyl}), 7.87 (d, J = 8.9 Hz, 2H, 3-CH_{phenyl}, 5-CH_{phenvl}), 10.30 (s, 1H, NH), 12.69 (s, 1H, SO₂NH). ¹³C NMR (DMSO-d₆): δ (ppm) = 20.5 (CH_{3tolyl}), 27.2 (C-6), 29.9 (C-5), 33.8 (C-7), 107.7 (C-5_{thiazol}), 119.3 (C-2_{phenyl}, C-6_{phenyl}), 126.1 (C-2tolyl, C-6tolyl), 126.2 (C-3), 126.6 (C-3phenyl, C-5phenyl), 129.4 (C-3tolyl, C-5tolyl), 129.7 (C-4_{thiazol}), 129.8 (C-4, C-1), 133.8 (C-9), 134.5 (C-9a), 136.4 (C-4_{phenyl}), 136.5 (C-4a), 136.9 (C-8), 137.8 (C-1tolyl), 137.9 (C-4tolyl), 140.9 (C-2), 142.4 (C-1phenyl), 168.5 (O=C-NH), 179.6 (C-2_{thiazol}). FT-IR (neat): $\tilde{\nu}$ (cm⁻¹) = 3348 (N-H), 2773 (C-H_{alkyl}), 1647 (C=O) 1350, 1184 (SO₂-N).

2-(4-Methylphenyl)-N-(thiazol-2-yl)-6,7-dihydro-5H-benzo[7]annulene-8-

carboxamide (8e)

2-Aminothiazole (100 mg, 1.0 mmol, 1 eq.) was added to a vigorously stirred mixture of acid **6** (280 mg, 1.0 mmol), triethylamine (203 mg, 2.0 mmol, 2 eq.) and COMUTM (471 mg, 1.1 mmol. 1.1 eq.) in acetonitrile (15 mL). The mixture was stirred overnight at rt, during which a precipitate was formed. The solid was filtered off, washed with acetonitrile and water, dried and recrystallized from acetonitrile to afford **8e** as a beige solid. $R_f = 0.37$ (MeOH : $CH_2CI_2 = 5:95$), mp 200-202 °C (dec.), yield 297 mg (82 %). $C_{22}H_{20}N_2OS$ (360.5 g/mol). Purity (HPLC): 97 %, $t_R = 22.70$ min. HRMS (APCI): m/z = calcd. for $C_{22}H_{21}N_3OS$ [MH⁺] 361.1369, found 361.1383. ¹H NMR (CDCI₃): δ (ppm) = 2.11-2.27 (m, 2H, 6-CH₂), 2.39 (s, 3H, CH_{3tolyl}), 2.81 (t, J = 6.6 Hz, 2H, 7-CH₂), 2.89-3.00

(m, 2H, 5-C*H*₂), 6.83-6.91 (m, 1H, 5-C*H*_{thiazol}), 7.19-7.30 (m, 3H, 3-C*H*_{tolyl}, 5-C*H*_{tolyl}, 4-C*H*), 7.29-7.37 (m, 1H, 4-C*H*_{thiazol}), 7.37 (s, 1H, 9-C*H*), 7.42 (d, J = 7.8, 2H, 2-C*H*_{tolyl}, 6-C*H*_{tolyl}), 7.47 (dd, J = 7.8/2.0 Hz, 1H, 3-C*H*), 7.55 (broad, 1H, 1-C*H*), 12.06 (s, 1H, N*H*). ¹³C NMR (CDCl₃): δ (ppm) = 21.6 (*C*H_{3tolyl}), 28.2 (C-6), 30.9 (C-5), 35.3 (C-7), 113.9 (C-5thiazol), 127.1 (C-2tolyl, C-6tolyl), 127.7 (C-3), 130.0 (C-3tolyl, C-5tolyl), 130.5 (C-4), 131.6 (C-1), 134.6 (C-9), 137.3 (C-9a), 137.3 (C-8), 137.7 (C-1tolyl), 137.8 (C-4tolyl), 137.8 (C-4a), 139.6 (C-2), 141.9 (C-4thiazol), 160.5 (C-2thiazol), 168.5 (O=C-NH). FT-IR (neat): \tilde{v} (cm⁻¹) = 3205 (N-H), 2773 (C-Halkyl), 1647 (C=O).

2-[(4-Methyl)phenyl]-*N*-{4-[(piperidin-1-yl)methyl]phenyl}-6,7-dihydro-5*H*benzo[7]annulene-8-carboxamide (8f)

1-(4-Aminobenzyl)piperidine dihydrochloride (95 mg, 0.36 mmol, 1 eq.) was added to a vigorously stirred mixture of acid 6 (100 mg, 0.36 mmol), triethylamine (110 mg, 1.08 mmol, 3 eq.) and HATU[™] (153 mg, 0.39 mmol. 1.1 eq.) in acetonitrile (5 mL). The mixture was stirred overnight at rt. The mixture was concentrated in vacuo and the residue was purified by fc (EtOAc : cyclohexane = 8:2 → EtOAc : CH₂Cl₂ = 1:2 + 5% MeOH) and recrystallization from acetonitrile afforded 8f as a colorless solid. $R_f = 0.14$ (CH₂Cl₂ : MeOH = 95:5), mp 194-196 °C, yield 140 mg (86 %). C₃₁H₃₄N₂O (450.6 g/mol). Purity (HPLC): >95 %, $t_R = 21.44$ min. HRMS (APCI): m/z = calcd. for C₃₁H₃₅N₂O [MH⁺] 451.2744, found 451.2741. ¹H NMR (CDCl₃): δ (ppm) = 1.34-1.48 (m, 2H, 4-CH_{2piperidin}), 1.57 (m, Hz, 4H, 3-CH_{2piperidin}, 5-CH_{2piperidin}), 2.10-2.25 (m, 2H, 6-CH₂), 2.30-2.43 (m, 7H, 2-CH_{2piperidin}, 6-CH_{2piperidin}, CH_{3tolyl}), 2.72 (t, J = 6.5 Hz, 2H, 2H, 7-CH₂), 2.83-2.97 (m, 1H, 5-CH₂), 3.46 (s, 2H, Ph-CH₂-N), 7.20-7.25 (m, 3H, 4-CH, 3-CH_{tolyl}, 5-CH_{tolyl}), 7.31 (d, J = 8.5 Hz, 2H, 3-CHphenyl, 5-CHphenyl), 7.41 (s, 1H, 9-CH), 7.44 (dd, J = 7.9/1.9 Hz, 1H, 3-CH), 7.48 (d, J = 8.1 Hz, 2H, 2-CH_{tolyl}, 6-CH_{tolyl}), 7.51 (d, J = 1.8 Hz, 1H, 1-CH), 7.55 (d, $J = 8.5 \text{ Hz}, 2H, 2-CH_{\text{phenyl}}, 6-CH_{\text{phenyl}}, 7.62 \text{ (s, 1H, NH)}. ^{13}C \text{ NMR (CDCl_3)}: \delta (ppm) =$ 21.6 (C-4piper), 24.8 (C-6), 26.4 (C-3piper., C-5piper.), 30.9 (C-7), 32.0 (C-5), 54.8 (C-2piper., C-6piper.), 63.8 (Ph-CH₂-N), 120.3 (C-2phenyl, C-6phenyl), 127.2 (C-2tolyl, C-6tolyl), 127.3 (C-3), 130.0 (C-3phenyl, C-5phenyl), 130.3 (C-9), 130.4 (C-3tolyl, C-5tolyl), 131.1 (C-1), 134.7 (C-4), 135.1 (C-4phenyl), 137.3 (C-1tolyl), 137.6 (C-4tolyl), 137.9 (C-9a), 138.4 (C-4a), 139.6 (C-2), 141.7 (C-4a), 146.3 (C-1_{phenyl}), 168.4 (O=C-NH). FT-IR (neat): \tilde{v} (cm⁻¹) = 3325 (N-H), 2931 (C-Halkyl), 1643 (C=O), 1041, 1018 (C-O).

N-{4-[*N*-Methyl-*N*-(tetrahydro-2*H*-pyran-4-yl)aminomethyl]phenyl}-6,7-dihydro-5*H*benzo[7]annulene-8-carboxamide (9a)

According to general procedure A amide 7 (83 mg, 0.17 mmol), PdCl₂(dppf) (16 mg, 0.02 mmol, 10 mol %), NaOCH₃ (20 mg, 0.35 mmol, 2 eq.) and phenylboronic acid (24 mg, 0.2 mmol, 1.1 eq.) were suspended in dry dimethoxyethane (5 mL). The crude product was purified by fc (EtOAc : MeOH = 95:5) and recrystallized from acetonitrile to give **9a** as a colorless solid. R_f = 0.17 (CH₂Cl₂ : MeOH= 95:5), mp 165-167 °C, yield 74 mg (90 %). C₃₁H₃₄N₂O₂ (466.6 g/mol). Purity (HPLC): 95 %, t_R = 20.83 min. HRMS (APCI): m/z = calcd. for $C_{31}H_{35}N_2O_2$ [MH⁺] 467.2693, found 467.2690. ¹H NMR (CDCI₃): δ (ppm) = 1.55-1.84 (m, 4H, 3-CH_{2pyran}, 5-CH_{2pyran}), 2.11-2.22 (m, 2H, 6-CH₂), 2.23 (s, 3H, N-CH₃), 2.58-2.69 (m, 1H, 4-H_{pyran}), 2.72 (t, J = 6.6 Hz, 2H, 7-CH₂), 2.84-2.96 (m, 2H, 5-CH₂), 3.37 (td, J = 11.7/2.3 Hz, 2H, CH_{2axial}-O-CH_{2axial}), 3.60 (s, 2H, Ph-CH₂-N), 4.04 (dd, J = 11.4/2.5 Hz, 2H, CH_{2equat.}-O-CH_{2equat.}), 7.25 (d, J = 7.7 Hz, 1H, 4-CH), 7.30-7.38 (m, 4H, 3-CH_{N-phenyl}, 5-CH_{N-phenyl}, 3-CH, 9-CH), 7.37-7.47 (m, 3H, 4-CH_{N-phenyl}, 3-CH_{phenyl}, 5-CH_{phenyl}), 7.46 (d, J = 2.1 Hz, 1H, 1-CH), 7.54 (m, 2H, 2-CH_{N-phenyl}, 6-CH_{N-} phenyl.), 7.57-7.60 (m, 2H, 2-CHphenyl, 6-CHphenyl), 7.65 (s, 1H, N-H). ¹³C NMR (CDCl₃): δ (ppm) = 28.4 (C-6), 29.4 (C-7), 30.9 (C-3_{pyran}, C-5_{pyran}), 35.1 (C-5), 37.7 (N-CH₃), 57.7 (Ph-CH₂-N), 60.0 (C-4_{pyran}), 68.0 (C-2_{pyran}, C-6_{pyran}), 120.5 (C-2_{N-phenyl}, C-6_{N-phenyl}), 127.4 (C-2phenyl, C-6phenyl), 127.6 (C-3), 127.8 (C-3phenyl, C-5phenyl), 129.3 (C-3N-phenyl, C-5N-phenyl), 130.2 (C-4_{phenyl}), 130.4 (C-4), 131.3 (C-1), 134.8 (C-9), 135.1 (C-4a), 138.4 (C-2), 139.7 (C-1_{N-phenyl}), 140.9 (C-9a), 142.0 (C-8), 146.4 (C-1_{phenyl}), 168.5 (O=C-NH). A Signal for the quaternary carbon atom C-4_{N-phenyl} is not visible. FT-IR (neat): \tilde{v} (cm⁻¹) = 3302 (N-H), 2939, 2843 (C-Halkyl), 1643 (C=O), 1049, 1010 (C-O).

2-(3-Methyphenyl)-*N*-{[*N*-methyl-*N*-(tetrahydro-2*H*-pyran-4-yl)aminomethyl]phenyl}-6,7-dihydro-5*H*-benzo[7]annulene-8-carboxamide (9b)

According to general procedure A amide **7** (100 mg, 0.21 mmol), PdCl₂(dppf) (10 mg, 0.01 mmol, 5 mol%), K₂CO₃ (60 mg, 0.42 mmol, 2 eq.) and 3-methylphenylboronic acid (45 mg, 0.32 mmol, 1.5 eq.) were suspended in dry dimethoxyethane (8 mL). The crude product was purified by fc (EtOAc : MeOH = 95:5) and recrystallized from acetonitrile to give **9b** as a colorless solid. $R_f = 0.24$ (CH₂Cl₂ : MeOH = 95:5), mp 183-184 °C, yield 92 mg (92 %). C₃₂H₃₆N₂O₂ (480.6 g/mol). Purity (HPLC): 95 %, t_R = 20.89 min. HRMS (APCI): m/z = calcd. for C₃₂H₃₇N₂O₂ [MH⁺] 481.2850, found 481.2827.¹H NMR (CDCl₃): δ (ppm) = 1.63-1.88 (m, 4H, 3-CH₂pyran, 5-CH₂pyran), 2.13-2.21 (m, 2H, 6-CH₂), 2.21 (s,

3H, N-C*H*₃), 2.33 (s, 3H, C*H*_{3tolyl}), 2.57-2.70 (m, 1H, 4-H_{pyran}), 2.73 (t, J = 6.6 Hz, 2H, 7-C*H*₂), 2.89 (t, J = 5.5 Hz, 2H, 5-C*H*₂), 3.30 (td, J = 11.7/2.3 Hz, 2H, CH_{2axial}-O-CH_{2axial}), 3.57 (s, 2H, Ph-CH₂-N), 4.04 (dd, J = 11.9/3.6 Hz, 2H, CH_{2equat}-O-CH_{2equat}.), 7.17 (d, J =7.3 Hz, 1H, 4-C*H*), 7.24 (d, J = 7.9 Hz, 1H, 6-C*H*_{tolyl}), 7.28-7.36 (m, 3H, 3-C*H*_{phenyl}, 5-C*H*_{phenyl}, 5-C*H*_{tolyl}), 7.35-7.44 (m, 3H, 2-C*H*_{tolyl}, 4-C*H*_{tolyl}, 9-C*H*), 7.45 (dd, J = 7.9/2.0 Hz, 1H, 3-C*H*), 7.53 (d, J = 1.9 Hz, 1H, 1-C*H*), 7.56 (d, J = 8.4 Hz, 2H, 2-*H*_{phenyl}, 6-*H*_{phenyl}), 7.62 (s, 1H, N-*H*).¹³C NMR (CDCl₃): δ (ppm) = 22.2 (*C*H_{3tolyl}), 28.4 (C-6), 29.6 (*C*-3_{pyran}, *C*-5_{pyran}), 30.9 (C-7), 35.1 (C-5), 38.0 (N-CH₃), 57.7 (Ph-CH₂-N), 60.0 (C-4_{pyran}), 68.2 (C-2_{pyran}, *C*-6_{pyran}), 120.5 (C-2_{phenyl}, *C*-6_{phenyl}), 124.5 (C-2_{tolyl}), 127.5 (C-3), 128.2 (C-4_{tolyl}), 128.5 (C-4), 129.2 (C-5_{tolyl}), 129.9 (C-3_{phenyl}, C-5_{phenyl}), 130.3 (C-6_{tolyl}), 131.3 (C-1), 134.7 (*C*-9), 135.1 (*C*-4a), 136.4 (*C*-3_{tolyl}), 137.2 (*C*-4_{phenyl}), 138.4 (C-2), 138.9 (C-1_{tolyl}), 139.8 (*C*-1_{phenyl}), 140.8 (C-9a), 141.9 (C-8), 168.5 (O=*C*-NH). FT-IR (neat): \tilde{v} (cm⁻¹) = 3344 (N-H), 2924, 2866 (C-H_{alkyl}), 1647 (C=O), 1095, 1010 (C-O).

2-(2-Methyphenyl)-N-{4-[N-Methyl-N-(tetrahydro-2H-pyran-4-

yl)aminomethyl]phenyl}-6,7-dihydro-5*H*-benzo[7]annulene-8-carboxamide (9c)

According to general procedure A amide 7 (100 mg, 0.21 mmol), PdCl₂(dppf) (10 mg, 0.01 mmol, 5 mol%), K₂CO₃ (60 mg, 0.42 mmol, 2 eq.) and 2-methylphenylboronic acid (45 mg, 0.32 mmol, 1.5 eq.) were suspended in dry dimethoxyethane (5 mL). The crude product was purified by fc (EtOAc : MeOH+3 % triethylamine = 95:5) and recrystallized from acetonitrile to give **9c** as a colorless solid. $R_f = 0.24$ (CH₂Cl₂ : MeOH = 95:5), mp 144-145 °C, yield 69 mg (68 %). C₃₂H₃₆N₂O₂ (480.6 g/mol). Purity (HPLC): 99 %, t_R = 21.34 min. HRMS (APCI): m/z = calcd. for C₃₂H₃₇N₂O₂ [MH⁺] 481.2850, found 481.2869. ¹H NMR (CDCl₃): δ (ppm) = 1.63-1.88 (m, 4H, 3-CH_{2pyran}, 5-CH_{2pyran}), 2.13-2.21 (m, 2H, 6-CH₂), 2.21 (s, 3H, N-CH₃), 2.28 (s, 3H, CH_{3tolyl}), 2.65 (tt, J = 11.2/3.9 Hz, 1H, 4-H_{pyran}), 2.73 (t, J = 6.3 Hz, 2H, 7-CH₂), 2.89 (t, J = 5.7 Hz, 2H, 5-CH₂), 3.36 (td, J = 11.6/2.3 Hz, 2H, CH_{2axial}-O-CH_{2axial}), 3.57 (s, 2H, Ph-CH₂-N), 4.04 (dd, J = 10.7/4.1 Hz, 2H, CH_{2equat}.-O-CH_{2equat.}), 7.18 (dd, J = 7.7/1.7 Hz, 1H, 3-CH), 7.20 (d, J = 7.0 Hz, 1H, 4-CH), 7.22 (d, J = 1.9 Hz, 1H, 1-CH), 7.23-7.30 (m, 4H, 2- ,3- ,4- ,5-CH_{tolyl}), 7.30 (d, 2H, J = 8.5 Hz, 3-CHphenyl, 5-CHphenyl), 7.35 (s, 9-CH), 7.55 (d, J = 8.5 Hz, 2H, 2-Hphenyl, 6-Hphenyl), 7.67 (s, 1H, N-H). ¹³C NMR (CDCI₃): δ (ppm) = 21.0 (CH_{3tolyl}), 28.3 (C-6), 29.6 (C-3_{pyran}, C-5_{pyran}), 31.0 (C-7), 35.2 (C-5), 38.0 (N-CH₃), 57.7 (Ph-CH₂-N), 60.0 (C-4_{pyran}), 68.2 (C-2_{pyran}, C-6pyran), 120.4 (C-2phenyl, C-6phenyl), 126.3 (C-3), 127.8 (C-4), 129.4 (C-5tolyl), 129.7 (C-6tolyl), 129.7 (C-4tolyl), 129.9 (C-3phenyl, C-5phenyl), 130.2 (C-3tolyl), 130.1 (C-1), 133.4 (C-9), 134.6 (*C*-2_{tolyl}), 135.8 (*C*-4a), 137.2 (*C*-4_{phenyl}), 137.8 (*C*-2), 139.1 (*C*-1_{phenyl}), 140.5 (*C*-9a), 141.5 (*C*-8), 142.3 (*C*-1_{tolyl}). A signal for the carbon atom O=*C*-NH is not visible. FT-IR (neat): \tilde{v} (cm⁻¹) = 3302 (N-H), 2966, 2862 (C-H_{alkyl}), 1651 (C=O), 1095, 1014 (C-O).

2-(4-Ethylphenyl)-N-{4-[N-methyl-N-(tetrahydro-2H-pyran-4-

yl)aminomethyl]phenyl}-6,7-dihydro-5*H*-benzo[7]annulene-8-carboxamide (9d)

According to general procedure A amide 7 100 mg, 0.21 mmol), PdCl₂(dppf) (8 mg, 0.01 mmol, 5 mol%), KOAc (42 mg, 0.42 mmol, 2 eq.) and 4-ethylphenylboronic acid (50 mg, 0.32 mmol, 1.5 eq.) were suspended in dry dimethoxyethane (8 mL). The crude product was purified by fc (EtOAc : MeOH = 95:5) and recrystallized from acetonitrile to give 9d as a colorless solid. Rf = 0.20 (CH₂Cl₂ : MeOH= 95:5), mp 154-156 °C, yield 100 mg (96 %). C₃₃H₃₈N₂O₂ (494.6 g/mol). Purity (HPLC): 98 %, t_R = 21.61 min. HRMS (APCI): m/z = calcd. for $C_{33}H_{39}N_2O_2$ [MH⁺] 495.3006, found 495.3004. ¹H NMR (CDCl₃): δ (ppm) = 1.28 (t, J = 7.6 Hz, 3H, CH₂CH₃), 1.62-1.83 (m, 4H, 3-CH_{2pyran}, 5-CH_{2pyran}), 2.10-2.19 (m, 2H, 6-CH₂), 2.21 (s, 3H, N-CH₃), 2.54-2.70 (m, 1H, 4-CH_{pyran}), 2.68-2.76 (m, 4H, 7- CH_2 , CH_2CH_3), 2.82-2.95 (m, 2H, 5- CH_2), 3.37 (td, J = 11.6/2.4 Hz, 2H, CH_{2axial} -O- CH_{2axial}), 3.57 (s, 2H, Ph-CH₂-N), 4.04 (dd, J = 10.9/3.4 Hz, 2H, CH_{2equat} -O-CH_{2equat}), 7.23 (d, J = 7.9 Hz, 1H, 4-CH), 7.28 (d, J = 8.5 Hz, 2H, 3-CH_{ethylphenyl}, 5-CH_{ethylphenyl}), 7.32 (d, J = 8.3 Hz, 2H, 3-CH_{phenyl}, 5-CH_{phenyl}), 7.42 (s, 1H, 9-CH), 7.44 (dd, J = 7.8/1.9Hz, 1H, 3-CH), 7.51 (m, 3H, 1-CH, 2-CHethylphenyl 6-CHethylphenyl), 7.56 (d, J = 8.5 Hz, 2H, 2-*H*_{phenyl}, 6-*H*_{phenyl}), 7.61 (s, 1H, N-*H*). ¹³C NMR (CDCl₃): δ (ppm) = 16.04 (CH₂CH₃), 28.4 (C-6), 28.9 (CH₂CH₃), 29.6 (C-3_{pyran}, C-5_{pyran}), 30.9 (C-7), 35.1 (C-5), 38.0 (N-CH₃), 57.8 (Ph-CH₂), 60.0 (C-4_{pyran}), 68.2 (C-2_{pyran}, C-6_{pyran}), 120.5 (C-2_{phenyl}, C-6_{phenyl}), 127.3 (C-2ethylphenyl, C-6ethylphenyl), 127.3 (C-3), 128.8 (C-3ethylphenyl., C-5ethylphenyl.), 129.9 (C-3phenyl, C-5phenyl), 130.3 (C-4), 131.2 (C-1), 134.8 (C-9), 135.1 (C-4a), 137.3 (C-4phenyl), 138.2 (C-4ethylphenyl.), 138.4 (C-1phenyl), 139.7 (C-2), 139.7 (C-9a), 141.7 (C-8), 143.9 (C-1ethylphenyl.), 168.5 (O=C-NH). FT-IR (neat): \tilde{v} (cm⁻¹) = 3332 (N-H), 2951, 2835 (C-H_{alkyl}), 1643 (C=O), 1087 (C-O).

2-(4-Butylphenyl)-*N*-{4-[*N*-methyl-*N*-(tetrahydro-2*H*-pyran-4-

yl)aminomethyl]phenyl}-6,7-dihydro-5*H*-benzo[7]annulene-8-carboxamide (9e)

According to general procedure A amide **7** (100 mg, 0.21 mmol), PdCl₂(dppf) (10 mg, 0.01 mmol, 5 mol%), NaOCH₃ (23 mg, 0.42 mmol, 2 eq.) and 4-butylphenylboronic acid (41 mg, 0.23 mmol, 1.1 eq.) were suspended in dry dimethoxyethane (6 mL). The crude

product was purified by fc (EtOAc : MeOH = 95:5) and recrystallized from acetonitrile to give **9e** as a colorless solid. R_f = 0.32 (CH₂Cl₂ : MeOH= 95:5), mp 134-135 °C, yield 83 mg (76 %). C₃₅H₄₂N₂O₂ (522.7 g/mol). Purity (HPLC): 99 %, t_R = 22.95 min. HRMS (APCI): m/z = calcd. for $C_{35}H_{43}N_2O_2$ [MH⁺] 523.3319, found 523.3335. ¹H NMR (CDCl₃): δ (ppm) = 0.95 (t, J = 7.3 Hz, 3H, 4-CH_{3butyl}), 1.39 (h, 2H, 3-CH_{2butyl}), 1.55-1.81 (m, 6H, 3-CH_{2pyran}, 5-CH_{2pyran}, 2-CH_{2butyl}), 2.07-2.19 (m, 2H, 6-CH₂), 2.21 (s, 3H, N-CH₃), 2.58-2.70 (m, 3H, 4-C H_{pyran} , 1-C H_{2butyl}), 2.71 (t, J = 6.5 Hz, 2H, 7-C H_2), 2.82-2.92 (m, 2H, 5-CH₂), 3.37 (td, J = 11.3/2.3 Hz, 2H, CH_{2axial}-O-CH_{2axial}), 3.57 (s, 2H, Ph-CH₂-N), 4.04 (dd, J = 11.3/4.0 Hz, 2H, CH_{2equat}-O-CH_{2equat}.), 7.19-7.27 (m, 3H, 4-CH, 3-CH_{butylphenyl}, 5-CH_{butylphenyl}), 7.31 (d, J = 8.3 Hz, 2H, 3-CH_{phenyl}, 5-CH_{phenyl}), 7.41 (s, 1H, 9-CH), 7.44 (dd, J = 7.8/2.0 Hz, 1H, 3-CH), 7.46-7.53 (m, 3H, 1-CH, 2-CH_{butylphenyl} 6-CH_{butylphenyl}), 7.56 (d, J = 8.4 Hz, 2H, 2- H_{phenyl} , 6- H_{phenyl}), 7.67 (s, 1H, N-H). ¹³C NMR (CDCl₃): δ (ppm) = 14.4 (C-4butyl), 22.9 (C-3butyl), 28.4 (C-6), 29.6 (C-3pyran, C-5pyran), 30.9 (C-7), 34.1 (C-2butyl), 35.1 (C-5), 35.7 (C-1_{butvl}), 38.0 (N-CH₃), 57.8 (Ph-CH₂-N), 60.0 (C-4_{pvran}), 68.2 (C-2_{pvran}, C-6pyran), 120.5 (C-2phenyl, C-6phenyl), 127.2 (C-2butylphenyl, C-6butylphenyl), 127.3 (C-3butylphenyl, C-5butylphenyl.), 129.4 (C-3), 129.9 (C-3phenyl, C-5phenyl), 130.3 (C-4), 131.2 (C-1), 134.8 (C-9), 135.1 (C-4a), 136.3 (C-1_{butylphenyl}), 137.3 (C-4_{phenyl}), 138.1 (C-1_{phenyl}), 138.3 (C-2), 139.6 (C-9a), 141.7 (C-8), 142.6 (C-4_{butylphenyl}), 168.5 (O=C-NH). FT-IR (neat): $\tilde{\nu}$ (cm⁻¹) = 3352 (N-H), 2951, 2927 (C-Halkyl), 1643 (C=O), 1087 (C-O).

2-(4-*tert*-Butylphenyl)-*N*-{4-[*N*-methyl-*N*-(tetrahydro-2*H*-pyran-4-yl) aminomethyl]phenyl}-6,7-dihydro-5*H*-benzo[7]annulene-8-carboxamide (9f)

According to general procedure A amide **7** (100 mg, 0.21 mmol), PdCl₂(dppf) (8 mg, 0.01 mmol, 5 mol%), KOAc (42 mg, 0.42 mmol, 2 eq.) and 4-*tert*-butylphenylboronic acid (45 mg, 0.25 mmol, 1.2 eq.) were suspended in dry dimethoxyethane (8 mL). The crude product was purified by fc (EtOAc : MeOH = 95:5) and recrystallized from acetonitrile to give **9f** as a colorless solid. ($R_f = 0.22$, CH_2Cl_2 : MeOH= 95:5), mp 164-165 °C, yield 88 mg (79 %). C₃₅H₄₂N₂O₂ (522.7 g/mol). Purity (HPLC): 99 %, t_R = 22.9 min. HRMS (APCI): m/z = calcd. for C₃₅H₄₃N₂O₂ [MH⁺] 523.3319, found 523.3335. ¹H NMR (CDCl₃): δ (ppm) = 1.36 (s, 9H, 2-CH_{3butyl}, 3-CH_{3butyl}, 4-CH_{3butyl}), 1.62-1.84 (m, 4H, 3-CH_{2pyran}, 5-CH_{2pyran}), 2.17 (t, *J* = 5.9 Hz, 2H, 6-CH₂), 2.21 (s, 3H, N-CH₃), 2.51-2.69 (m, 1H, 4-CH_{pyran}), 2.72 (t, *J* = 6.6 Hz, 2H, 7-CH₂), 2.84-2.94 (m, 2H, 5-CH₂), 3.37 (td, *J* = 11.5/2.3 Hz, 2H, CH_{2equat}-O-CH_{2equat}), 7.23 (d, *J* = 7.8, 1H, 4-CH), 7.31 (d, *J* = 8.4 Hz, 2H, 3-CH_{phenvl}, 5-CH_{2phenvl}, 5-CH_{2phenvl}, 7.23 (d, *J* = 7.8, 1H, 4-CH), 7.31 (d, *J* = 8.4 Hz, 2H, 3-CH_{phenvl}, 5-CH_{2phenvl}, 5-CH_{2phenvl}, 7.23 (d, *J* = 7.8, 1H, 4-CH), 7.31 (d, *J* = 8.4 Hz, 2H, 3-CH_{phenvl}, 5-CH_{2phenvl}, 5-CH_{2phenvl}, 7.23 (d, *J* = 7.8, 1H, 4-CH), 7.31 (d, *J* = 8.4 Hz, 2H, 3-CH_{phenvl}, 5-CH_{2phenvl}, 5-CH_{2phenvl}, 7.23 (d, *J* = 7.8, 1H, 4-CH), 7.31 (d, *J* = 8.4 Hz, 2H, 3-CH_{phenvl}, 5-CH_{2phenvl}, 5-CH_{2phenvl}, 7.23 (d, *J* = 7.8, 1H, 4-CH), 7.31 (d, *J* = 8.4 Hz, 2H, 3-CH_{phenvl}, 5-CH_{2phenvl}, 5-CH_{2phenvl}, 7.23 (d, *J* = 7.8, 1H, 4-CH), 7.31 (d, *J* = 8.4 Hz, 2H, 3-CH_{phenvl}, 5-CH_{2phenvl}, 5-CH_{2phenvl}, 7.23 (d, *J* = 7.8, 1H, 4-CH), 7.31 (d, *J* = 8.4 Hz, 2H, 3-CH_{phenvl}, 5-CH_{2phenvl}, 5-CH_{2phenvl}, 7.23 (d, *J* = 7.8, 1H, 4-CH), 7.31 (d, *J* = 8.4 Hz, 2H, 3-CH_{phenvl}, 5-CH_{2phenvl}, 5-CH_{2phenvl}, 7.23 (d, *J* = 7.8, 1H, 4-CH), 7.31 (d, *J* = 8.4 Hz, 2H, 3-CH_{phenvl}, 5-CH_{2phenvl}, 5-CH_{2phenvl}, 7.23 (d, *J* = 7.8, 1H, 4-CH), 7.31 (d, *J* = 8.4 Hz, 2H, 3-CH_{ph}

CH_{phenyl}), 7.41-7.44 (m, 2H, 9-CH, 3-CH), 7.47 (d, J = 8.4 Hz, 2H, 3-CH_{butylphenyl}, 5-CH_{butylphenyl}), 7.51-7.54 (m, 3H, 1-CH, 2-CH_{butylphenyl}. 6-CH_{butylphenyl}), 7.56 (d, J = 8.5 Hz, 2H, 2-H_{phenyl}, 6-H_{phenyl}), 7.62 (s, 1H, N-H). ¹³C NMR (CDCl₃): δ (ppm) = 28.4 (C-6), 29.6 (C-3_{pyran}, C-5_{pyran}), 30.9 (C-7), 31.8 (C-2_{bytyl}, C-3_{butyl}, C-4_{butyl}), 35.1 (C-5), 38.0 (N-CH₃), 57.8 (Ph-CH₂-N), 60.0 (C-4_{pyran}), 68.2 (C-2_{pyran}, C-6_{pyran}), 85.5 (C-1_{bytyl}),120.5 (C-2_{phenyl}, C-6_{phenyl}), 126.2 (C-2_{butylphenyl}, C-6_{butylphenyl}), 127.0 (C-3_{butylphenyl}, C-5_{butylphenyl}), 127.4 (C-3), 129.9 (C-3_{phenyl}, C-5_{phenyl}), 130.3 (C-4), 131.2 (C-1), 134.8 (C-9), 135.1 (C-4a), 136.3 (C-1_{butylphenyl}), 137.3 (C-4_{phenyl}), 137.9 (C-1_{phenyl}), 138.3 (C-2), 139.5 (C-9a), 141.7 (C-8), 150.8 (C-4_{butylphenyl}), 168.5 (O=C-NH). FT-IR (neat): $\tilde{\nu}$ (cm⁻¹) = 3352 (N-H), 2966, 2904 (C-H_{alkyl}), 1651 (C=O), 1064, 1022 (C-O).

2-([1,1'-Biphenyl]-4-yl)-*N*-{4-[*N*-methyl-*N*-(tetrahydro-2*H*-pyran-4yl)aminomethyl]phenyl}-6,7-dihydro-5*H*-benzo[7]annulene-8-carboxamide (9g)

According to general procedure A amide 7 (200 mg, 0.42 mmol), PdCl₂(dppf) (16 mg, 0.02 mmol, 5 mol%), KOAc (84 mg, 0.84 mmol, 2 eq.) and 1,1'-biphenylboronic acid (130 mg, 0.64 mmol, 1.5 eq.) were suspended in dry dimethoxyethane (10 mL). The crude product was purified by fc (EtOAc : MeOH = 95:5) and recrystallized from acetonitrile to give **9g** as a colorless solid. $R_f = 0.15$ (CH₂Cl₂ : MeOH= 95:5), mp 203 °C, yield 205 mg (90 %). C₃₇H₃₈N₂O₂ (542.7 g/mol). Purity (HPLC): >99 %, t_R = 25.01 min. HRMS (APCI): m/z = calcd. for C₃₇H₃₉N₂O₂ [MH⁺] 543.3006, found 543.3017. ¹H NMR (CDCl₃): δ (ppm) = 1.62-1.82 (m, 4H, 3-CH_{2pyran}, 5-CH_{2pyran}), 2.13-2.18 (m, 2H, 6-CH₂), 2.21 (s, 3H, N-CH₃), 2.56-2.69 (s, 1H, 4-CH_{pyran}), 2.74 (t, J = 6.6 Hz, 2H, 7-CH₂), 2.85-3.08 (m, 2H, 5-CH₂), 3.37 (td, J = 11.6/2.4 Hz, 2H, CH_{2axial}-O-CH_{2axial}), 3.57 (s, 2H, Ph-CH₂-N), 4.04 (dd, J = 10.6/4.1 Hz, 2H, CH_{2equat}-O-CH_{2equat}), 7.27 (d, J = 8.1 Hz, 1H, 4-CH), 7.31 (d, J = 8.4 Hz, 2H, 3-CHphenyl, 5-CHphenyl), 7.34-7.39 (m, 1H, 4'-CHbiphenyl), 7.43-7.49 (m, 3H, 9-CH, 3-CH_{phenvl.}, 5-CH_{phenvl.}), 7.51 (dd, J = 7.8/2.0 Hz, 1H, 3-CH), 7.53-7.61 (m, 3H, 1-CH, 2-CHbiphenyl. 6-CHbiphenyl), 7.62-7.65 (m, 3H, 2-Hphenyl, 6-Hphenyl, N-H), 7.65-7.69 (m, 4H, 2´, 3´, 5´, 6´-CH_{biphenyl}). ¹³C NMR (CDCl₃): δ (ppm) = 28.4 (C-6), 29.6 (C-3pyran, C-5pyran), 30.9 (C-7), 35.1 (C-5), 38.0 (N-CH₃), 57.8 (Ph-CH₂-N), 60.0 (C-4pyran), 68.2 (C-2pyran, C-6pyran), 120.5 (C-2phenyl, C-6phenyl), 127.4 (C-4´phenyl), 127.5 (C-3 biphenyl, C-5 biphenyl), 127.7 (C-3 biphenyl, C-5 biphenyl), 127.84 (C-3), 128.0 (C-2 biphenyl, C-6 biphenyl), 129.3 (C-2biphenyl, C-6biphenyl), 129.9 (C-3phenyl, C-5phenyl), 130.5 (C-4), 131.2 (C-1), 134.7 (C-9), 135.2 (C-4a), 137.3 (C-4phenyl), 137.9 (C-1phenyl), 138.6 (C-2), 139.2 (C-9a), 139.8 (C-4biphenyl), 140.6 (C-1 biphenyl), 141.1 (C-1biphenyl), 142.1 (C-8), 168.3 (O=C-

NH). FT-IR (neat): \tilde{v} (cm⁻¹) = 3344 (N-H), 2970, 2940 (C-H_{alkyl}), 1647 (C=O), 1138, 1056 (C-O).

N-{4-[*N*-Methyl-*N*-(tetrahydro-2*H*-pyran-4-yl)aminomethyl]phenyl}-2-(naphtalen-2-yl)-6,7-dihydro-5*H*-benzo[7]annulene-8-carboxamide (9h)

According to general procedure A amide 7 (100 mg, 0.21 mmol), PdCl₂(dppf) (8 mg, 0.01 mmol, 5 mol%), KOAc (40 mg, 0.42 mmol, 2 eq.) and 2-naphthylboronic acid (40 mg, 0.23 mmol, 1.1 eq.) were suspended in dry dimethoxyethane (5 mL).). The crude product was purified by fc (EtOAc : MeOH = 95:5) and recrystallized from acetonitrile to give **9h** as a colorless solid. $R_f = 0.19$, CH_2CI_2 : MeOH= 95:5), mp 172-174 °C, yield 84 mg (77 %). C35H36N2O2 (516.6 g/mol). Purity (HPLC): 96 %, t_R = 21.57 min. HRMS (APCI): m/z = calcd. for $C_{35}H_{37}N_2O_2$ [MH⁺] 517.2850, found 517.2880. ¹H NMR (CDCl₃): δ (ppm) = 1.63-1.88 (m, 4H, 3-CH_{2pyran}, 5-CH_{2pyran}), 2.15-2.20 (m, 2H, 6-CH₂), 2.21 (s, 3H, N-CH₃), 2.64 (tt, J = 11.1/4.1 Hz, 1H, 4-CH_{pyran}), 2.75 (t, J = 6.6 Hz, 2H, 7-CH₂), 2.87-2.97 (m, 2H, 5-CH₂), 3.37 (td, J = 11.6/2.4 Hz, 2H, CH_{2axial}-O-CH_{2axial}), 3.57 (s, 2H, Ph-CH₂-N), 4.04 (dd, J = 10.8/4.3 Hz, 2H, CH_{2equat}-O-CH_{2equat}), 7.28-7.37 (m, 3H, 4-CH, 3-CHphenyl, 5-CHphenyl), 7.45-7.54 (m, 3H, 9-CH, 6,7-CHnaphthyl), 7.55-7.61 (m, 3H, 3-CH, 2-CH_{phenyl}, 6-CH_{phenyl}), 7.63 (s, 1H, N-H), 7.68 (d, J = 2.0 Hz, 1H, 1-CH,), 7.74 (dd, J = 8.5/1.9 Hz, 1H, 3-CH_{naphtyl}), 7.82-7.98 (m, 3H, 1-CH_{naphthyl}, 5,8-CH_{naphthyl}), 8.04 (d, J = 1.8 Hz, 1H, 4-CH_{naphthyl}). ¹³C NMR (CDCl₃): δ (ppm) = 28.4 (C-6), 29.6 (C-3_{pyran}, C-5_{pyran}), 30.9 (C-7), 35.1 (C-5), 38.0 (N-CH₃), 57.7 (Ph-CH₂-N), 60.0 (C-4_{pyran}), 68.2 (C-2_{pyran}, C-6pyran), 120.5 (C-2phenyl, C-6phenyl), 125.8 (C-3naphthyl), 126.0 (C-4naphthyl), 126.4 (C-7naphthyl), 126.8 (C-3), 127.8 (C-1_{naphthyl}), 128.1 (C-5_{naphthyl}), 128.6 (C-8_{naphthyl}), 128.9 (C-6_{naphthyl}), 129.9 (C-3phenyl, C-5phenyl), 130.5 (C-4), 131.6 (C-1), 133.1 (C-4anaphthyl), 134.1 (C-8anaphtyl), 134.7 (C-9), 135.3 (C-4a), 136.4 (C-2naphtyl), 137.3 (C-4phenyl), 138.2 (C-1phenyl), 138.6 (C-2), 139.6 (C-9a), 142.1 (C-8), 168.5 (O=C-NH). FT-IR (neat): \tilde{v} (cm⁻¹) = 3298 (N-H), 2970, 2940 (C-H_{alkyl}), 1645 (C=O), 1099, 1010 (C-O).

2-(2-Fluoropyridin-3-yl)-*N*-{4-[*N*-methyl-*N*-(tetrahydro-2*H*-pyran-4-

yl)aminomethyl]phenyl}-6,7-dihydro-5*H*-benzo[7]annulene-8-carboxamide (9j)

According to general procedure A amide **7** (150 mg, 0.32 mmol), $PdCl_2(dppf)$ (12 mg, 0.016 mmol, 5 mol%), KOAc (40 mg, 0.64 mmol, 2 eq.) and 2-fluoropyridine-3-ylboronic acid (68 mg, 0.48 mmol, 1.5 eq.) were suspended in dry dimethoxyethane (8 mL). The crude product was purified by fc (CH₂Cl₂: EtOAC + 5 % MeOH = 2:1) and recrystallized

from acetonitrile to give **9** as a pale yellow solid. $R_f = 0.17$ (CH₂Cl₂ : MeOH= 95:5), mp 154-156 °C, yield 59 mg (60 %). C₃₀H₃₂ FN₃O₂ (485.6 g/mol). Purity (HPLC): 98 %, t_R = 18.35 min. HRMS (APCI): m/z = calcd. for $C_{30}H_{33}FN_3O_2$ [MH⁺] 486.2551, found 486.2524. ¹H NMR (CDCl₃): δ (ppm) = 1.63-1.85 (m, 4H, 3-CH_{2pyran}, 5-CH_{2pyran}), 2.12-2.20 (m, 2H, 6-CH₂), 2.24 (s, 3H, N-CH₃), 2.64-2.81 (m, 3H, 4-CH_{pyran}, 7-CH₂), 2.84-2.96 (m, 2H, 5-CH₂), 3.37 (td, J = 11.7/2.2 Hz, 2H, CH_{2axial}-O-CH_{2axial}), 3.61 (s, 2H, Ph-CH₂-N), 4.04 (dd, J = 11.2/4.4 Hz, 2H, CH_{2equat}-O-CH_{2equat}), 7.26 (m, 1H, 4-CH), 7.27-7.32 (m, 2H, 9-CH, 5-CH_{pyridine}), 7.34 (d, J = 7.9 Hz, 2H, 3-CH_{phenyl}, 5-CH_{phenyl}), 7.43 (d, J = 7.8 Hz, 1H, 3-CH), 7.50 (s, 1H, 1-CH), 7.57 (d, J = 8.4 Hz, 2H, 2-H_{phenyl}, 6-H_{phenyl}), 7.69 (s, 1H, N-H), 7.87 (ddd, J = 9.7/7.4/2.0 Hz, 1H, 4-CH_{pyridine}), 8.20 (d, J = 4.6 Hz, 1H, 6- $CH_{pyridine}$). ¹³C NMR (CDCI₃): δ (ppm) = 28.3 (C-6), 29.5 (C-3_{pyran}, C-5_{pyran}), 30.9 (C-7), 35.2 (C-5), 37.8 (N-CH₃), 57.7 (Ph-CH₂-N), 60.0 (C-4_{pyran}), 68.0 (C-2_{pyran}, C-6_{pyran}), 120.5 (C-2phenyl, C-6phenyl), 122.3 (d, J = 4.3 Hz, C-3pyridine), 123.5 (C-3), 129.1 (d, J = 2.6 Hz, C-5pyridine), 130.1 (C-3phenyl, C-5phenyl), 130.4 (C-4), 132.4 (C-2), 132.7 (C-4phenyl), 132.8 (C-1), 134.1 (C-9), 135.3 (C-4a), 139.0 (C-1_{phenyl}), 140.9 (C-9a), 140.9 (d, J = 10.7 Hz, C-4pyridine), 143.3 (C-8), 146.8 (d, J = 14.6 Hz, C-6pyridine), 162.1 (d, J = 238.1 Hz, C-2pyridine), 168.4 (O=C-NH). FT-IR (neat): \tilde{v} (cm⁻¹) = 3294 (N-H), 2943, 2924 (C-H_{alkyl}), 1647 (C=O), 1141, 1010 (C-O), 759, 725 (out of plane).

2-(6-Isopropoxypyridin-3-yl)-*N*-{4-[*N*-methyl-*N*-(tetrahydro-2*H*-pyran-4-

yl)aminomethyl]phenyl}-6,7-dihydro-5*H*-benzo[7]annulene-8-carboxamide (9k) According to general procedure A amide 7 (172 mg, 0.37 mmol), PdCl₂(dppf) (15 mg, 0.02 mmol, 5 mol%), KOAc (73 mg, 0.74 mmol, 2 eq.) and 6-isopropoxypyridine-3ylboronic acid (100 mg, 0.55 mmol, 1.5 eq.) were suspended in dry dimethoxyethane (10 mL). The crude product was purified by fc (CH₂Cl₂: EtOAC + 5 % MeOH = 2:1) and recrystallized from acetonitrile to give 9k as a colorless solid. R_f = 0.06 (CH₂Cl₂: EtOAC + 5 % MeOH = 2:1), mp 173-175 °C, yield 132 mg (67 %). C₃₃H₃₉N₃O₃ (525.7 g/mol). Purity (HPLC): 99 %, t_R = 19.75 min. HRMS (APCI): m/z = calcd. for C₃₃H₄₀N₃O₃ [MH⁺] 526.3064, found 526.3077. ¹H NMR (CDCl₃): δ (ppm) = 1.38 (d, 6.2 Hz, 6H, CH(CH₃)₂), 1.52-1.87 (m, 4H, 3-CH_{2pyran}, 5-CH_{2pyran}), 2.07-2.20 (m, 2H, 6-CH₂), 2.21 (s, 3H, N-CH₃), 2.58-2.69 (m, 1H, 4-CH_{pyran}), 2.72 (t, *J* = 6.6 Hz, 2H, 7-CH₂), 2.81-2.98 (m, 2H, 5-CH₂), 3.37 (td, *J* = 11.6/2.3 Hz, 2H, CH_{2axial}-O-CH_{2axial}), 3.57 (s, 2H, Ph-CH₂-N), 4.04 (dd, *J* = 11.5/4.3 Hz, 2H, CH_{2equat}-O-CH_{2equat}), 5.34 (sept., *J* = 6.2 Hz, 1H, CH(CH₃)₂), 6.75 (d, *J* = 8.6 Hz, 1H, 5-CH_{pyridine}), 7.24 (d, *J* = 8.1 Hz, 1H, 4-CH), 7.31 (d, *J* = 8.2 Hz, 2H, 3CH_{phenyl}, 5-CH_{phenyl}), 7.37 (dd, J = 7.9/1.8 Hz, 1H, 3-CH), 7.40 (s, 1H, 9-CH), 7.44 (s, 1H, 1-CH), 7.56 (d, J = 8.4 Hz, 2H, 2-H_{phenyl}, 6-H_{phenyl}), 7.64 (s, 1H, N-H), 7.75 (dd, J = 8.6/2.6 Hz, 1H, 4-CH_{pyridine}), 8.35 (d, J = 2.6 Hz, 1H, 2-CH_{pyridine}). ¹³C NMR (CDCl₃): δ (ppm) = 22.6 (CH(CH₃)₂), 28.5 (C-6), 29.7 (C-3_{pyran}, C-5_{pyran}), 30.9 (C-7), 35.0 (C-5), 37.9 (N-CH₃), 57.7 (Ph-CH₂-N), 60.0 (C-4_{pyran}), 68.2 (C-2_{pyran}, C-6_{pyran}), 68.6 (CH(CH₃)₂), 111.9 (C-5_{pyridine}), 120.5 (C-2_{phenyl}, C-6_{phenyl}), 126.9 (C-3), 129.3 (C-2), 129.9 (C-3_{phenyl}, C-5_{phenyl}), 130.5 (C-4), 130.7 (C-1), 134.5 (C-9), 135.4 (C-4a), 136.6 (C-4_{phenyl}), 137.2 (C-4_{pyridine}), 168.3 (O=C-NH). FT-IR (neat): $\tilde{\nu}$ (cm⁻¹) = 3321 (N-H), 2924, 2835 (C-H_{alkyl}), 1643 (C=O), 1114, 1049 (C-O), 709, 686 (out of plane bending).

2-(4-Fluorophenyl)-N-{[N-methyl-N-(tetrahydro-2H-pyran-4-

yl)aminomethyl]phenyl}-6,7-dihydro-5H-benzo[7]annulene-8-carboxamide (9l)

According to general procedure A amide 7 (57 mg, 0.12 mmol), PdCl₂(dppf) (10 mg, 0.01 mmol, 10 mol%), NaOCH₃ (14 mg, 0.24 mmol, 2 eq.) and 4-fluorophenylboronic acid (19 mg, 0.13 mmol, 1.1 eg.) were suspended in dry dimethoxyethane (5 mL). The crude product was purified by fc (EtOAc : MeOH = 95:5) and recrystallized from acetonitrile to give **9I** as a colorless solid. $R_f = 0.25$ (CH₂Cl₂ : MeOH = 95:5), mp 192 °C, yield 38 mg (65 %). C₃₁H₃₃ FN₂O₂ (484.6 g/mol). Purity (HPLC): 97 %, t_R = 20.78 min. HRMS (APCI): m/z = calcd. for C₃₁H₃₄FN₂O₂ [MH⁺] 485.2599, found 485.2598. ¹H NMR (CDCl₃): δ (ppm) = 1.59-1.84 (m, 4H, 3-CH_{2pyran}, 5-CH_{2pyran}), 2.10-2.22 (m, 2H, 6-CH₂), 2.24 (s, 3H, N-CH₃), 2.64-2.77 (m, 3H, 4-CH_{pyran}, 7-CH₂), 2.82-2.95 (m, 2H, 5-CH₂), 3.37 (td, J = 11.7/2.1 Hz, 2H, CH_{2axial}-O-CH_{2axial}), 3.61 (s, 2H, Ph-CH₂-N), 4.04 (dd, J =11.0/3.9 Hz, 2H, CH_{2equat}-O-CH_{2equat}), 7.09 (m, 2H, 3-CH_{F-phen}, 5-CH_{F-phen}), 7.24 (d, J = 7.8 Hz, 1H, 4-CH), 7.34 (d, J = 8.1 Hz, 2H, 3-CH_{phenyl}, 5-CH_{phenyl}), 7.40 (dd, J = 7.8/2.0Hz, 1H, 3-CH), 7.42 (s, 1H, 9-CH), 7.48 (d, J = 1.8 Hz, 1H, 1-CH,) 7.51-7.55 (m, 2H, 2-CHF-phen, 6-CHF-phen), 7.57 (d, J = 8.4 Hz, 2H, 2-CHphenyl, 6-CHphenyl), 7.64 (s, 1H, N-H). ¹³C NMR (CDCl₃): δ (ppm) = 27.7 (C-6), 28.9 (C-3_{pyran}, C-5_{pyran}), 30.3 (C-7), 34.4 (C-5), 37.2 (N-CH₃), 57.1 (Ph-CH₂-N), 59.4 (C-4_{pyran}), 67.4 (C-2_{pyran}, C-6_{pyran}), 115.5 (d, J = 21.5 Hz, C-3F-phen, C-5F-phen), 119.8 (C-2phenyl, C-6phenyl), 126.7 (C-3), 128.3 (d, J = 8.0 Hz, C-2F-phen, C-6F-phen), 129.4 (C-3phenyl, C-5phenyl), 129.8 (C-4), 130.5 (C-1), 134.0 (C-9a), 134.6 (C-4_{phenyl}), 135.5 (C-9), 135.9 (C-4a), 136.3 (d, J = 3.1 Hz, C-1_{F-phen}), 137.9 (C-2), 138.1 (C-1_{phenyl}), 141.3 (C-8), 162.3 (d, J = 248.6 Hz, C-4_{F-phen}), 167.7 (O=C-NH).

FT-IR (neat): \tilde{v} (cm⁻¹) = 3298 (N-H), 2939, 2924 (C-H_{alkyl}), 1647 (C=O), 1141, 1010 (C-O).

2-(4-Fluoro-3-methylphenyl)-*N*-{4-[*N*-methyl-*N*-(tetrahydro-2*H*-pyran-4yl)aminomethyl]phenyl}-6,7-dihydro-5*H*-benzo[7]annulene-8-carboxamide (9m)

According to general procedure A amide 7 (65 mg, 0.14 mmol), PdCl₂(dppf) (12 mg, 0.01 mmol, 10 mol%), K₂CO₃ (59 mg, 0.42 mmol, 3 eq.) and 4-fluoro-3methylphenylboronic acid (24 mg, 0.15 mmol, 1.1 eq.) were suspended in dry dimethoxyethane (5 mL). The crude product was purified by fc (EtOAc : MeOH = 95:5) and recrystallized from acetonitrile to give 9m as a colorless solid. R_f = 0.33, CH₂Cl₂ : MeOH = 95:5), mp 161-162 °C (dec.) yield 48 mg (70 %). $C_{32}H_{35}FN_2O_2$ (498.6 g/mol). Purity (HPLC): 98 %, $t_R = 21.48$ min. HRMS (APCI): m/z = calcd. for $C_{32}H_{36}FN_2O_2$ [MH⁺] 499.2755, found 499.2773. ¹H NMR (CDCl₃): δ (ppm) = 1.61-1.90 (m, 4H, 3-CH_{2pyran}, 5-CH_{2pyran}), 2.10-2.22 (m, 2H, 6-CH₂), 2.28 (s, 3H, N-CH₃), 2.34 (s, 3H, CH_{3F-phen}), 2.72 (t, J = 6.2 Hz, 2H, 7-CH₂), 2.74-2.81 (m, 1H, 4-CH_{pyran}), 2.84-2.93 (m, 2H, 5-CH₂), 3.37 (td, J = 11.7/2.0 Hz, 2H, CH_{2axial}-O-CH_{2axial}), 3.67 (s, 2H, Ph-CH₂-N), 4.05 (dd, J = 11.2/3.9Hz, 2H, CH_{2equat}-O-CH_{2equat}), 7.06 (m, 5-CH_{F-phen}), 7.23 (d, J = 7.7 Hz, 1H, 4-CH), 7.30-7.37 (m, 2H, 2-C $H_{\text{F-phen}}$, 3-CH), 7.36 (d, J = 8.6 Hz, 2H, 3-C H_{phenyl} , 5-C H_{phenyl}), 7.40 (m, 1H, 6-CH_{F-phen}), 7.42 (s, 1H, 9-CH), 7.48 (d, J = 1.8 Hz, 1H, 1-CH), 7.58 (d, J = 8.4 Hz, 2H, 2-CH_{phenyl}, 6-CH_{phenyl}), 7.66 (s, 1H, N-H). ¹³C NMR (CDCl₃): δ (ppm) = 14.56 (d, J = 3.2 Hz, CH_{3F-phen}), 27.7 (C-6), 28.3 (C-3_{pyran}, C-5_{pyran}), 30.3 (C-7), 34.4 (C-5), 36.5 (N-CH₃), 56.7 (Ph-CH₂-N), 59.8 (C-4_{pyran}), 67.1 (C-2_{pyran}, C-6_{pyran}), 115.1 (d, J = 21.5 Hz, C-5_{F-phen}), 120.0 (C-2_{phenyl}, C-6_{phenyl}), 125.5 (d, J = 8.2 Hz, C-6_{F-phen}), 126.7 (C-3), 129.8 (C-4), 129.8 (d, J = 5.2 Hz, C-2F-phen), 130.0 (C-3phenyl, C-5phenyl), 130.5 (C-1), 134.4 (d, J = 18.8 Hz, C-3_{F-phen}), 134.0 (C-9a), 134.6 (C-4_{phenyl}), 135.9 (C-9), 136.0 (d, J = 3.7 Hz, C-1_{F-phen.}), 136.3 (C-4a), 137.7 (C-2), 138.3 (C-1_{phenyl}), 141.2 (C-8), 160.9 (d, J = 245.2 Hz, C-4_{F-phen}), 167.8 (O=C-NH). FT-IR (neat): \tilde{v} (cm⁻¹) = 3286 (N-H), 2924, 2843 (C-H_{alkyl}), 1651 (C=O), 1138, 1006 (C-O).

2-(4-Hydroxy-3-methylphenyl)-*N*-{4-[*N*-methyl-*N*-(tetrahydro-2*H*-pyran-4-

yl)aminomethyl]phenyl}-6,7-dihydro-5*H*-benzo[7]annulene-8-carboxamide (9o)

According to general procedure A amide **7** (162 mg, 0.34 mmol), PdCl₂(dppf) (14 mg, 0.017 mmol, 5 mol%), NaOCH₃ (38 mg, 0.68 mmol, 2 eq.) and 4-hydroxy-3-methylphenylboronic acid (90 mg, 0.38 mmol, 1.1 eq.) were suspended in dry

dimethoxyethane (7 mL). The crude product was purified by fc (EtOAc : MeOH = 95:5) and recrystallized from acetonitrile to give **9o** as a colorless solid. $R_f = 0.11$ (CH₂Cl₂ : EtOAc + 5 % MeOH= 2:1), mp 192 °C , yield 128 mg (76 %).

 $C_{32}H_{36}N_2O_3$ (496.6 g/mol). Purity (HPLC): 96 %, t_R = 19.32 min. HRMS (APCI): m/z = calcd. for C₃₂H₃₇N₂O₃ [MH⁺] 497.2799, found 497.2778. ¹H NMR (CDCl₃): δ (ppm) = 1.55-1.73 (m, 4H, 3-CH_{2pyran}, 5-CH_{2pyran}), 2.03-2.12 (m, 2H, 6-CH₂), 2.14 (s, 3H, CH_{3hydroxyphen.}), 2.25 (s, 3H, N-CH₃), 2.51-2.62 (m, 1H, 4-CH_{pyran.}), 2.65 (t, J = 6.5 Hz, 2H, 7-CH₂), 2.76-2.86 (m, 2H, 5-CH₂), 3.37 (td, J = 11.6/2.4 Hz, 2H, CH_{2axial}-O-CH_{2axial}), 3.50 (s, 2H, Ph-CH₂-N), 3.97 (dd, J = 10.9/4.3 Hz, 2H, CH_{2equat}-O-CH_{2equat}), 6.76 (d, J = 8.2 Hz, 1H, 5-C $H_{hydroxyphen}$), 7.13 (d, J = 7.9 Hz, 1H, 4-CH), 7.22 (d, J = 2.2 Hz, 1H, 2-CH_{hydroxyphen}), 7.24 (d, J = 8.3 Hz, 2H, 3-CH_{phenyl}, 5-CH_{phenyl}), 7.29 (m, 1H, 6-CH_{hydroxyphen}), 7.30-7.36 (m, 2H, 9-CH, 3-CH), 7.40 (d, J = 2.0 Hz, 1H, 1-CH), 7.49 (d, J = 8.4 Hz, 2H, 2-CH_{phenyl}, 6-CH_{phenyl}), 7.56 (s, 1H, N-H). ¹³C NMR (DMSO-d₆): δ (ppm) = 16.2 (CH_{3HO-phen}), 27.5 (C-6), 28.9 (C-3_{pyran}, C-5_{pyran}), 30.2 (C-7), 34.0 (C-5), 37.1 (N-CH₃), 56.7 (Ph-CH₂-N), 58.9 (C-4_{pyran}), 66.7 (C-2_{pyran}, C-6_{pyran}), 109.3 (C-5_{HO-phen}), 115.0 (C-6HO-phen), 119.9 (C-2phenyl, C-6phenyl), 124.3 (C-3), 124.7 (C-3HO-phen), 125.5 (C-2HOphen), 128.7 (C-3phenyl, C-5phenyl), 129.5 (C-4), 129.8 (C-1), 130.2 (C-9a), 131.4, 133.4 (C-4phenyl), 134.7 (C-9), 134.9 (C-4a), 137.9 (C-2), 138.1 (C-1_{HO-phen}), 138.2 (C-1_{phenyl}), 140.0 (C-8), 155.2 (C-4_{HO-phen}), 168.3 (O=C-NH). FT-IR (neat): \tilde{v} (cm⁻¹) = 3352 (N-H), 2927, 2846 (C-Halkyl), 1647 (C=O), 1161, 1083 (C-O), 810, 671 (out of plane bending).

2-[4-(Hydroxymethyl)phenyl]-*N*-{4-[*N*-methyl-*N*-(tetrahydro-2*H*-pyran-4-

yl)aminomethyl]phenyl}-6,7-dihydro-5*H*-benzo[7]annulene-8-carboxamide (9p)

According to general procedure A amide **7** (100 mg, 0.21 mmol), PdCl₂(dppf) (15 mg, 0.02 mmol, 10 mol%), NaOCH₃ (23 mg, 0.42 mmol, 2 eq.) and 4- (hydroxymethyl)phenylboronic acid (35 mg, 0.23 mmol, 1.1 eq.) were suspended in dry dimethoxyethane (6 mL). The crude product was purified by fc (EtOAc : MeOH = 95:5) and recrystallized from acetonitrile to give **9p** as a colorless solid. $R_f = 0.08$ (CH₂Cl₂ : MeOH = 95:5), mp 210 °C (dec.), yield 53 mg (51 %).

 11.0/3.9 Hz, 2H, CH₂equat-O-CH₂equat), 4.75 (s, 2H, CH₂OH), 7.25 (d, J = 7.8 Hz, 1H, 4-CH), 7.33 (d, J = 8.0 Hz, 2H, 3-CH_{phenyl}, 5-CH_{phenyl}), 7.42 (s, 1H, 9-CH), 7.43-7.47 (m, 3H, 3-CH, 3-CH_{hydroxymethylphen}, 5-CH_{hydroxymethylphen}), 7.53 (d, J = 2.0 Hz, 1H, 1-CH) 7.56 (d, J 7.5 Hz, 2H, 2-CH_{hydroxymethylphen}, 6-CH_{hydroxymethylphen}), 7.58 (d, J = 8.1 Hz, 2H, 2-CH_{phenyl}, 6-CH_{phenyl}), 7.66 (s, 1H, N-H). ¹³C NMR (CDCl₃): δ (ppm) = 28.1 (C-6), 29.3 (C-3pyran, C-5pyran), 30.6 (C-7), 34.7 (C-5), 37.7 (N-CH₃), 57.4 (Ph-CH₂-N), 59.7 (C-4pyran), 65.2 (CH₂OH), 67.8 (C-2pyran, C-6pyran), 120.2 (C-2phenyl, C-6phenyl), 127.1 (C-3), 127.2 (C-2hydroxymethylphen, C-6hydroxymethylphen), 127.6 (C-3hydroxymethylphen, C-5hydroxymethylphen), 129.6 (C-3phenyl, C-5phenyl), 130.1 (C-4), 130.9 (C-1), 134.4 (C-9a), 134.8 (C-4phenyl), 135.8 (C-9), 138.2 (C-2), 138.9 (C-1phenyl), 139.9 (C-8), 141.7 (C-4hydroxymethylphen), 148.8 (C-1hydroxymethylphen). Signals for quaternary carbon atoms O=C-NH and C-4a are not visible.

2-(5-Formylthiophen-2-yl)-N-{4-[(methyl-N-(tetrahydro-2H-pyran-4-

yl)aminomethyl]phenyl}-6,7-dihydro-5H-benzo[7]annulene-8-carboxamide (9v)

According to general procedure A amide 7 (60 mg, 0.13 mmol), PdCl₂(dppf) (10 mg, 0.01 mmol, 10 mol%), NaOCH₃ (14 mg, 0.25 mmol, 2 eq.) and 5-formylthiophen-2ylboronic acid (50 mg, 0.32 mmol, 1.5 eq.) were suspended in dry dimethoxyethane (5 mL). The crude product was purified by fc (EtOAc : MeOH = 95:5) and recrystallized from acetonitrile to give 9v as an orange solid. $R_f = 0.23$ (CH₂Cl₂ : MeOH= 95:5), mp 168-169 °C, yield 43 mg (86 %). C₃₀H₃₂N₂O₃S (500.6 g/mol). Purity (HPLC): 98 %, t_R = 19.66 min. HRMS (APCI): m/z = calcd. for $C_{30}H_{33}N_2O_3S$ [MH⁺] 501.2206, found 501.2223. ¹H NMR (CDCl₃): δ (ppm) = 1.63-1.85 (m, 4H, 3-CH_{2pyran}, 5-CH_{2pyran}), 2.09-2.22 (m, 2H, 6-CH₂), 2.25 (s, 3H, N-CH₃), 2.63-2.81(m, 3H, 4-CH_{pyran}, 7-CH₂), 2.82-2.95 (m, 2H, 5-CH₂), 3.37 (td, J = 11.7/2.2 Hz, 2H, CH_{2axial}-O-CH_{2axial}), 3.63 (s, 2H, Ph-CH₂-N), 4.05 (dd, J = 11.6/4.1 Hz, 2H, CH_{2equat}-O-CH_{2equat}), 7.23-7.26 (m, 1H, 4-CH), 7.26 (s, 1H, 9-CH), 7.36 (d, J = 7.4 Hz, 2H, 3-CHphenyl., 5-CHphenyl), 7.39 (d, J = 4.1 Hz, 1H, 4-CH_{thioph}), 7.52 (dd, J = 7.8/2.0 Hz, 1H, 3-CH), 7.58 (d, J = 8.6 Hz, 2H, 2-H_{phenyl}, 6-H_{phenyl}), 7.61 (d, J = 1.9 Hz, 1H, 1-CH), 7.67 (s, 1H, N-H), 7.74 (d, J = 3.9 Hz, 1H, 3-CH_{thioph}), 9.89 (s, 1H, CHO). ¹³C NMR (CDCl₃): δ (ppm) = 28.3 (C-6), 29.2 (C-3_{pyran}, C-5_{pyran}), 30.9 (C-7), 35.2 (C-5), 37.5 (N-CH₃), 57.5 (Ph-CH₂-N), 60.1 (C-4_{pyran}), 67.9 (C-2_{pyran}, C-6_{pyran}), 120.6 (C-2phenyl, C-6phenyl), 126.6 (C-3), 130.3 (C-3phenyl, C-5phenyl), 130.3 (C-4), 130.7 (C-3thioph.), 131.6 (C-1), 133.8 (C-9), 135.4 (C-4a), 138.0 (C-4thioph., C-4phenyl), 139.4 (C-1phenyl), 138.0 (C-2), 139.4 (C-9a), 142.7 (C-8), 144.4 (C-2thioph), 154.1 (C-5thioph), 168.3 (O=C-NH), 183.2 (HC=O). FT-IR (neat): $\tilde{\nu}$ (cm⁻¹) = 3290 (N-H), 2924, 2843 (C-H_{alkyl}),

2789 (H-CO), 1647 (HC=O), 1593 (C=Caryl), 1141, 1010 (C-O), 767, 667 out of plane bending.

2-(4-Methylphenyl)-*N*-{4-[*N*-methyl-*N*-(tetrahydro-2*H*-pyran-4-yl)aminomethyl]phenyl}-7,8-dihydro-6*H*-[7]annuleno[*b*]thiophene-5-carboxamide (14a)

N-(4-Aminophenyl)-N-methyltetrahydro-2H-pyran-4-amin (78 mg, 0.35 mmol, 1 eq.) was added to a vigorously stirred mixture of acid **13a**⁴⁰(100 mg, 0.35 mmol), triethylamine (71 mg, 0.70 mmol, 2 eq.) and HATU[™] (150 mg, 0.38 mmol. 1.1 eq.) in THF (5 mL). The mixture was stirred overnight at rt. The mixture was concentrated in vacuo and the residue was purified by fc (EtOAc : $CH_2CI_2 = 1:2 + 5\%$ MeOH) and recrystallized from acetonitrile to give **14a** as a yellow solid. $R_f = 0.13$ (MeOH : CH₂Cl₂ = 5:95), mp 201 °C, yield 136 mg (80 %). C₃₀H₃₄N₂O₂S (486.6 g/mol). Purity (HPLC): 95 %, t_R = 22.85 min. HRMS (APCI): m/z = calcd. for C₃₀H₃₅N₂O₂S [MH⁺] 487.2414, found 487.2381. ¹H NMR (CDCl₃): δ (ppm) = 1.55-1.83 (m, 4H, 3-CH_{2pyran}, 5-CH_{2pyran}), 2.13 (quint, J = 5.1 Hz, 2H, 7-CH₂), 2.21 (s, 3H, N-CH₃), 2.36 (s, 3H, CH_{3tolyl}), 2.64 (tt, J = 10.9/3.5 Hz, 1H, 4-H_{pyran}), 2.84 (t, J = 5.8 Hz, 2H, 6-CH₂), 3.11 (t, J = 5.6 Hz, 2H, 8-CH₂), 3.37 (td, J = 11.6/2.3 Hz, 2H, CH_{2axial}-O-CH_{2axial}), 3.57 (s, 2H, Ph-CH₂-N), 4.04 (dd, J = 11.4/4.4 Hz, 2H, CH_{2equat}-O-CH_{2equat}), 7.07 (s, 1H, 3-CH), 7.14-7.24 (m, 3H, 3-CH_{tolyl}, 5-CH_{tolyl}, 4-CH), 7.30 (d, J = 8.2 Hz, 2H, 3-CH_{phenyl}, 5-CH_{phenyl}), 7.42 (d, *J* = 8.1 Hz, 2H, 2-CH_{tolyl}, 6-CH_{tolyl}), 7.49-7.57 (m, 3H, 2-CH_{phenyl}, 6-CH_{phenyl}, NH). ¹³C NMR (CDCl₃): δ (ppm) = 21.6 (CH_{3tolyl}), 24.6 (C-7), 29.6 (C-3pyran, C-5pyran), 31.1 (C-8, C-6), 37.9 (N-CH₃), 57.7 (C-4pyran), 59.9 (Ph-CH₂-N), 68.2 (C-2pyran, C-6pyran), 120.4 (C-2phenyl, C-6phenyl), 125.8 (C-2tolyl, C-6tolyl), 127.1 (C-3), 127.7 (C-4), 129.9 (C-3phenyl, C-5phenyl), 130.0 (C-3tolyl, C-5tolyl), 131.5 (C-1tolyl), 133.8 (C-4phenyl), 136.4 (C-1phenyl), 137.7 (C-2), 137.8 (C-3a), 140.8 (C-5), 143.7 (C-8a), 146.3 $(C-4_{tolyl})$, 168.7 (O=C-NH). FT-IR (neat): $\tilde{\nu}$ (cm⁻¹) = 3309 (N-H), 2839 (C-H_{alkyl}), 1627 (C=O).

2-(4-Methylphenyl)-*N*-[2-(tetrahydro-2*H*-pyran-4-yl)-1,2,3,4-tetrahydroisoquinolin-7yl]-7,8-dihydro-6*H*-[7]annuleno[*b*]thiophene-5-carboxamide (14b)

2-(Tetrahydro-2*H*-pyran-4-yl)-1,2,3,4-tetrahydroisoquinolin-7-amine (82 mg, 0.35 mmol, 1 eq.) was added to a vigorously stirred mixture of acid **13a**⁴⁰ (100 mg, 0.35 mmol), triethylamine (71 mg, 0.70 mmol, 2 eq.) and HATUTM (150 mg, 0.38 mmol. 1.1 eq.) in THF (5 mL). The mixture was stirred overnight at rt. The mixture was concentrated *in vacuo* and the residue was purified by fc (EtOAc : $CH_2Cl_2 = 1:2 + 5$ % MeOH)) and

recrystallized from acetonitrile to give **14b** as a yellow solid. $R_f = 0.34$ (MeOH : CH₂Cl₂ = 5:95), mp 215°C (dec.), yield 120 mg (69 %). C₃₁H₃₄N₂O₂S (498.6 g/mol). Purity (HPLC): 95 %, $t_R = 20.90$ min. HRMS (APCI): m/z = calcd. for C₃₁H₃₅N₂O₂S [MH⁺] 499.2414, found 499.2389. ¹H NMR (CDCl₃): δ (ppm) = 1.69 (dq, J = 12.1/4.2 Hz, 2H, 3-CH_{2pyran}equat, 5-CH₂pyran-equat), 1.81-1.90 (m, 2H, 3-CH₂pyran-axial, 5-CH₂pyran-axial), 2.11 (quint., J = 5.9) Hz, 2H, 7-CH₂), 2.36 (s, 3H, CH_{3tolyl}), 2.65 (tt, J = 11.1/3.8 Hz, 1H, 4-H_{pyran}), 2.77-2.90 (m, 6H, 6-CH₂, 3-CH_{2isoqu}, 4-CH_{2isoqu}), 3.09 (t, J = 5.3 Hz, 2H, 8-CH₂), 3.42 (t, J = 12.1Hz, 2H, CH_{2axial}-O-CH_{2axial}), 3.77 (s, 2H, 1-CH_{2isoqu}), 4.06 (dd, J = 11.8/4.0 Hz, 2H, CH_{2equat}-O-CH_{2equat}), 7.05-7.08 (m, 2H, 3-CH, 5-CH_{isoqu}), 7.14-7.24 (m, 3H, 3-CH_{tolyl}, 5- CH_{tolyl} , 4-CH), 7.21 (dd, J = 8.2/2.2 Hz, 1H, 6-CH_{isoqu}), 7.41 (d, J = 7.7 Hz, 2H, 2-CH_{tolyl}, 6-CH_{tolyl}), 7.43 (d, J = 2.2 Hz, 1H, 8-CH_{isoqu}), 7.55 (s, 1H, NH). ¹³C NMR (CDCl₃): δ (ppm) = 21.7 (CH_{3tolyl}), 24.6 (C-7), 29.4 (C-4_{isoqu}), 30.0 (C-3_{pyran}, C-5_{pyran}), 31.1 (C-8, C-6), 47.0 (C-3isoqu), 52.5 (C-1isoqu), 60.7 (C-4pyran), 67.9 (C-2pyran, C-6pyran), 118.6 (C-8isoqu.), 118.7 (C-6_{isoqu}), 125.8 (C-2_{tolyl}, C-6_{tolyl}), 127.1 (C-3), 127.6 (C-4), 129.6 (C-5_{isoqu}), 130.0 (C-3tolyl, C-5tolyl), 131.0 (C-1tolyl), 131.5 (C-4aisoqu), 133.9 (C-8aisoqu), 136.2 (C-4tolyl), 136.2 (C-2), 136.4 (C-5), 137.8 (C-3a), 140.5 (C-7_{isoqu}), 143.7 (C-8a), 168.7 (O=C-NH). FT-IR (neat): $\tilde{\nu}$ (cm⁻¹) = 3290 (N-H), 2943 (C-H_{alkyl}), 1627 (C=O).

N-{4-[*N*-Methyl-*N*-(tetrahydro-2*H*-pyran-4-yl)aminomethyl]phenyl}-2-(3methylphenyl)-7,8-dihydro-6*H*-[7]annuleno[*b*]thiophene-5-carboxamide (14d)

N-(4-Aminophenyl)-*N*-methyltetrahydro-2H-pyran-4-amin (78 mg, 0.35 mmol, 1 eq.) was added to a vigorously stirred mixture of acid **13b**⁴⁰(100 mg, 0.35 mmol), triethylamine (71 mg, 0.70 mmol, 2 eq.) and HATU[™] (150 mg, 0.38 mmol. 1.1 eq.) in THF (5 mL). The mixture was stirred overnight at rt. The mixture was concentrated *in vacuo* and the residue was purified by fc (EtOAc : $CH_2Cl_2 = 1:2 + 5\%$ MeOH) and recrystallized from acetonitrile to give **14d** as a yellow solid. R_f = 0.17 (EtOAc : $CH_2Cl_2 + 5\%$ MeOH = 1:2), mp 189 °C, yield 128 mg (74 %). C₃₀H₃₄N₂O₂S (486.6 g/mol). Purity (HPLC): 97 %, t_R = 20.94 min. HRMS (APCI): m/z = calcd. for C₃₀H₃₅N₂O₂S [MH⁺] 487.2414, found 487.2395. ¹H NMR (CDCl₃): δ (ppm) = 1.60-1.82 (m, 4H, 3-CH₂pyran, 5-CH₂pyran), 2.14 (quint, *J* = 6.2 Hz, 2H, 7-CH₂), 2.21 (s, 3H, N-CH₃), 2.38 (s, 3H, CH_{3tolyl}), 2.64 (tt, *J* = 11.2/4.0 Hz, 1H, 4-H_{pyran}), 2.84 (t, *J* = 5.5 Hz, 2H, 6-CH₂), 3.13 (t, *J* = 5.7 Hz, 2H, 8-CH₂), 3.37 (td, *J* = 11.5/2.3 Hz, 2H, CH₂axial-O-CH₂axial), 3.57 (s, 2H, Ph-CH₂-N), 4.04 (dd, *J* = 11.2/3.4 Hz, 2H, CH₂equat-O-CH₂equat), 7.10 (d, *J* = 7.5 Hz, 1H, 4-CH_{tolyl}), 7.11 (s, 1H, 3-CH), 7.20 (s, 1H, 4-CH), 7.27-7.28 (m, 1H, 5-CH_{tolyl}), 7.30 (d, *J* = 8.3 Hz, 2H, 3-

CH_{phenyl}, 5-CH_{phenyl}), 7.34 (m, 2H, 2-CH_{tolyl}, 6-CH_{tolyl}), 7.48-7.57 (m, 3H, 2-CH_{phenyl}, 6-CH_{phenyl}, NH). ¹³C NMR (CDCl₃): δ (ppm) = 21.7 (CH_{3tolyl}), 24.4 (C-7), 29.4 (C-3_{pyran}, C-5_{pyran}), 30.9 (C-8, C-6), 37.7 (N-CH₃), 57.5 (C-4_{pyran}), 59.7 (Ph-CH₂-N), 67.9 (C-2_{pyran}, C-6_{pyran}), 120.1 (C-2_{phenyl}, C-6_{phenyl}), 122.8 (C-2_{tolyl}), 126.4 (C-6_{tolyl}), 127.3 (C-3), 127.4 (C-4), 127.8 (C-1_{phenyl}), 128.5 (C-4_{tolyl}), 129.0 (C-5_{tolyl}), 129.6 (C-3_{phenyl}, C-5_{phenyl}), 133.6 (C-3_{tolyl}), 133.9 (C-1_{tolyl}), 136.2 (C-2), 140.5 (C-3a), 144.7 (C-8a), 147.9 (C-5), 168.5 (O=C-NH). A signal for the carbon atom C-4_{phenyl} is not visible. FT-IR (neat): \tilde{v} (cm⁻¹) = 3305 (N-H), 2939, 2862 (C-H_{alkyl}), 1643 (C=O), 1053, 1010 (C-O).

2-(4-Butylphenyl)-*N*-[4-(piperidin-1-ylmethyl)phenyl]-7,8-dihydro-6*H*-[7]annuleno[*b*]thiophene-5-carboxamide (14g)

1-(4-Aminobenzyl)piperidine dihydrochloride (79 mg, 0.30 mmol, 1 eq.) was added to a vigorously stirred mixture of acid **13c**⁴⁰ (100 mg, 0.30 mmol), triethylamine (61 mg, 0.60 mmol, 2 eq.) and HATU™ (130 mg, 0.33 mmol. 1.1 eq.) in acetonitrile (5 mL). The mixture was stirred overnight at rt. The mixture was stirred overnight at rt during which a precipitate was formed. The solid was filtered off, washed with acetonitrile and recrystallized from acetonitrile to give 14g as a colorless solid. Rf = 0.11 (CH₂Cl₂ : MeOH = 95:5), mp 185-188 °C, yield 132 mg (88 %). C₃₂H₃₈N₂OS (498.7 g/mol). Purity (HPLC): >97 %, $t_R = 23.67$ min. HRMS (APCI): m/z = calcd. for C₃₂H₃₉N₂OS [MH⁺] 499.2778, found 499.2803. ¹H NMR (CDCl₃): δ (ppm) = 0.94 (t, J = 7.4 Hz, 3H, 4-CH_{3n-butyl}), 1.29-1.47 (m, 4H, 3-CH_{2n-butyl}, 4-CH_{2piperidin}), 1.50-1.71 (m, 6H, 3-CH_{2piperidin}, 5-CH_{2piperidin}, 2-CH_{2n-butyl}), 2.13 (quint, J = 5.4 Hz, 2H, 7-CH₂), 2.36 (m, 4H, 2-CH_{2piperidin}, 6-CH_{2piperidin}), 2.61 (t, J = 7.7 Hz, 2H, 1-CH_{2n-butyl}), 2.84 (t, J = 5.7 Hz, 2H, 6-CH₂), 3.11 (t, J = 5.7 Hz, 2H, 8-CH₂), 3.45 (s, 2H, Ph-CH₂-N), 7.07 (s, 1H, 3-CH), 7.15-7.20 (m, 3H, 4-CH, 3-CH_{butylphen}, 5-CH_{butylphen}), 7.29 (d, J = 8.5 Hz, 2H, 3-CH_{phenyl}, 5-CH_{phenyl}), 7.43 (d, J = 8.2 Hz, 2H, 2-CH_{butylphen}, 6-CH_{butylphen}), 7.52 (d, J = 8.5 Hz, 2H, 2-CH_{phenyl}, 6-CH_{phenyl}), 7.54 (s, 1H, N*H*). ¹³C NMR (CDCl₃): δ (ppm) = 14.1 (C-4_{butyl}), 22.5 (C-4_{piperidin}), 24.3 (C-3_{butyl}), 24.5 (C-7), 26.1 (C-3piperidin, C-5piperidin), 30.8 (C-8, C-6), 33.7 (C-2butyl), 35.5 (C-1butyl), 54.5 (C-2piperidin, C-6piperidin), 63.5 (Ph-CH₂-N), 119.9 (C-2phenyl, C-6phenyl), 125.5 (C-3butylphen, C-5butylphen), 126.8 (C-2butylphen, C-6butylphen), 127.4 (C-3), 129.1 (C-4), 130.0 (C-3phenyl, C-5phenyl), 131.3 (C-1butylphen), 133.5 (C-4phenyl), 134.7 (C-1phenyl), 136.1 (C-2), 137.0 (C-3a), 140.5 (C-5), 142.6 (C-8a), 143.4 (C-4_{butylphen}), 168.4 (O=C-NH). FT-IR (neat): \tilde{v} (cm⁻¹) = 3325 (N-H), 2931 (C-H_{alkyl}), 1643 (C=O), 1041, 1018 (C-O).

2-(4-*tert*-Butylphenyl)-*N*-{4-[*N*-methyl-*N*-(tetrahydro-2*H*-pyran-4-

yl)aminomethyl]phenyl}-7,8-dihydro-6*H*-[7]annuleno[*b*]thiophene-5-carboxamide (14h)

N-(4-Aminophenyl)-N-methyltetrahydro-2H-pyran-4-amin (66 mg, 0.30 mmol, 1 eq.) was added to a vigorously stirred mixture of acid **13d**⁴⁰(100 mg, 0.30 mmol), triethylamine (61 mg, 0.60 mmol, 2 eg.) and HATU[™] (128 mg, 0.33 mmol. 1.1 eg.) in THF (5 mL). The mixture was stirred overnight at rt. The mixture was concentrated in vacuo and the residue was purified by fc (EtOAc : MeOH = 95:5) and recrystallized from acetonitrile to give **14h** as pale yellow solid. $R_f = 0.28$ (MeOH : $CH_2CI_2 = 5.95$), mp 209 °C, yield 123 mg (77 %). C₃₃H₄₀N₂O₂S (528.7 g/mol). Purity (HPLC): 95 %, t_R = 22.66 min. HRMS (APCI): m/z = calcd. for C₃₃H₄₁N₂O₂S [MH⁺] 529.2883, found 529.2927. ¹H NMR (CDCl₃): δ (ppm) = 1.34 (s, 9H, C(CH₃)₃), 1.55-1.81 (m, 4H, 3-CH_{2pyran}, 5-CH_{2pyran}), 2.13 (quint., J = 5.3 Hz, 2H, 7-CH₂), 2.20 (s, 3H, N-CH₃), 2.64 (tt, J = 11.2/4.1 Hz, 1H, 4- H_{pyran}), 2.83 (t, J = 5.7 Hz, 2H, 6-CH₂), 3.11 (t, J = 5.7 Hz, 2H, 8-CH₂), 3.37 (td, J =11.6/2.3 Hz, 2H, CH_{2axial}-O-CH_{2axial}), 3.56 (s, 2H, Ph-CH₂-N), 4.04 (dd, J = 11.3/4.9 Hz, 2H, CH_{2equat}-O-CH_{2equat}), 7.07 (s, 1H, 3-CH), 7.19 (s, 1H, 4-CH), 7.30 (d, J = 8.6 Hz, 2H, 3-CHphenyl, 5-CHphenyl), 7.39 (d, J = 8.3 Hz, 2H, 3-CHbutylphen, 5-CHbutylphen), 7.46 (d, J = 8.4 Hz, 2H, 2-CH_{butylphen}, 6-CH_{butylphen}), 7.53 (d, J = 8.5 Hz, 2H, 2-CH_{phenyl}, 6-CH_{phenyl}), 7.59 (s, 1H, N*H*). ¹³C NMR (CDCl₃): δ (ppm) = 24.6 (C-7), 29.7 (C-3_{pyran}, C-5_{pyran}), 31.1 (C-8), 31.1 (C-6), 31.7 (C(CH₃)₃), 35.0 (C(CH₃)₃), 38.0 (N-CH₃), 57.8 (C-4_{pyran}), 60.0 (Ph-CH2-N), 68.2 (C-2pyran, C-6pyran), 120.4 (C-2phenyl, C-6phenyl), 125.7 (C-3butylphen, C-5butylphen), 126.3 (C-2butylphen, C-6butylphen) 127.2 (C-3), 127.7 (C-4), 129.9 (C-3phenyl, C-5phenyl), 131.5 (C-1butylphen), 133.9 (C-4phenyl), 136.2 (C-1phenyl), 136.4 (C-2), 137.4 (C-3a), 140.7 (C-5), 143.8 (C-8a), 151.1 (C-4_{butvlphen}), 168.8 (O=C-NH). FT-IR (neat): \tilde{v} (cm⁻¹) = 3251 (N-H), 2966 (C-Halkyl), 1651 (C=O), 1597 (C=C), 1053, 1014 (C-O).

3. Experimental Pharmacology

σ receptor assays

Materials

The guinea pig brains and rat liver for the σ_1 and σ_2 receptor binding assays were commercially available (Harlan-Winkelmann, Borchen, Germany). Centrifuges: Cooling centrifuge model Rotina 35R (Hettich, Tuttlingen, Germany) and High-speed cooling centrifuge model Sorvall RC-5C plus (Thermo Fisher Scientific, Langenselbold, Germany). Multiplates: standard 96-well multiplates (Diagonal, Muenster, Germany). Shaker: self-made device with adjustable temperature and tumbling speed (scientific workshop of the institute). Vortexer: Vortex Genie 2 (Thermo Fisher Scientific, Langenselbold, Germany). Harvester: MicroBeta FilterMate-96 Harvester. Filter: Printed Filtermat Typ A and B. Scintillator: Meltilex (Typ A or B) solid state scintillator. Scintillation analyzer: MicroBeta Trilux (all Perkin Elmer LAS, Rodgau-Jügesheim, Germany). Chemicals and reagents were purchased from different commercial sources and of analytical grade.

Preparation of membrane homogenates from guinea pig brain

5 guinea pig brains were homogenized with the potter (500-800 rpm, 10 up-and-down strokes) in 6 volumes of cold 0.32 M sucrose. The suspension was centrifuged at 1200 x g for 10 min at 4 °C. The supernatant was separated and centrifuged at 23,500 x g for 20 min at 4 °C. The pellet was resuspended in 5-6 volumes of buffer (50 mM TRIS, pH 7.4) and centrifuged again at 23,500 x g (20 min, 4 °C). This procedure was repeated twice. The final pellet was resuspended in 5-6 volumes of buffer and frozen (-80 °C) in 1.5 mL portions containing about 1.5 mg protein/mL.

Preparation of membrane homogenates from rat liver

Two rat livers were cut into small pieces and homogenized with the potter (500-800 rpm, 10 up-and-down strokes) in 6 volumes of cold 0.32 M sucrose. The suspension was centrifuged at 1,200 x g for 10 min at 4 °C. The supernatant was separated and centrifuged at 31,000 x g for 20 min at 4 °C. The pellet was resuspended in 5-6 volumes of buffer (50 mM TRIS, pH 8.0) and incubated at room temperature for 30 min. After the incubation, the suspension was centrifuged again at 31,000 x g for 20 min at 4 °C. The pellet was resuspended in 5-6 volumes of buffer (50 mM TRIS, pH 8.0) and incubated at room temperature for 30 min. After the incubation, the suspension was centrifuged again at 31,000 x g for 20 min at 4 °C. The pellet was resuspended in 5-6 volumes of buffer and stored at -80 °C in 1.5 mL portions containing about 2 mg protein/mL.

Protein determination

The protein concentration was determined by the method of Bradford,⁵² modified by Stoscheck.⁵³ The Bradford solution was prepared by dissolving 5 mg of Coomassie Brilliant Blue G 250 in 2.5 mL of EtOH (95 %, v/v). 10 mL deionized water and 5 mL phosphoric acid (85%, m/v) were added to this solution, the mixture was stirred and filled to a total volume of 50.0 mL with deionized water. The calibration was carried out using bovine serum albumin as a standard in 9 concentrations (0.1, 0.2, 0.4, 0.6, 0.8,

1.0, 1.5, 2.0 and 4.0 mg /mL). In a 96 well standard multiplate, 10 μ L of the calibration solution or 10 μ L of the membrane receptor preparation were mixed with 190 μ L of the Bradford solution, respectively. After 5 min, the UV absorption of the protein-dye complex at λ = 595 nm was measured with a platereader (Tecan Genios, Tecan, Crailsheim, Germany).

General protocol for the binding assays

The test compound solutions were prepared by dissolving approximately 10 µmol (usually 2-4 mg) of test compound in DMSO so that a 10 mM stock solution was obtained. To obtain the required test solutions for the assay, the DMSO stock solution was diluted with the respective assay buffer. The filtermats were presoaked in 0.5% aqueous polyethylenimine solution for 2 h at room temperature before use. All binding experiments were carried out in duplicates in 96-well multiplates. The concentrations given are the final concentrations in the assay. Generally, the assays were performed by addition of 50 µL of the respective assay buffer, 50 µL test compound solution in various concentrations (10⁻⁵, 10⁻⁶, 10⁻⁷, 10⁻⁸, 10⁻⁹ and 10⁻¹⁰ mol/L), 50 µL of corresponding radioligand solution and 50 µL of the respective receptor preparation into each well of the multiplate (total volume 200 µL). The receptor preparation was always added last. During the incubation, the multiplates were shaken at a speed of 500-600 rpm at the specified temperature. Unless otherwise noted, the assays were terminated after 120 min by rapid filtration using the harvester. During the filtration each well was washed five times with 300 µL of water. Subsequently, the filtermats were dried at 95 °C. The solid scintillator was melted on the dried filtermats at a temperature of 95 °C for 5 min. After solidifying of the scintillator at room temperature, the trapped radioactivity in the filtermats was measured with the scintillation analyzer. Each position on the filtermat corresponding to one well of the multiplate was measured for 5 min with the [3H]counting protocol. The overall counting efficiency was 20%. The IC₅₀ values were calculated with the program GraphPad Prism® 3.0 (GraphPad Software, San Diego, CA, USA) by non-linear regression analysis. Subsequently, the IC₅₀ values were transformed into K_i values using the equation of Cheng and Prusoff.

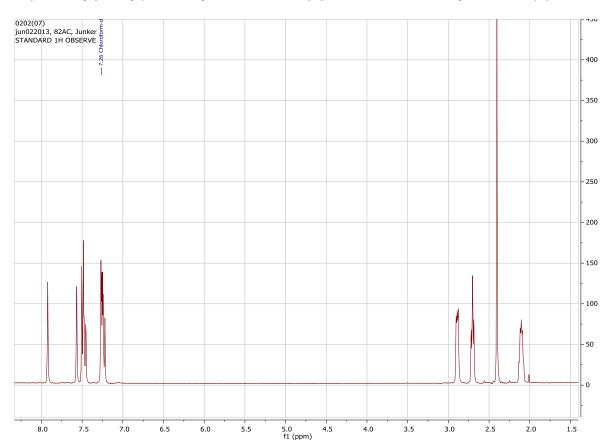
Protocol for the determination of σ_1 affinity

The assay was performed with the radioligand [³H](+)-Pentazocine (0.81 GBq/µmol (22.0 Ci/mmol); Perkin Elmer). The thawed membrane preparation of guinea pig brain

cortex (about 100 µg of protein) was incubated with various concentrations of test compounds, 2 nM [³H](+)-Pentazocine, and TRIS buffer (50 mM, pH 7.4) at 37 °C. The non-specific binding was determined with 10 µM unlabeled (+)-Pentazocine. The K_d value of (+)-pentazocine is 2.9 nM.⁵⁴The nonspecific binding was determined in the presence of a large excess of non-tritiated (+)-pentazocine. K_i values of the reference compounds (+)-pentazocine, ditolylguanidine (DTG), haloperidol and rimcazol were determined and compared with literature data to verify the *in-vitro* assay.

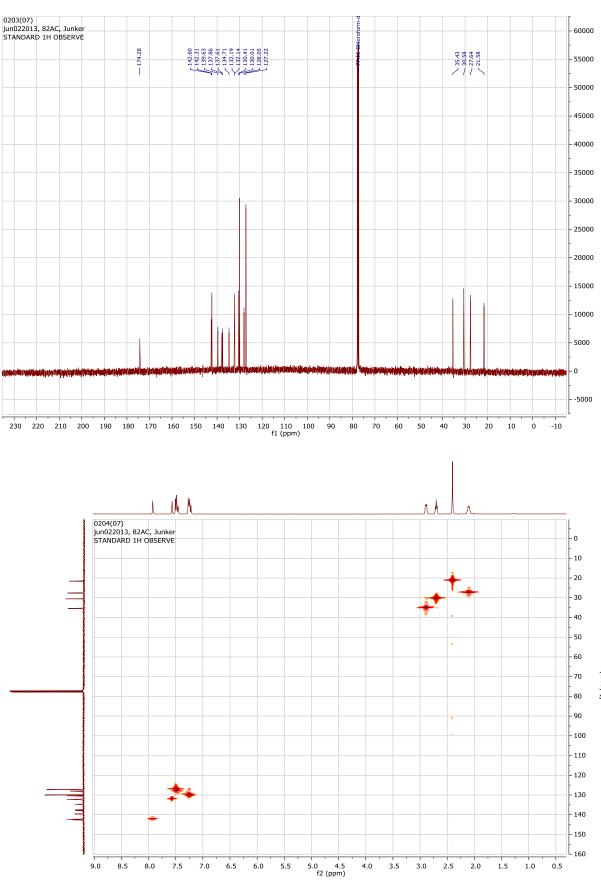
	(+)-pentazocine	ditolylguanidine	haloperidol	rimcazole
$K_i \pm SEM [nM]$	2.1 ± 0.1^{54}	107 ± 21^{55}	1.8 ± 0.09 ⁵⁵	2380 ± 812 ⁵⁶
/literature)	2.1 ± 0.1	107 ± 21	1.0 1 0.00	2000 ± 012
$K_i \pm SEM [nM]$	5.4 ± 0.5	71 ± 8	6.6 ± 0.9	1746 ± 609
(recorded)	(n = 17)	(n = 15)	(n = 14)	(n = 6)

 σ_1 Affinities of reference compounds (literature and own data).

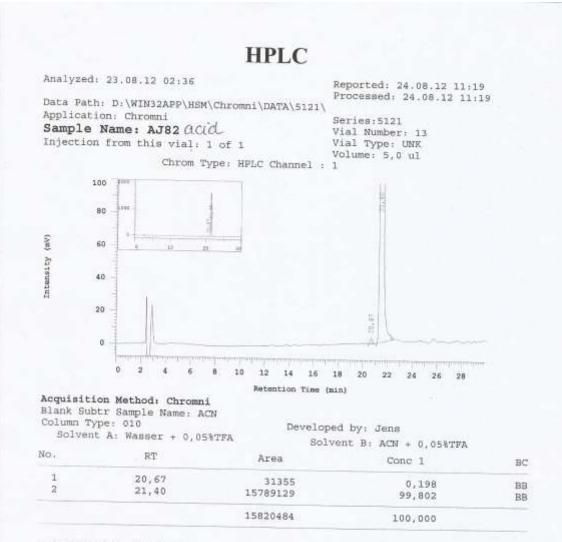

Protocol for the determination of σ_2 affinity

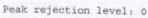
The assays were performed with the radioligand [³H]DTG (specific activity 1.85 GBq/µmol (50 Ci/mmol); ARC, St. Louis, MO, USA). The thawed membrane preparation of rat liver (about 100 µg of protein) was incubated with various concentrations of the test compound, 3 nM [³H]DTG and buffer containing (+)-pentazocine (500 nM (+)-pentazocine in 50 mM TRIS, pH 8.0) at room temperature. The non-specific binding was determined with 10 µM non-labeled DTG. The K_d value of [³H]DTG is 17.9 nM.⁵⁵ Excess of unlabeled DTG (D) was used to determine the nonspecific binding. K_{*i*} values of reference compounds haloperidol, ditolylguanidine (DTG), ifenprodil and rimcazol were determined and compared with literature data to verify the *in vitro* assay.

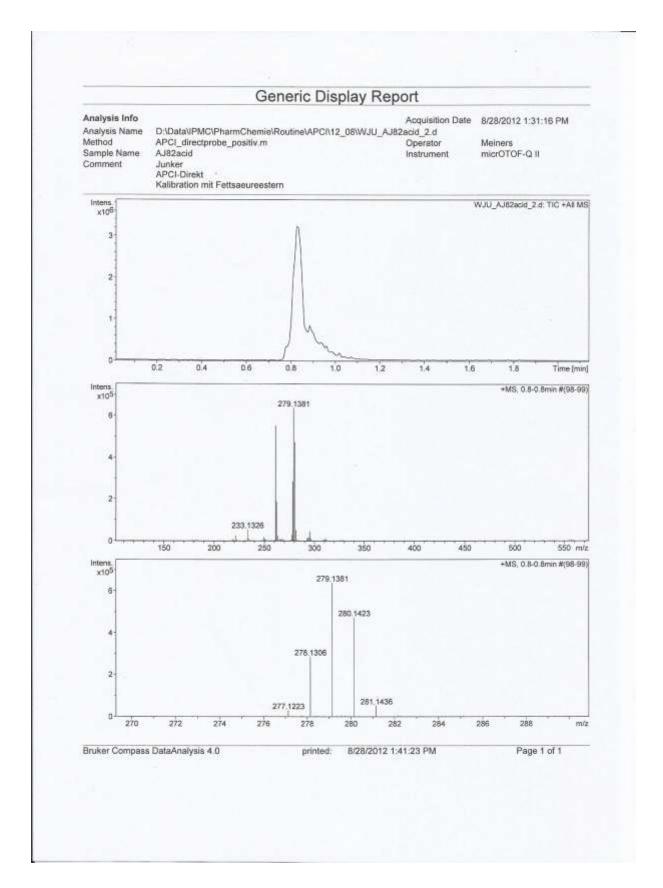
	haloperidol	ditolylguanidine	ifenprodil
K _i ± SEM [nM] (literature)	22 ± 8.5^{55}	40 ± 2.6^{57}	6.25 ± 0.38^{58}
$K_i \pm SEM [nM]$	125 ± 33	54 ± 8	60 ± 16
(recorded)	(n = 7)	(n = 15)	(n = 5)

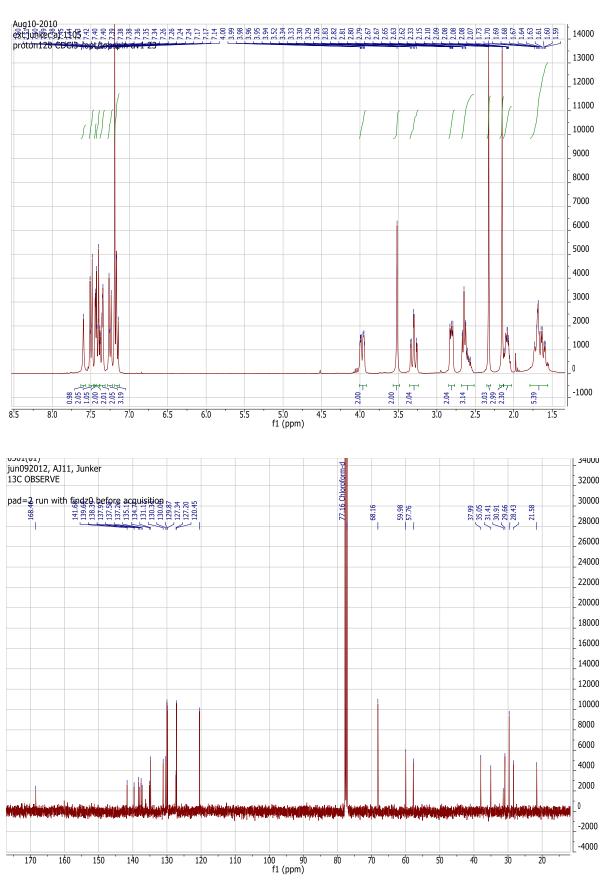

 σ_2 Affinities of reference compounds (literature and own data).

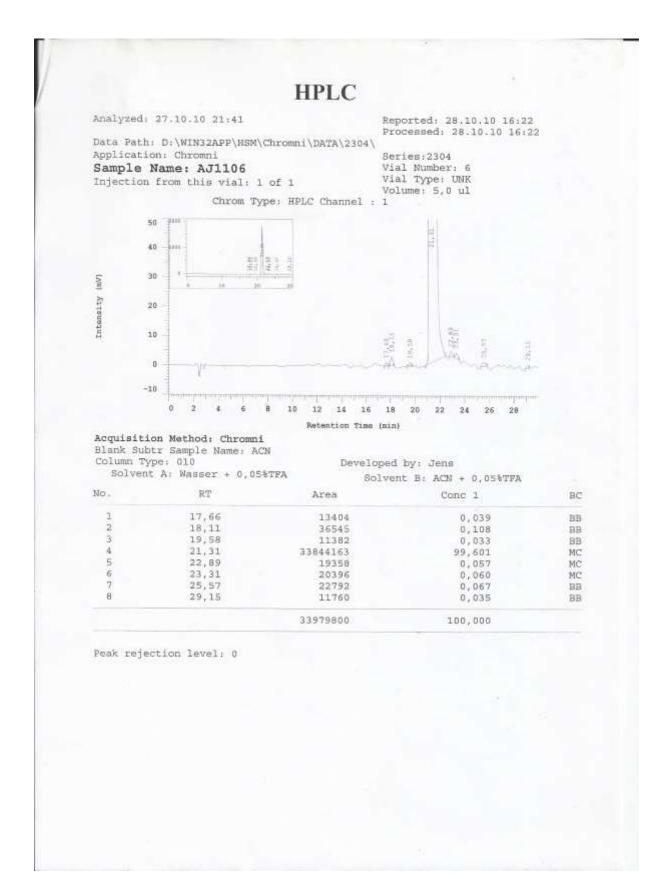
4. ¹H and ¹³C and gHSQC NMR spectra, HPLC analysis and MS spectra

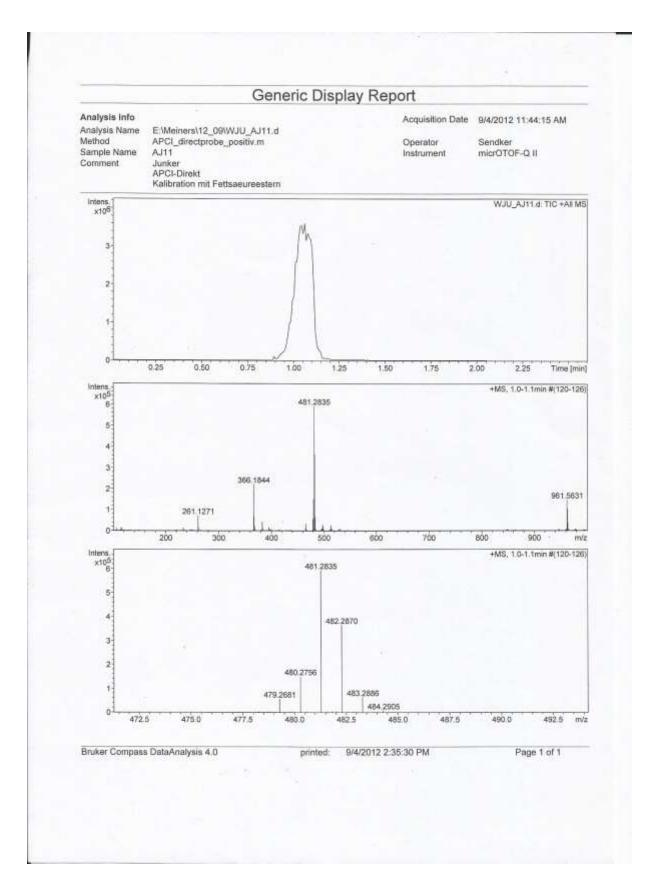



2-(4-Methylphenyl)-6,7-dihydro-5H-benzo[7]annulene-8-carboxylic acid³⁷ (6)

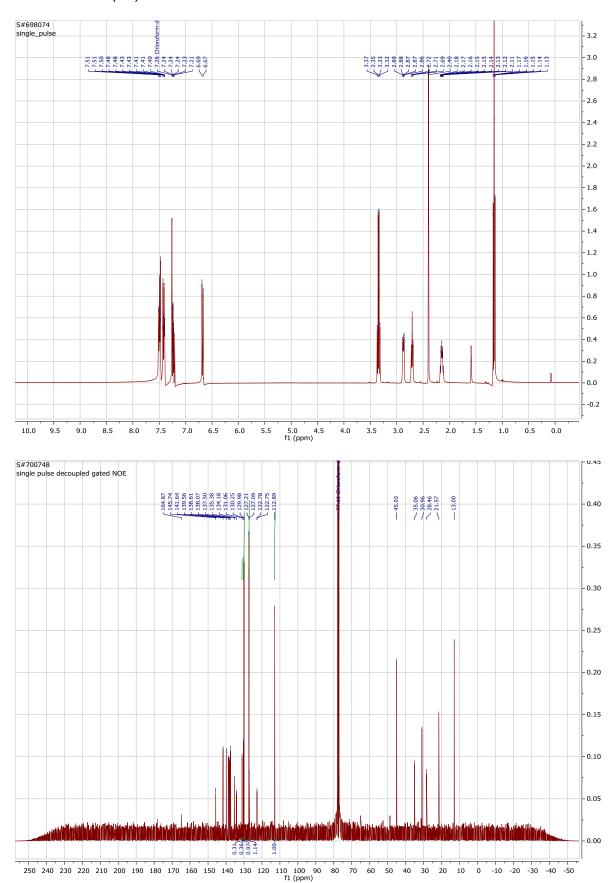


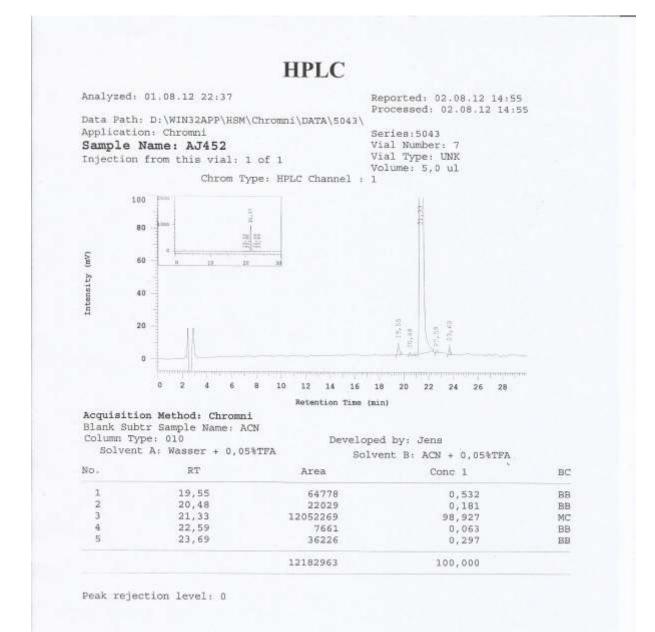


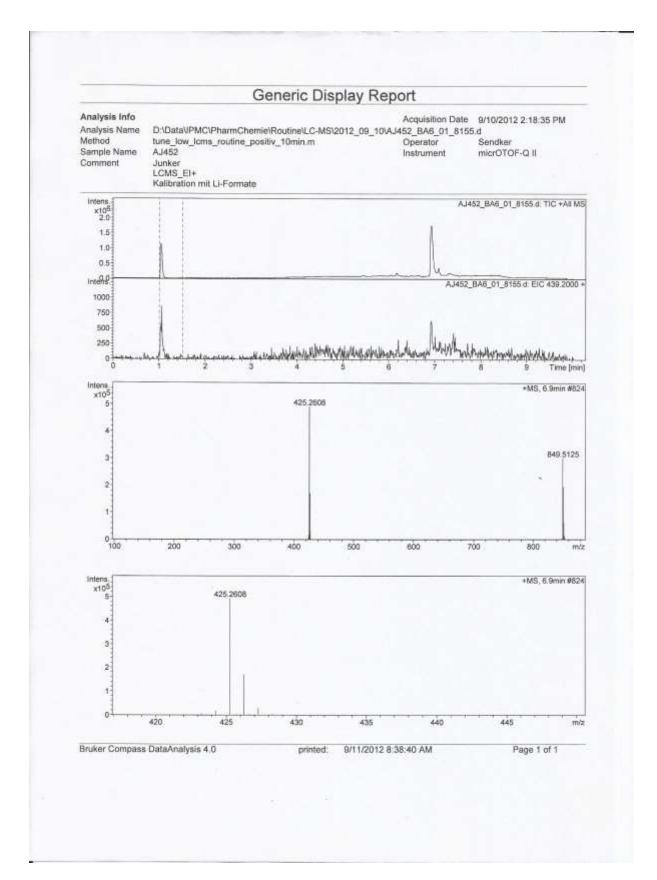


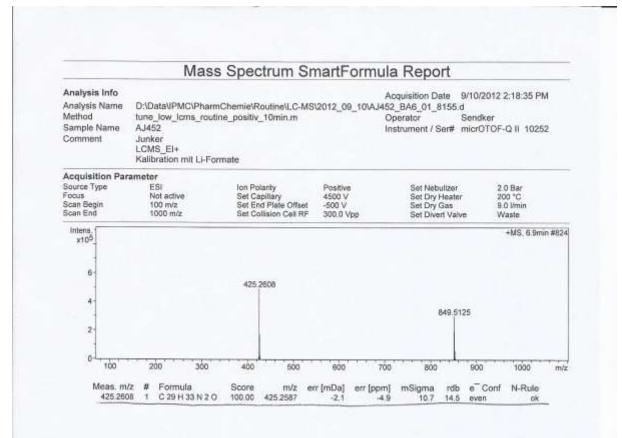

Analysis Info Acquisition Date 8/28/2012 1:31:16 PM Analysis Name Method D:\Data\IPMC\PharmChemie\Routine\APCI\12_08\WJU_AJ82acid_2.d 8/28/2012 1:31:16 PM Sample Name Comment AJ82acid Instrument / Ser# micrOTOF-Q II 1025											
Acquisition Para Source Type Focus Scan Begin Scan End	An also have a second	reitsaet	lon Pola Set Cap Set End	irity	Positive 4000 V -500 V 130.0 Vp	p	Set Nebul Set Dry H Set Dry G Set Divert	eater as	200 3.0	Bar)*C I/min ste	
intens. x108 1.0 0.8 0.6 0.4 0.4	279.	1381							+MS, 0.1	8-0. âmin ≢(s	8-99
0.0	200	300	400	50		00	700	800		900	m
279.138	1 1 C 19H 1 2 C 15H 1 3 C 13H 1 4 C 13H 1 5 C 10H 1 5 C 9H 15 7 C 12H 2 8 C 8H 19	5 N 6 9 N 2 O 4 9 N 4 O 3 5 N 8 O 2 N 10 O 3 O 7	100.00 3.16 0.11 0.00 0.00 0.00 0.01	279.1380 279.1353 279.1339 279.1452 279.1452 279.1425 279.1425 279.1425 279.1438 279.1411	-02 -29 -42 7,0 -69 43 57 3,0	-0.7 -10.3 -15.1 25.1 -24.7 15.5 20.4 10.7	310.5 323.2 337.6 339.7 350.2 352.5 354.2 366.9	10.5 6.5 7.5 7.5 2.5	even even even even even even even	ok ok ok ok ok ok	
Bruker Compass	DataAnalysis 4	0		printed	8/28/20	112 1:41:15	PM		Pa	ge 1 of 1	

2-(4-Methyphenyl)-N-{4-[N-methyl-N-(tetrahydro-2H-pyran-4-yl)aminomethyl]phenyl}-

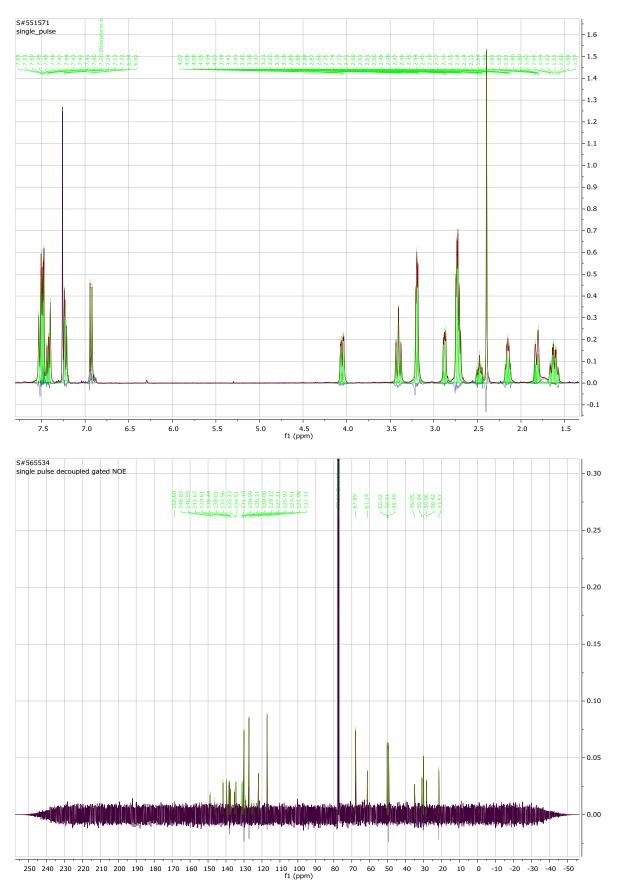

6,7-dihydro-5H-benzo[7]annulene-8-carboxamide³⁹ (8a)

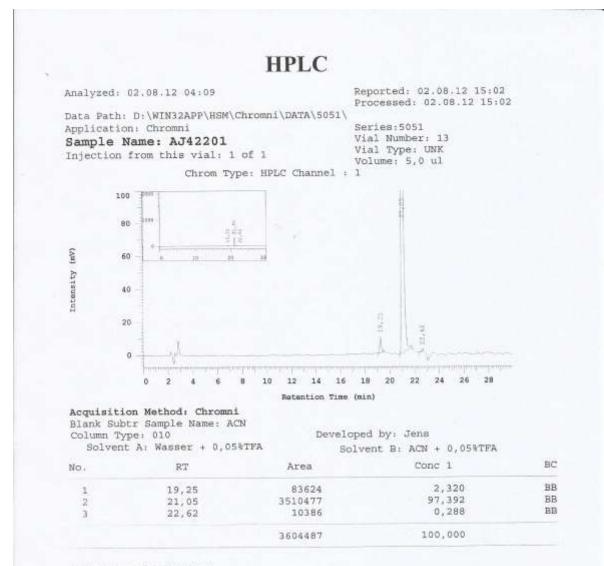


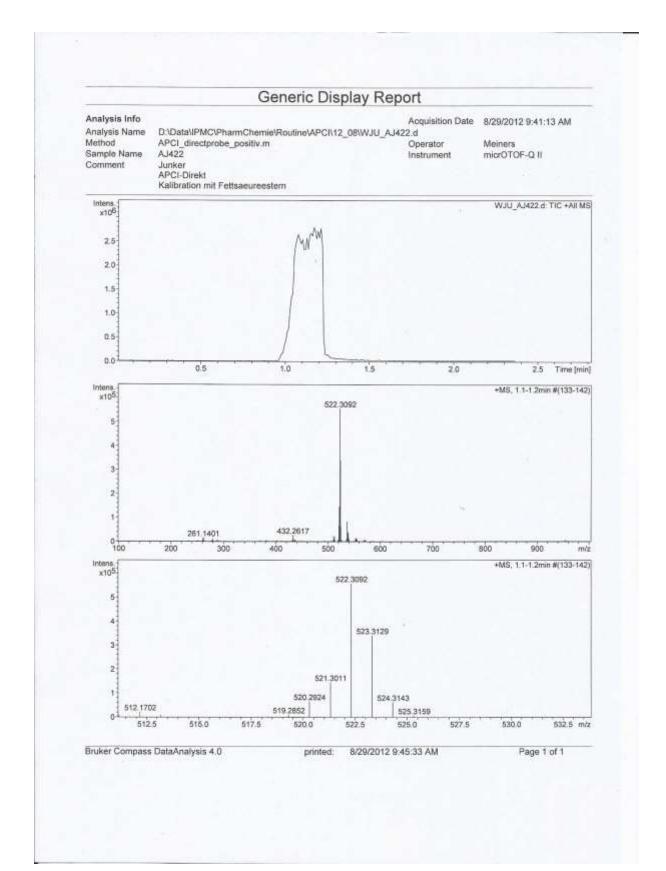

Analysis Info Analysis Name E-WeinersV12_09WUJU_AU11.d Method Sample Name APCI_directorobe_positiv.m Junker APCI_Direkt Kalibration mit Fettsseureestern APCI Being Name AU1 Comment / Sert Prince APCI_Direkt Kalibration mit Fettsseureestern Doom // APCI_direkt Kalibration mit Fettsseureestern Doom // Set Edillision Cell RF 4000 // Set Doy Healer 200 °C Set Being 100 m/z Set Edillision Cell RF 4000 // Set Doy Healer 200 °C Set Being 100 m/z Set Edillision Cell RF 4000 // Set Doy Healer 200 °C Set Being 1000 m/z Set Edillision Cell RF 4000 // Set Doy Healer 200 °C Set Doy Gas 300 m/m Meas.m/z # Formula Score m/z err (mDa) err (ppm) mSigma rob e Conf N-Rule 4812835 // C 32H 37N 40 /4 1010 4812802 -1-2 -5-3 152.7 11.5 even ok 5 C 20H 41N 40 9 0.29 4812882 -1-2 -5-3 152.7 11.5 even ok 5 C 20H 41N 40 9 0.29 4812882 -1-2 -5-3 152.7 11.5 even ok 5 C 20H 41N 40 9 0.29 4812882 -1-2 -5-3 152.7 11.5 even ok 5 C 20H 41N 40 9 0.29 4812882 -1-2 -5-3 152.7 11.5 even ok 5 C 20H 41N 40 9 0.29 4812882 -1-1 7 -20 5 -5-3 152.7 11.5 even ok 5 C 20H 41N 40 9 0.29 4812882 -1-2 -5-3 152.7 11.5 even ok 5 C 20H 41N 40 9 0.29 4812882 -1-1 -2 -5-3 152.7 11.5 even ok 5 C 20H 41N 40 9 0.29 4812882 -1-1 -2 -5-3 152.7 11.5 even ok 5 C 20H 41N 40 9 0.29 4812882 -1-1 -2 -5-3 152.7 11.5 even ok 5 C 20H 41N 40 9 0.29 4812882 -1-1 -2 -5-3 152.7 11.5 even ok 5 C 20H 41N 40 9 0.29 4812882 -1-1 -2 -5-3 152.7 11.5 even ok 5 C 20H 41N 40 9 0.29 4812882 -1-1 -2 -5-3 152.7 11.5 even ok 5 C 20H 41N 40 9 0.29 4812882 -1-1 -2 -5-3 152.7 11.5 even ok 5 C 20H 41N 40 9 0.29 4812882 -1-1 -2 -5-3 152.7 11.5 even ok 5 C 20H 41N 40 9 0.29 4812882 -1-1 -2 -5-3 152.7 11.5 even ok 5 C 20H 41N 40 9 0.29 4812882 -1-1 -2 -5-3 152.7 11.5 even ok 5 C 21H 37N 80-5 0.01 4812829 -0.7 -1-4 233 8.5 even ok		Mass S	pectru	um Sm	nartFor	mula Re	eport					
Source Type Focus Scan Begin Scan End APCI Not active 1000 m/z Ion Folarity Set Capillary Set Capil	Analysis Name Method Sample Name	vsis Info rsis Name E:\Meiners\12_09\WJU_AJ11.d od APCI_directprobe_positiv.m sle Name AJ11 ment Junker APCI-Direkt					Acquisition Date Operator			9/4/2012 11:44:15 AM Sendker		
x10 ⁶ 0.8 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.6 0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	Source Type Focus Scan Begin	APCI Not active 100 m/z	Set Capilla Set End Pla	ry ate Offset	4000 V -500 V	54 54	it Dry Heal It Dry Gas	er	200 °C 3.0 Vm	"C Vmin		
	0.8 0.6 0.4 0.2 0.0 100 Meas. m	261.1271 200 300 27 # Formula 35 1 C32 H 37 N 2 O 2 2 C 28 H 33 N 8 3 C 27 H 37 N 4 O 4 4 C 26 H 41 O 8 5 C 20 H 41 N 4 O 9 6 C 21 H 37 N 8 O 5 7 C 17 H 33 N 14 O 3 8 C 16 H 37 N 10 O 7 9 C 13 H 29 N 20 O	400 Score 100.00 59.81 10.10 1.11 0.29 0.02 0.08 0.05 0.04	500 m/z 481.2850 481.2823 481.2838 481.2868 481.2868 481.2858 481.2854 481.2828	err [mDa] 1.5 -1.2 -2.5 -3.9 3.3 4.7 2.0 0.7 -0.7	err [ppm] 1 -2.5 -5.3 -8.0 6.9 9.7 4.1 1.4 -1.4	mSigma 128.7 140.4 152.7 186.0 190.6 206.0 219.3 233.3 234.9	800 rdb 15.5 16.5 5 5 5 5 5 5 5 5 5 5 5 5	e Conf even even even even even even even ev	961.5631 mi N-Rule ok ok ok ok ok ok ok ok		


N-[4-Diethylamino)phenyl]-2-(4-methylphenyl)-6,7-dihydro-5H-benzo[7]annulene-8-

carboxamide (**8b**)

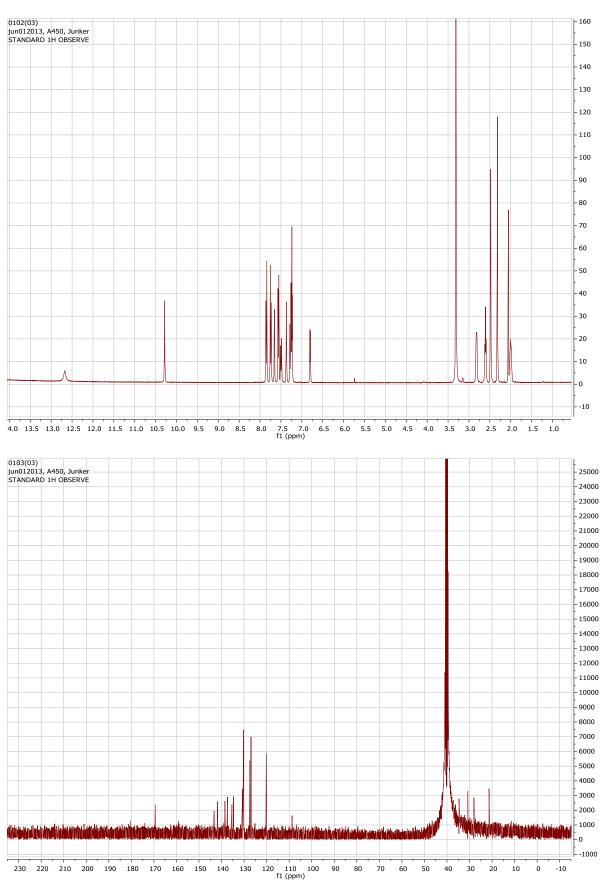

Bruker Compass DataAnalysis 4.0

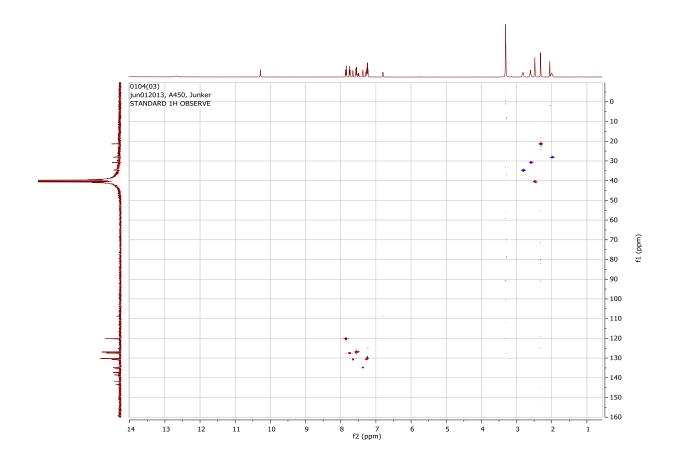

printed: 9/11/2012 8:38:31 AM

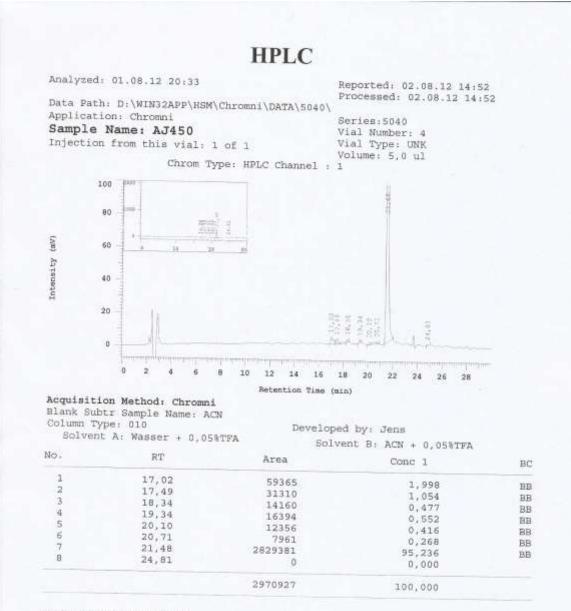

Page 1 of 1

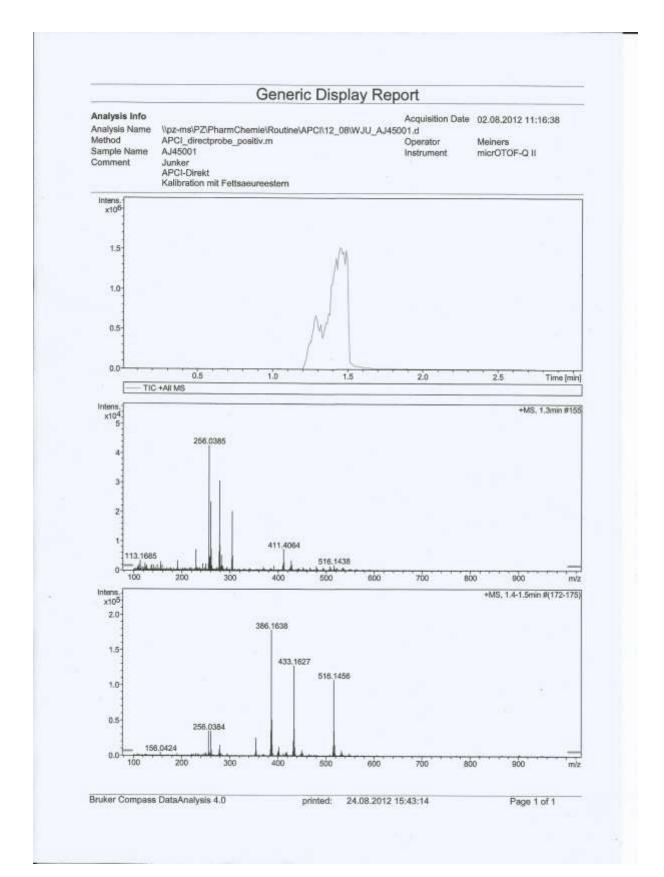
2-(4-Methylphenyl)-N-{4-[4-(tetrahydro-2H-pyran-4-yl)piperazin-1-yl]phenyl}-6,7-dihydro-

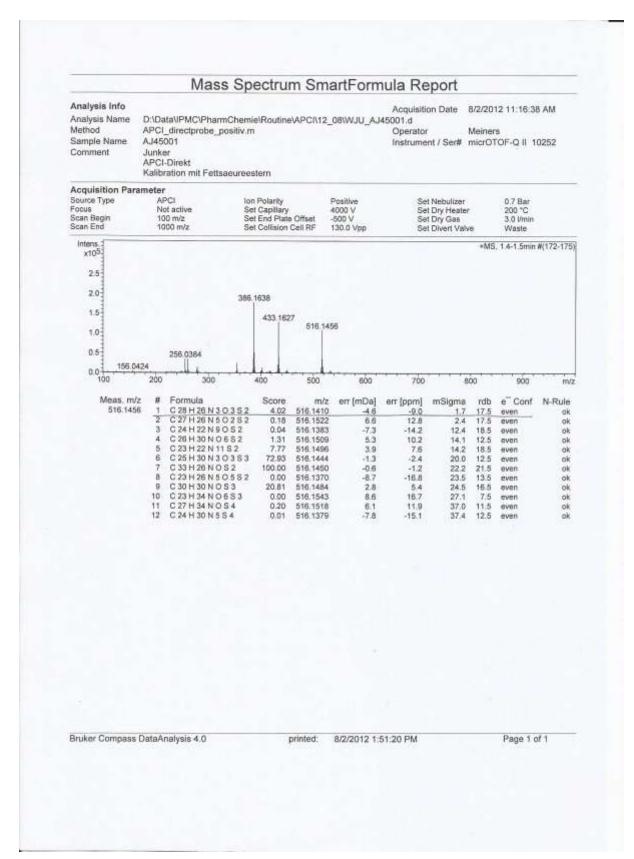
5H-benzo[7]annulene-8-carboxamide (8c)



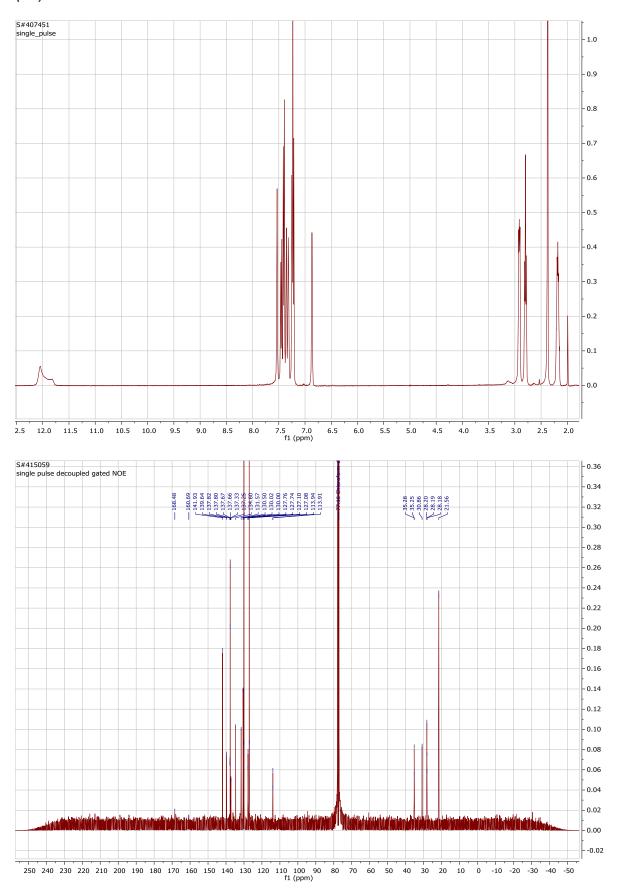


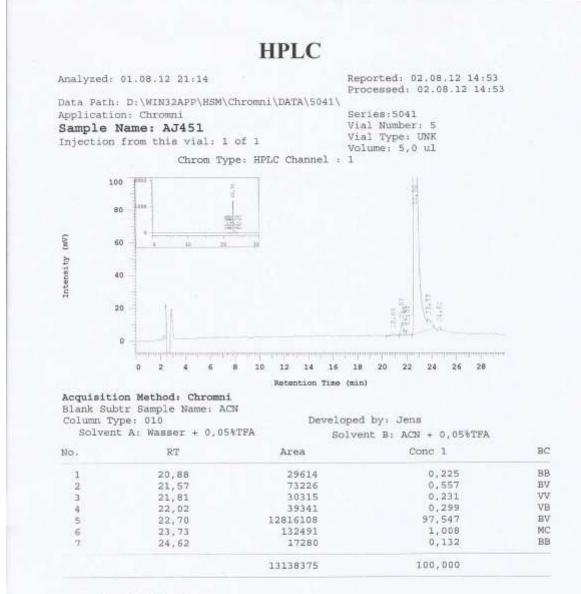

Mass Spectrum SmartFormula Report Analysis Info Acquisition Date 8/29/2012 9:41:13 AM Analysis Name D:\Data\IPMC\PharmChemie\Routine\APCI\12_08\WJU_AJ422.d Method APCI_directprobe_positiv.m Operator Meiners Sample Name AJ422 Instrument / Ser# micrOTOF-Q II 10252 Junker APCI-Direkt Kalibration mit Fettsaeureestern Comment Acquisition Parameter Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF Positive 4000 V -500 V 130.0 Vpp 0.7 Bar 200 °C 3.0 Wmin Waste Source Type Focus APCI Not active Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Scan Begin Scan End 100 m/z 1000 m/z Intens +MS, 1.1-1.2min #(133-142) x10⁶ 0.8 0.6 522,3092 0.4 0.2 432.2617 261.1401 0.0 700 200 300 400 500 600 800 900 m/z mSigma 114.7 126.4 138.8 Formula e Conf N-Rule Meas. m/z # err [mDa] Score m/z rdb Formula C 34 H 40 N 3 O 2 C 30 H 36 N 9 C 29 H 40 N 5 O 4 C 28 H 44 N O 8 C 17 H 44 N 7 0 11 C 19 H 36 N 15 O 3 C 16 H 32 N 21 O C 16 H 40 N 11 O 7 C 14 H 36 N 17 O 5 err [ppm] 522.3092 55.11 100.00 22.17 4.4 522.3115 2.3 16.5 even ok 2 -0.4 522.3088 522.3075 ok ok 17.5 even 3 12.5 even ok ok ok 4 3.28 522.3061 522.3093 -3.0 -5.8 0.3 151.2 198.4 7.5 even 5 even 9.5 10.5 67 0.08 522.3120 522.3093 2.8 5.4 203.6 217.3 even 0,1 0.3 ok even 0.06 2.8 4,5 5.5 8 9 522.3107 1.5 217.5 even ok 522.3080 -1.2 230.8 even ok Bruker Compass DataAnalysis 4.0 printed: 8/29/2012 9:45:25 AM Page 1 of 1

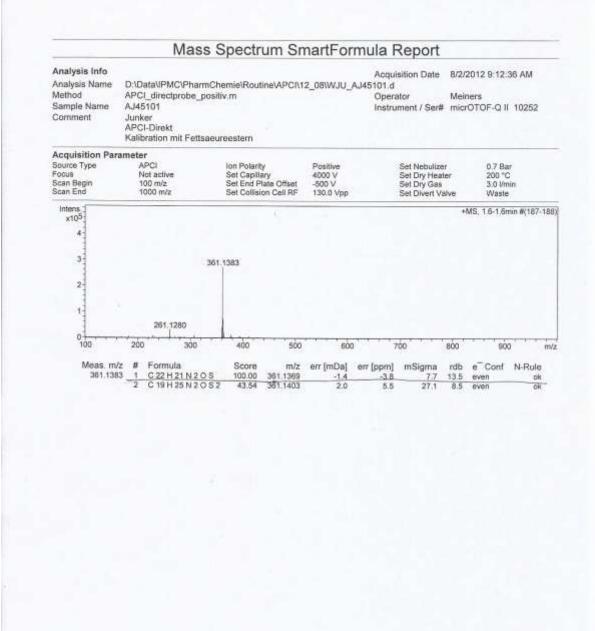

2-(4-Methylphenyl)-N-{4-[N-(thiazol-2-yl)sulfamoyl]phenyl}-6,7-dihydro-5H-



benzo[7]annulene-8-carboxamide (8d)

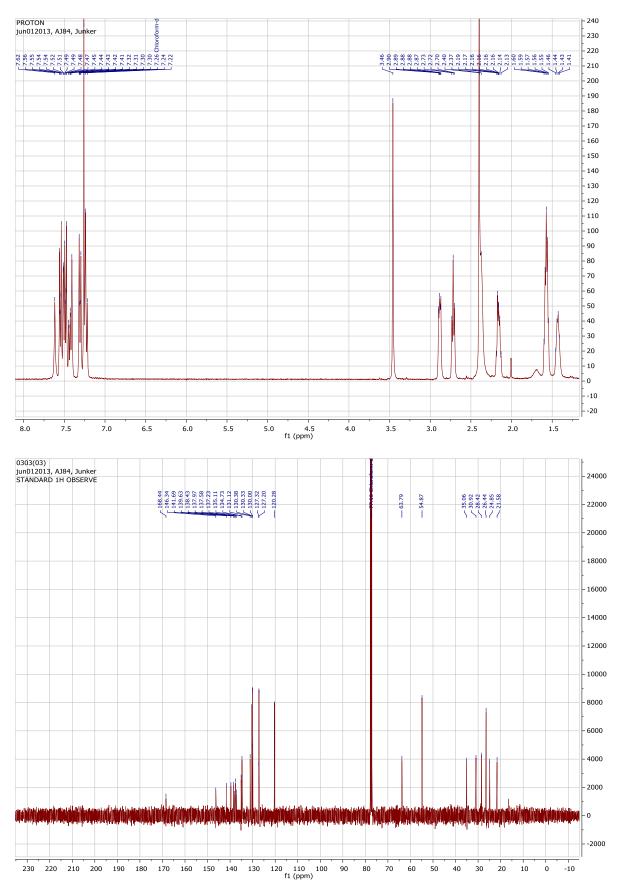


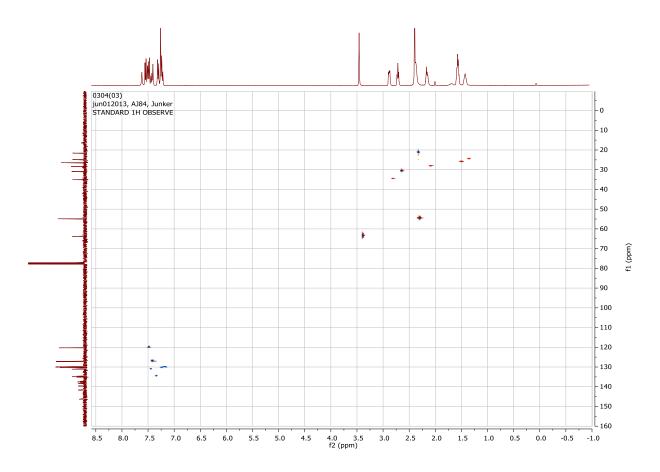


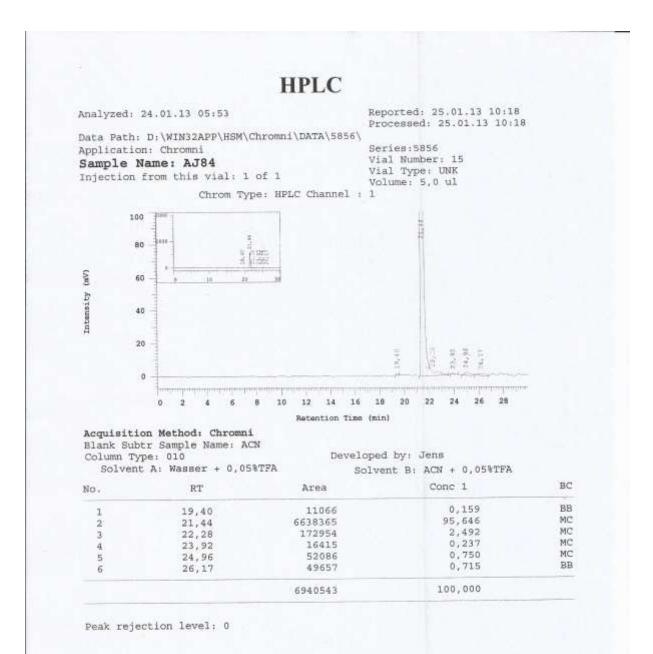

2-(4-Methylphenyl)-N-(thiazol-2-yl)-6,7-dihydro-5H-benzo[7]annulene-8-carboxamide

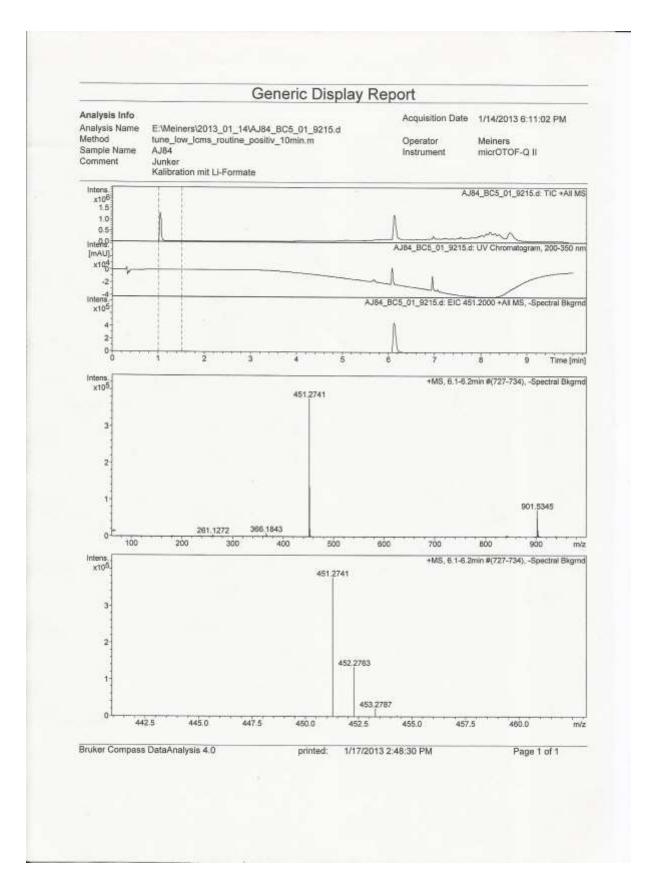
(**8e**)

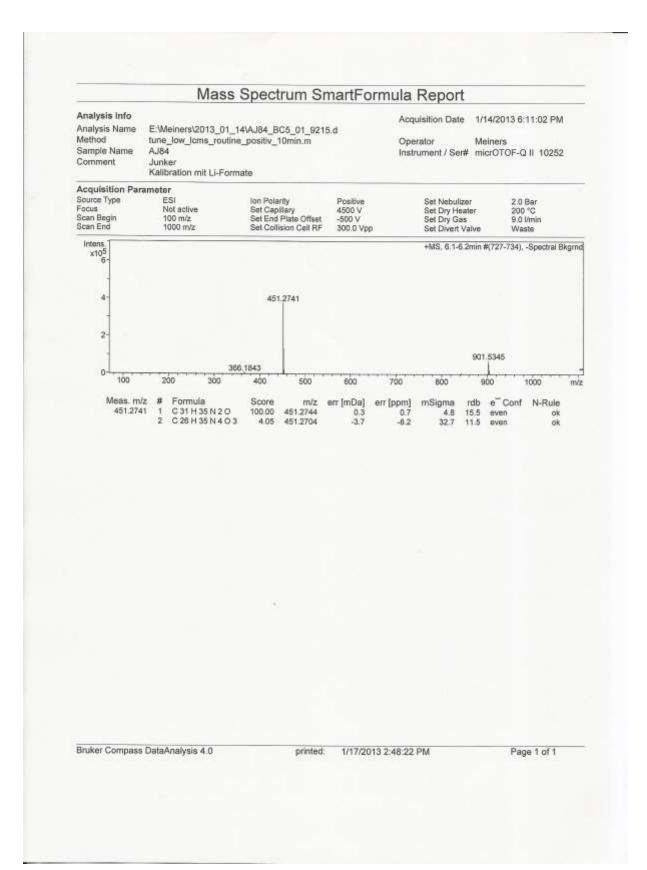
361,1375 0.8 mDa Generic Display Report Analysis Info Acquisition Date 8/2/2012 9:12:36 AM D:\Data\IPMC\PharmChemie\Routine\APCI\12_08\WJU_AJ45101.d APCI_directprobe_positiv.m AJ45101 Instrument Analysis Name Method Meiners Sample Name micrOTOF-Q II Junker APCI-Direkt Kalibration mit Fettsaeureestern Comment Intens. x10⁵ WJU_AJ45101.d: TIC +AII MS 3 2 ł 0 0.25 0.50 0.75 1.00 1.25 1,75 2.00 Time [min] 1.50 Intens. x10⁵ +MS, 1.6-1.6min #(187-188) 361,1383 2.5 2.0 1.5 1.0 0.5 261.1280 183.1173.229.2172 307.1717 0.0 300 600 200 400 500 m/z Intens x10⁵ +MS, 1.6-1.6min #(187-188) 361.1383 2.5 2.0 1.5 1.0 0.5 0.0 350.0 352.5 355.0 370.0 357.5 360.0 362.5 365.0 367.5 372.5 m/z Bruker Compass DataAnalysis 4.0 printed: 8/2/2012 1:29:35 PM Page 1 of 1

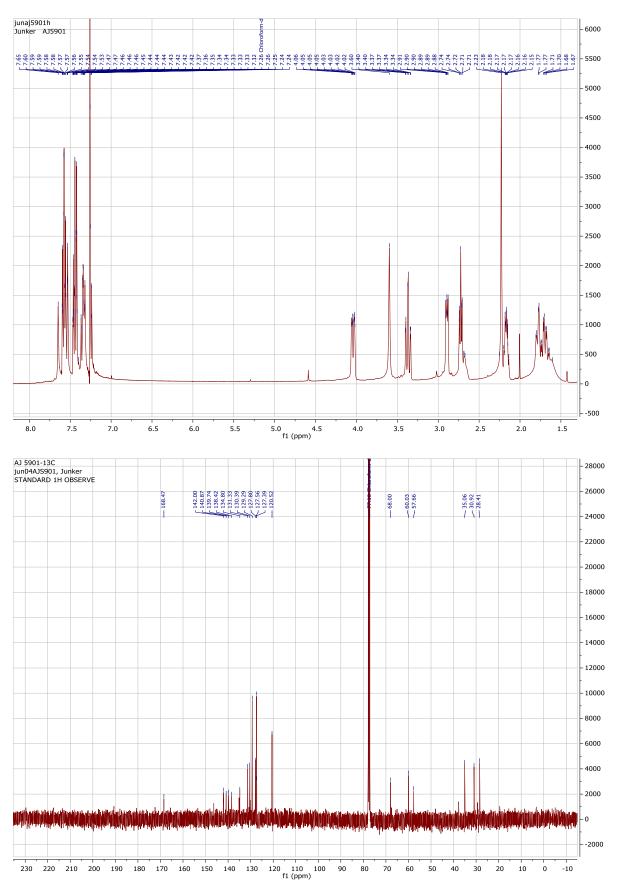

Bruker Compass DataAnalysis 4.0

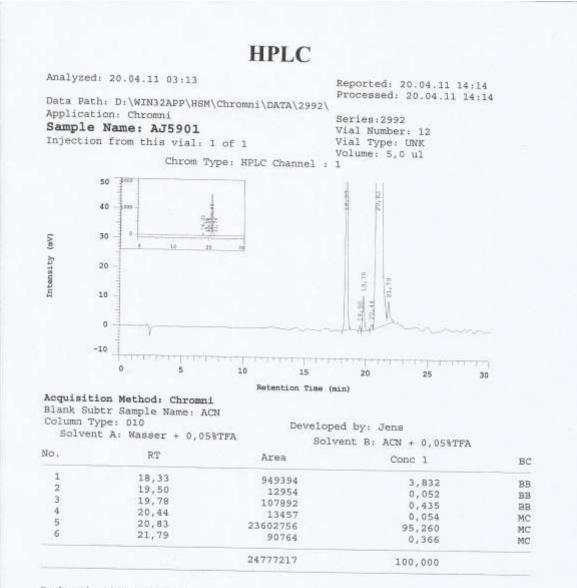

printed: 8/2/2012 1:29:28 PM

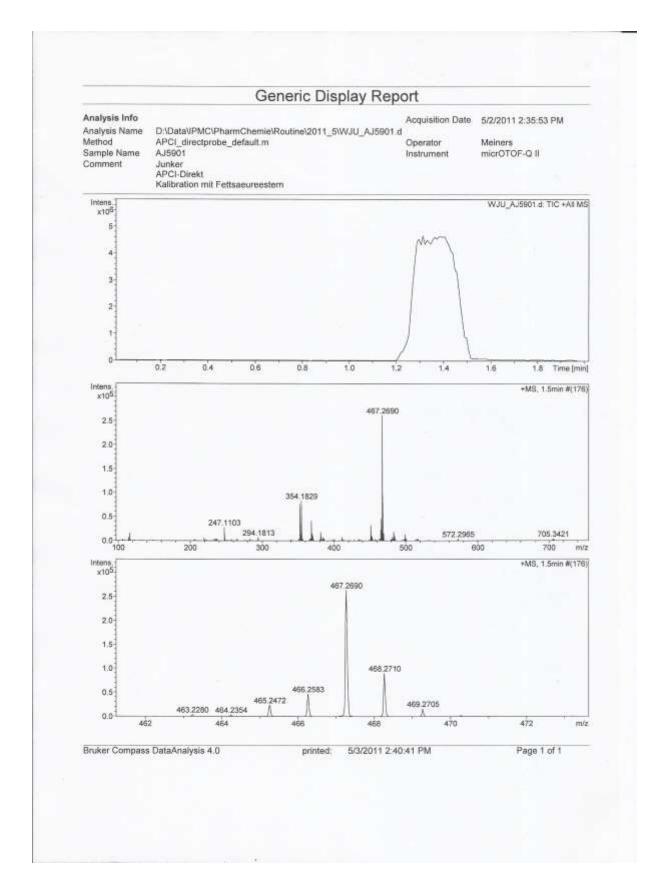

Page 1 of 1

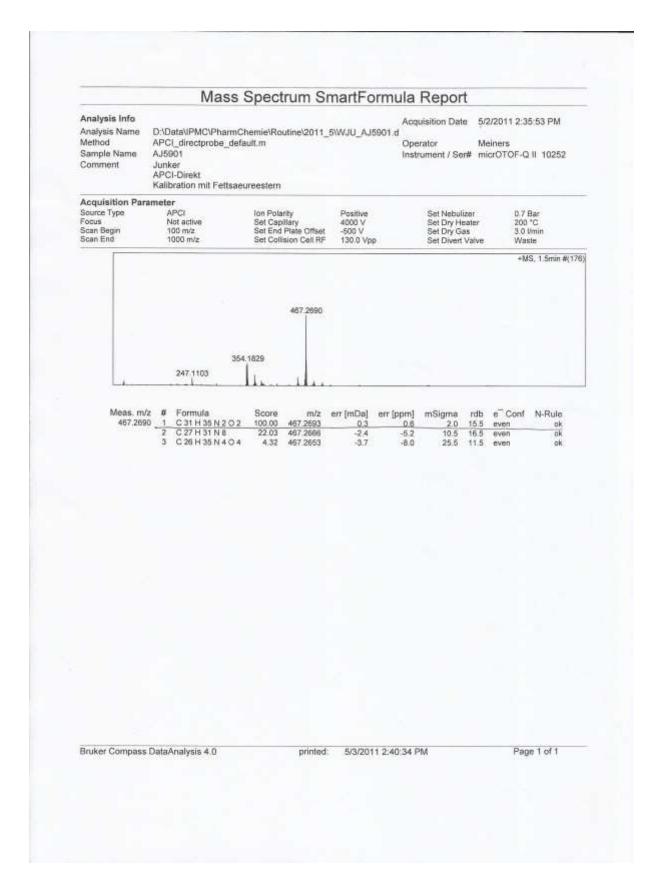

2-[(4-Methyl)phenyl]-N-{4-[(piperidin-1-yl)methyl]phenyl}-6,7-dihydro-5H-


benzo[7]annulene-8-carboxamide (8f)

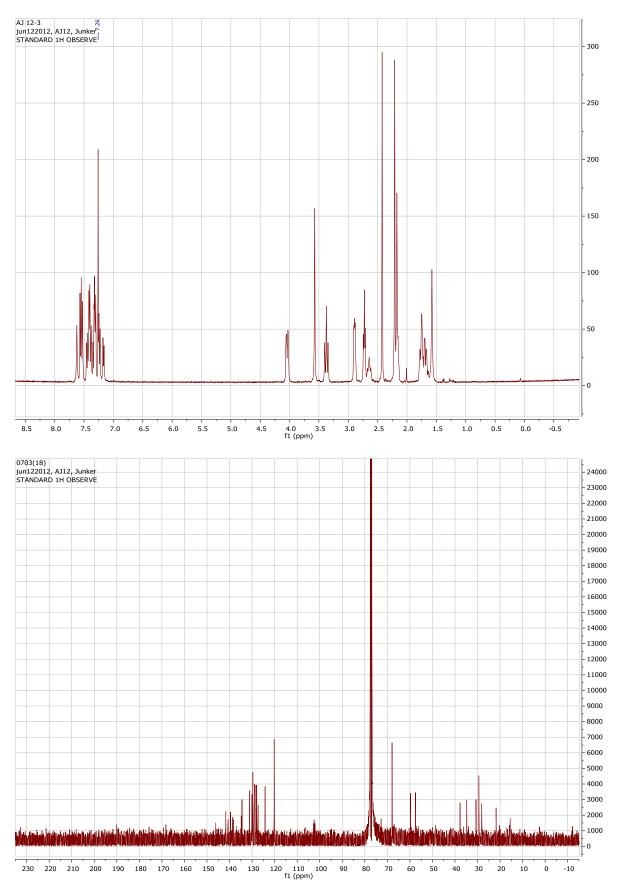


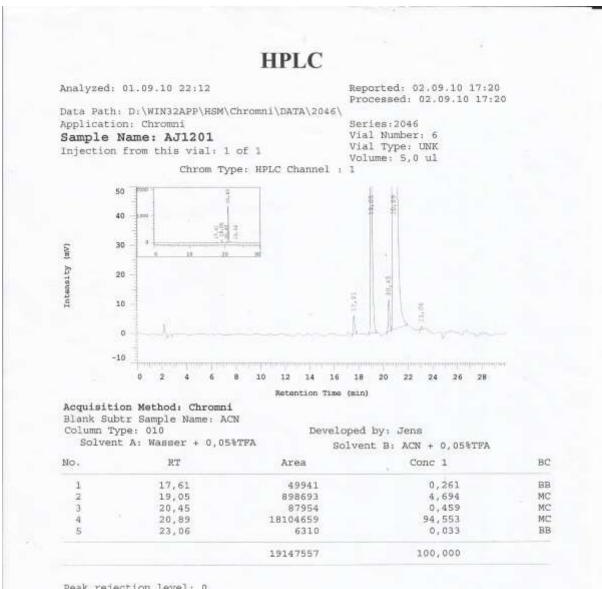




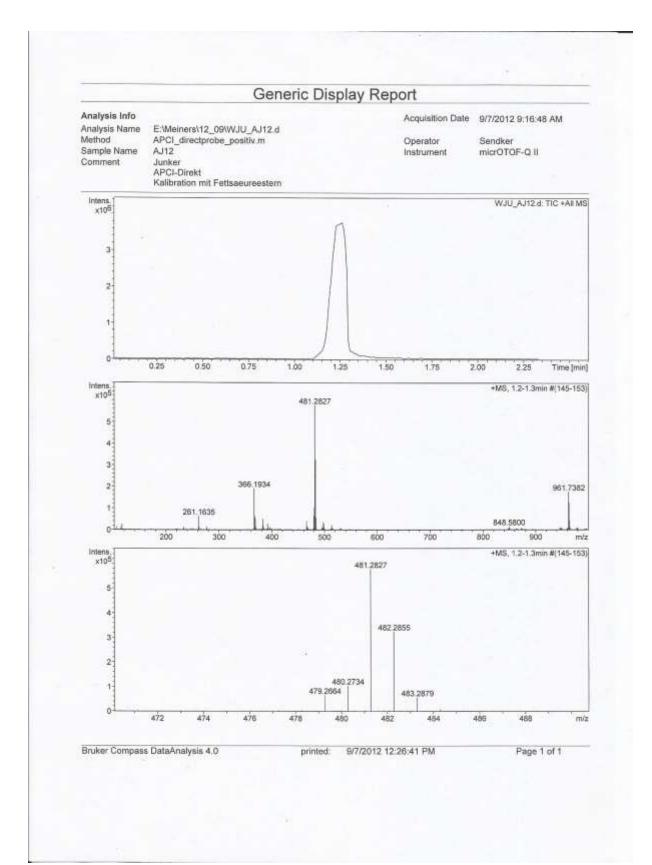

N-{4-[N-Methyl-N-(tetrahydro-2H-pyran-4-yl)aminomethyl]phenyl}-6,7-dihydro-5H-

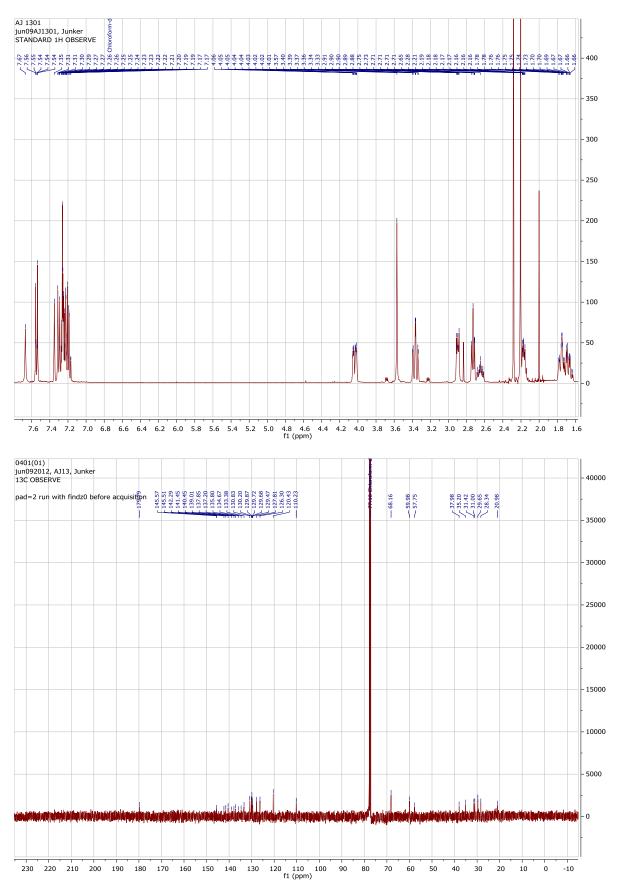
benzo[7]annulene-8-carboxamide (9a)



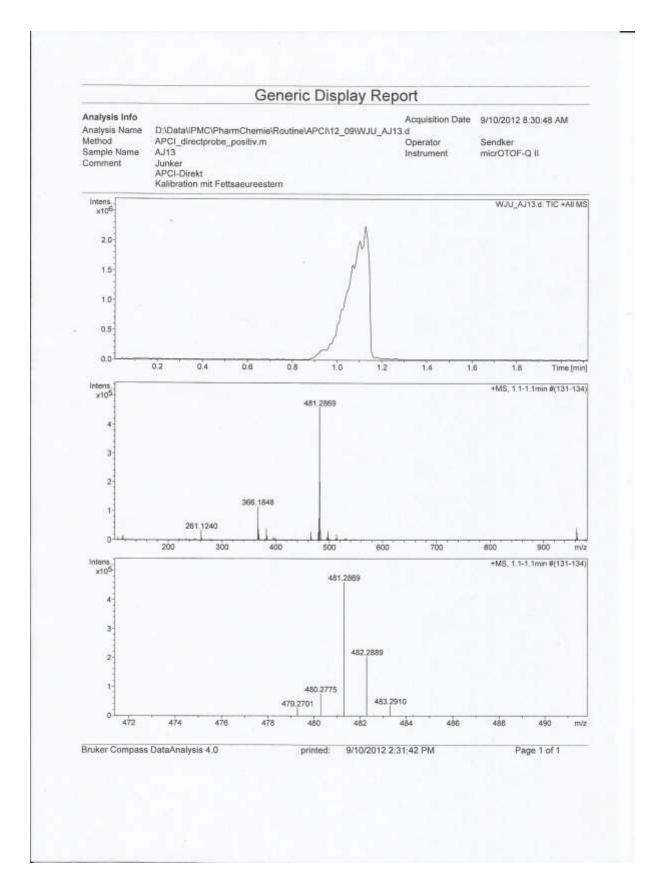


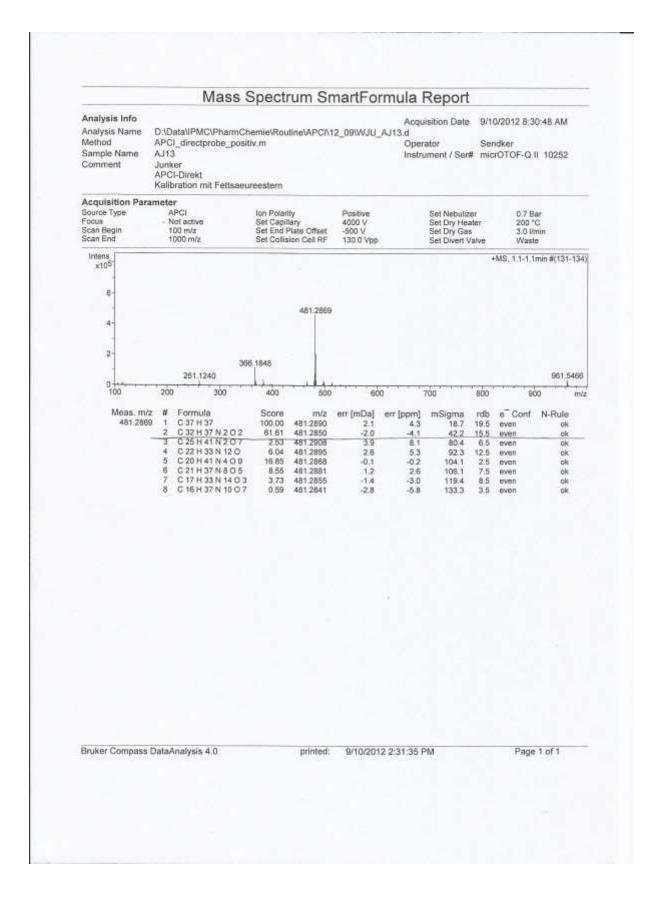
2-(3-Methyphenyl)-N-{[N-methyl-N-(tetrahydro-2H-pyran-4-yl)aminomethyl]phenyl}-6,7-


dihydro-5H-benzo[7]annulene-8-carboxamide (9b)

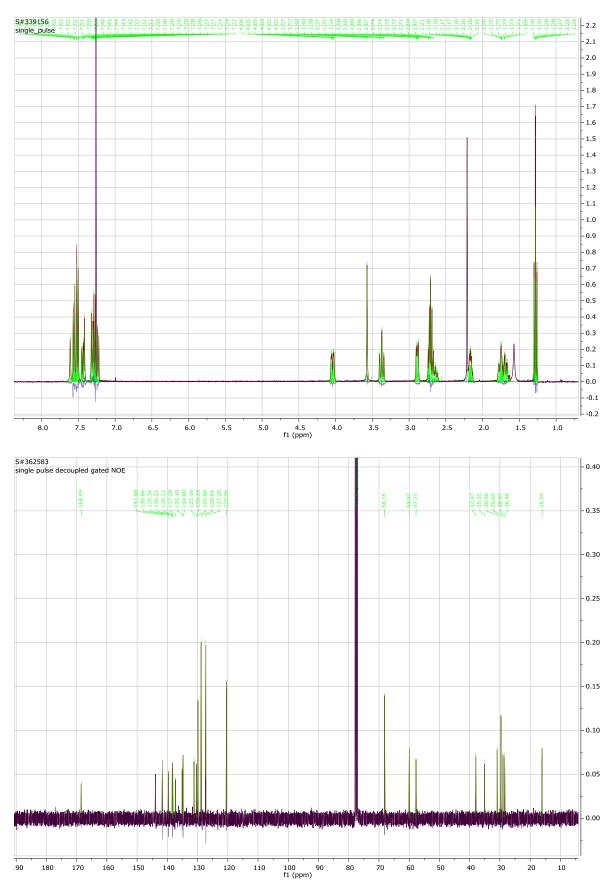


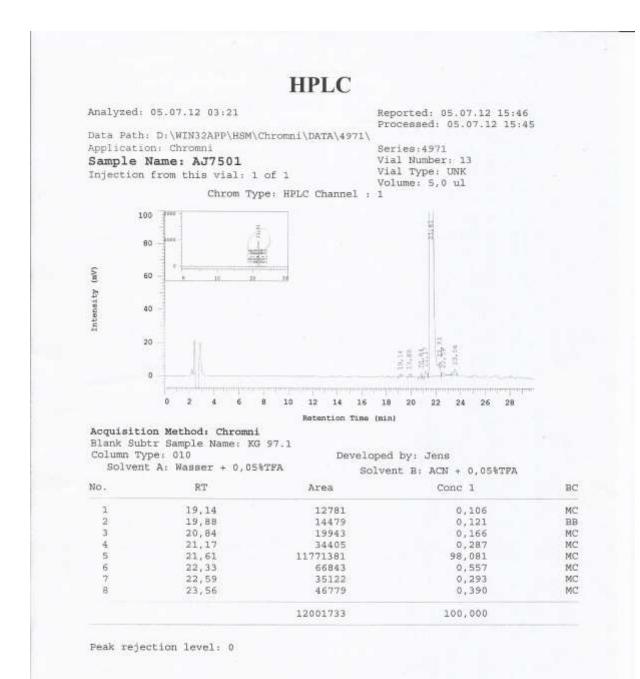
Analysis Info Analysis Name E:Weiners\12_09\WJU_AJ12.d Method APCL_directprobe_positiv.m Sample Name AJ12 Comment Junker APCI-Direkt							Acquisition Date 9/7/2012 9:16:48 AM Operator Sendker Instrument / Ser# micrOTOF-Q II 10252				
Acquisition Pa Source Type Focus Scan Begin Scan End	Kalibration mit Fettsaeure ameter APCI Not active 100 m/z		len Polarity Set Capillary Set End Plate Offset Set Collision Cell RF		Positive 4000 V -500 V 130.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve		0.7 Ber 200 *C 3.0 4min Waste			
Intens. ×10 ⁸ 0.8 0.6 0.4 0.2		386	.1934	481.2827				+1	WS, 1.2-1.3n	nin #(145-15) 961,7382	
0.0		261.1635	1,4,-	-14.					8.5800		
100 Meas. m	200 /z #	300 Formula	400 Score	500 m/z	600 err [mDa]	70 err [ppm]		rdb	900 e ⁻ Conf	m N-Rule	
	23456788	C 28 H 33 N B C 27 H 37 N 4 O 4 C 26 H 41 O 8 C 23 H 33 N 10 O 2 C 20 H 41 N 4 O 9 C 17 H 33 N 14 O 3 C 16 H 37 N 14 O 3 C 13 H 29 N 20 O C 12 H 33 N 16 O 5	0.22 0.14 0.13 0.23	481,2823 481,2796 481,2796 481,2782 481,2868 481,2868 481,2841 481,2828 481,2814	-0.4 -1.8 -3.1 -4.5 4.1 2.7 1.4 0.1 -1.3	-09 -37 -65 -93 85 57 29 01 -27	114.0 126.3 136.7 159.2 164.3 188.9 202.8 204.5 216.0	165 11.5 6.5 12.5 8.5 9.5 4.5	even even even even even even even even	OK OK OK OK OK OK	
Bruker Compass DafaAnalysis 4.0				printed:	9/7/2012	12:26:30 P	м		Page	1 of 1	

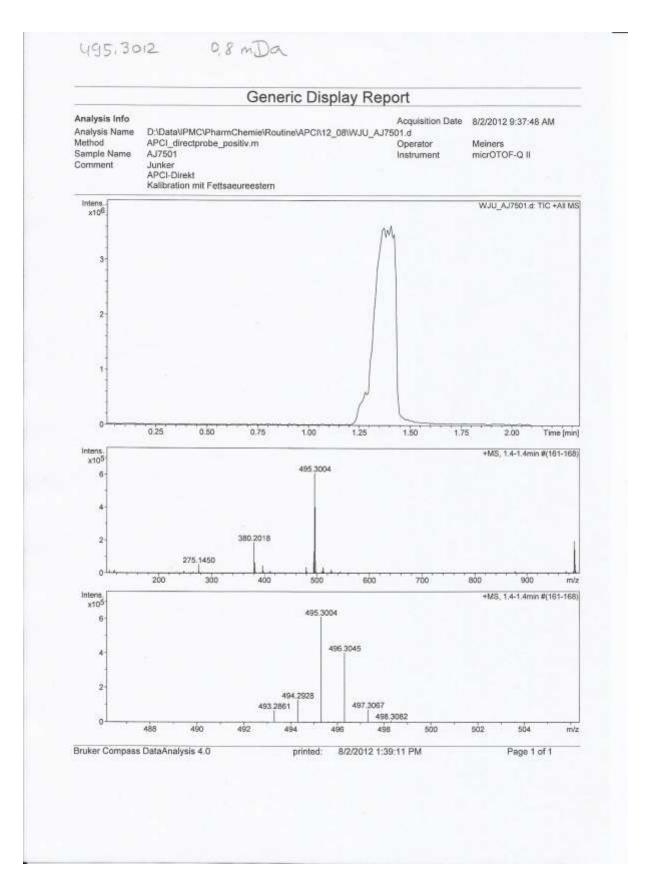

2-(2-Methyphenyl)-N-{4-[N-Methyl-N-(tetrahydro-2H-pyran-4-yl)aminomethyl]phenyl}-


6,7-dihydro-5H-benzo[7]annulene-8-carboxamide (9c)

HPLC Analyzed: 21.10.10 03:58 Reported: 21.10.10 13:45 Processed: 21.10.10 13:45 Data Path: D:\WIN32APP\HSM\Chromni\DATA\2286\ Application: Chrommi Series:2286 Sample Name: AJ1301 Vial Number: 12 Vial Type: UNK Volume: 5,0 ul Injection from this vial: 1 of 1 Chrom Type: HPLC Channel : 1 50 40 144 靈 Dial. 41 30 (INIII) 20 Intensity 20 231/52 10 0 -10 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Retention Time (min) Acquisition Method: Chromni Blank Subtr Sample Name: ACN Column Type: 010 Developed by: Jens Solvent A: Wasser + 0,05%TFA Solvent B: ACN + 0,05%TFA No. RT Area Conc 1 BC 18,17 76388 1 0,157 MC 2 0,043 0,014 18,91 20994 MC 3 19,67 6971 BB 4 21, 14 48466825 99,725 MC 5 23,53 29471 0,061 MC 48600649 100,000

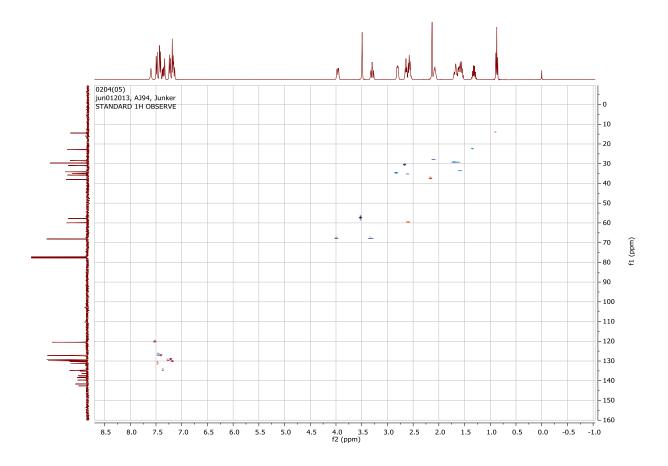

Peak rejection level: 0

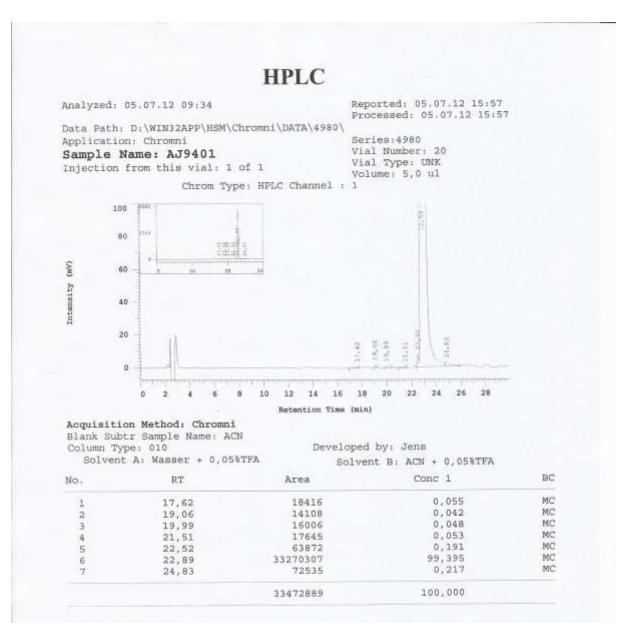




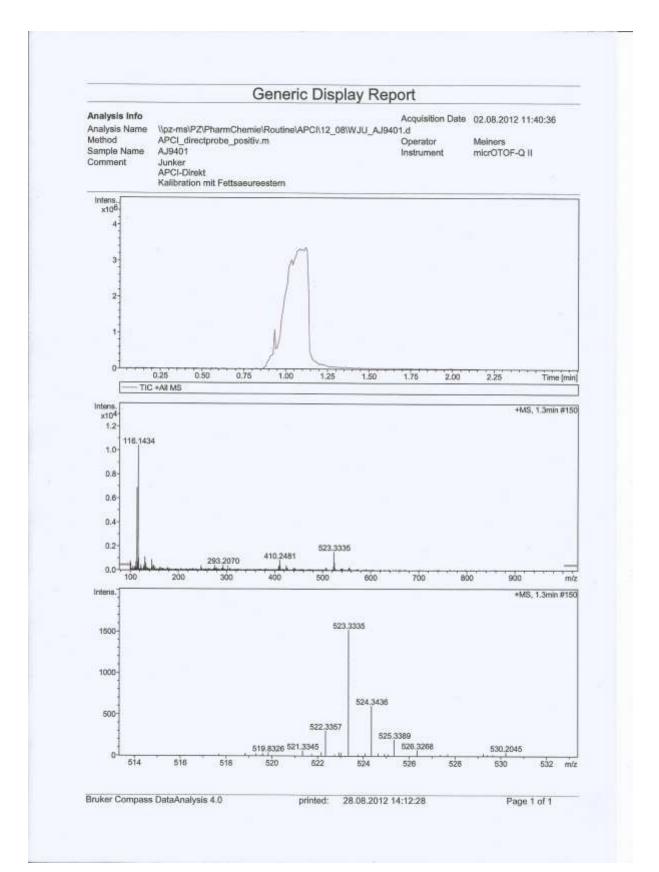
2-(4-Ethylphenyl)-N-{4-[N-methyl-N-(tetrahydro-2H-pyran-4-yl)aminomethyl]phenyl}-6,7-

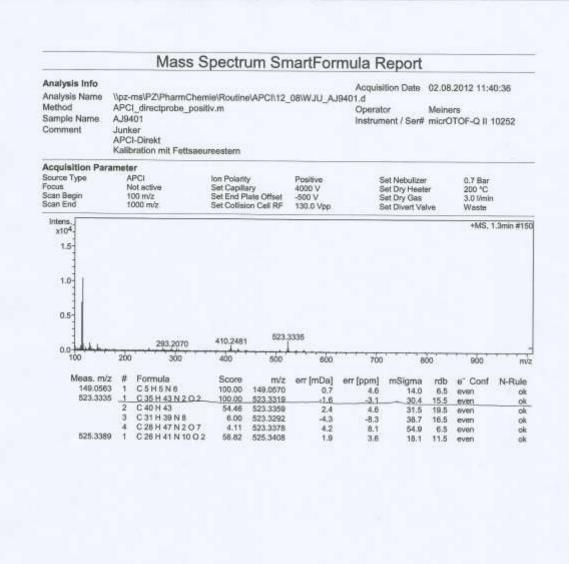
dihydro-5H-benzo[7]annulene-8-carboxamide (9d)



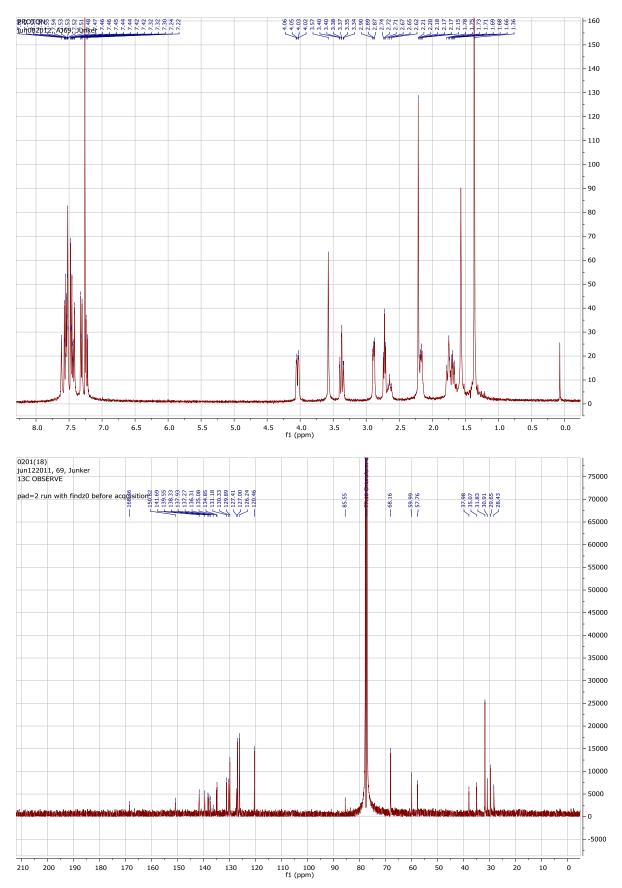

		Mass S	Spectr	rum Sr	nartFor	mula F	Report				
Analysis Info Analysis Name Method Sample Name Comment	APCI_di AJ7501 Junker APCI-Di	IPMC\PharmCh rectprobe_positi rekt on mit Fettsaeur	v.m	tine\APCI\1	5 ^{-08/M} 1N ⁻	AJ7501.d Opera	sition Date ator ment / Ser	Me	2012 9:37 ners rOTOF-Q		
Acquisition Para Source Type Focus Scan Begin Scan End	Meter APCI Not a 100 n 1000	ctive n/z			Positive 4000 V -500 V 130.0 Vpp		Set Nebuliz Set Dry He Set Dry Ge Set Divert \	ater s	0.7 B 200 ° 3.0 W Wast	C min	
Intens.	- 12000			or a beaution.					MS, 1.4-1.4	imin #(161-	16
0.8 0.6 0.4 0.2			80.2018	495.300	14						
0.0	200	275.1450	400	500	600	1 1 1 2	00	800		0	m
Meas. m/2 485.3004	1 2 3 4 5 5 7 8	rmula. 33 H 39 N 2 O 2 28 H 35 N 8 28 H 39 N 4 O 4 21 H 43 N 4 O 9 22 H 39 N 8 O 5 18 H 35 N 14 O 3 14 H 31 N 20 O 17 H 39 N 10 O 7 13 H 35 N 16 O 5	Score 100.00 10.59 1.05 0.29 0.04 0.00 0.01 0.00	m/z 495.2079 495.2979 495.2966 495.3025 495.3038 495.3011 495.2988 495.2988 495.2998 495.2971	err [mDa] 0,2 -2,5 -3,8 2,0 3,4 0,7 -2,0 -0,6 -3,3	err [ppm] 0.4 -5.0 -7.7 4.1 6.8 1.4 -4.0 -1.3 -6.7	mSigma 147.0 156.7 171.0 209.0 227.2 240.6 254.3 254.5 267.8	rdb. 15.6 11.5 2.6 7 8.5 9.5 3.6 4.6	e Conf even even even even even even even ev	N-Rule ok ok ok ok ok ok	
Bruker Compass I	DataAnal	ysis 4.0		printed:	8/2/2012	1:39:18 PN	A		Page	a 1 of 1	

2-(4-Butylphenyl)-N-{4-[N-methyl-N-(tetrahydro-2H-pyran-4-yl)aminomethyl]phenyl}-6,7-

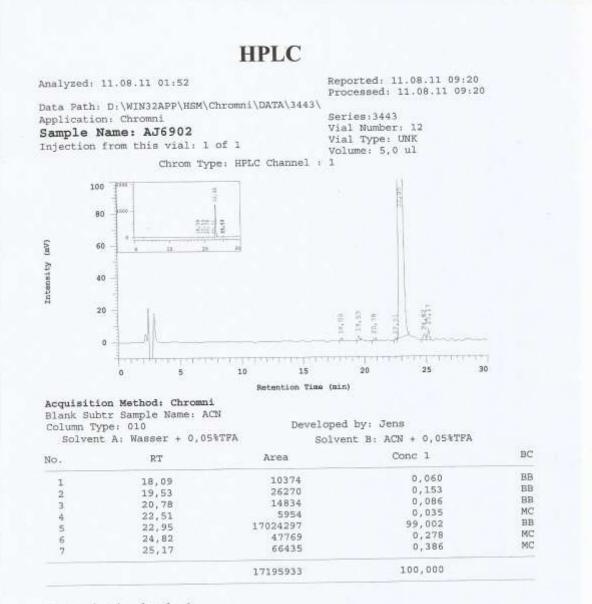



dihydro-5H-benzo[7]annulene-8-carboxamide (9e)

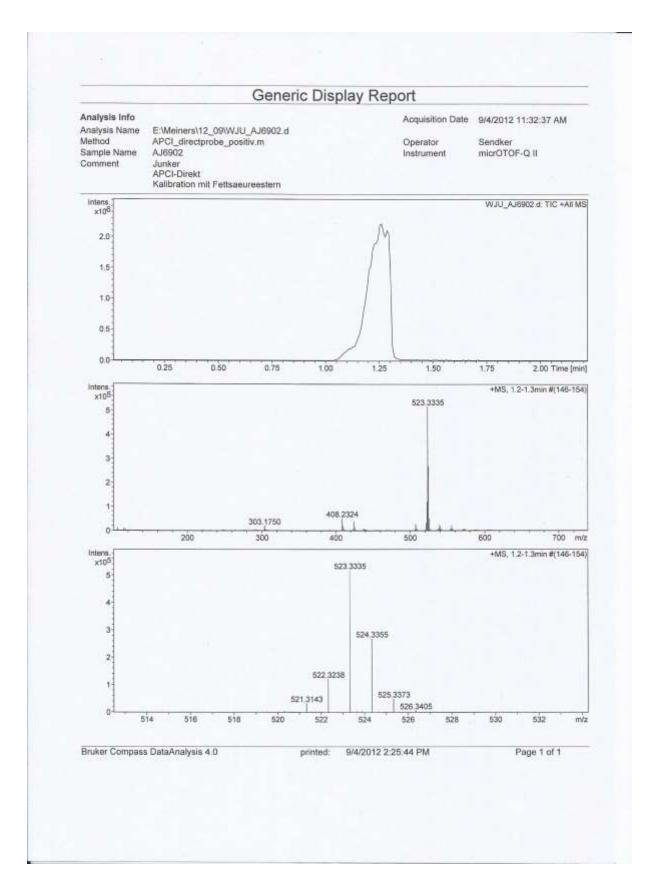
Peak rejection level: 0



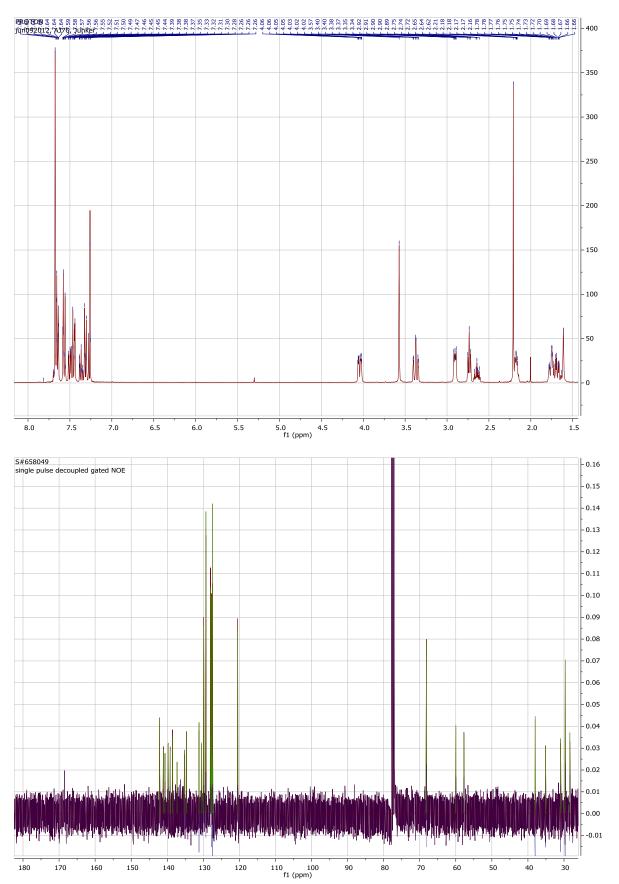
Bruker Compass DataAnalysis 4.0

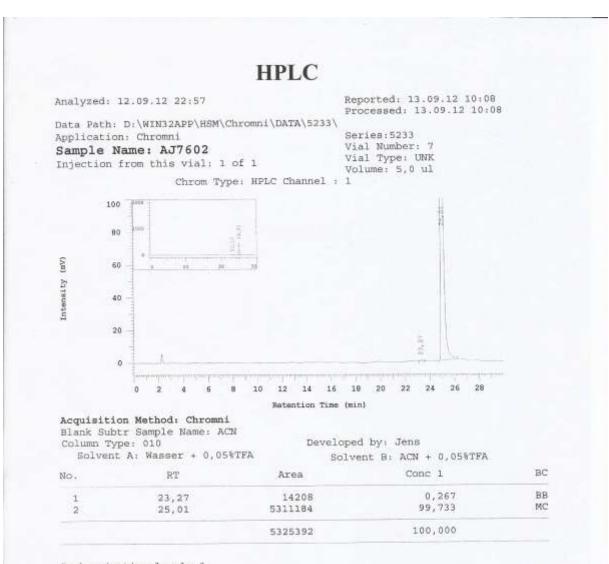

printed: 28.08.2012 14:11:50

Page 1 of 1


2-(4-tert-Butylphenyl)N-{4-[N-methyl-N-(tetrahydro-2H-pyran-4-yl)aminomethyl]phenyl}-

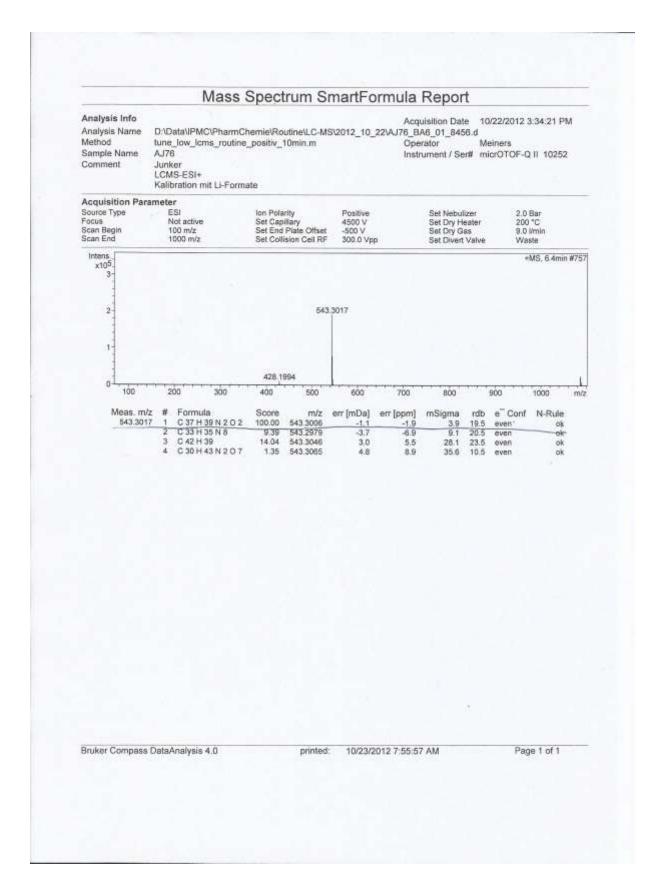
6,7-dihydro-5H-benzo[7]annulene-8-carboxamide (9f)

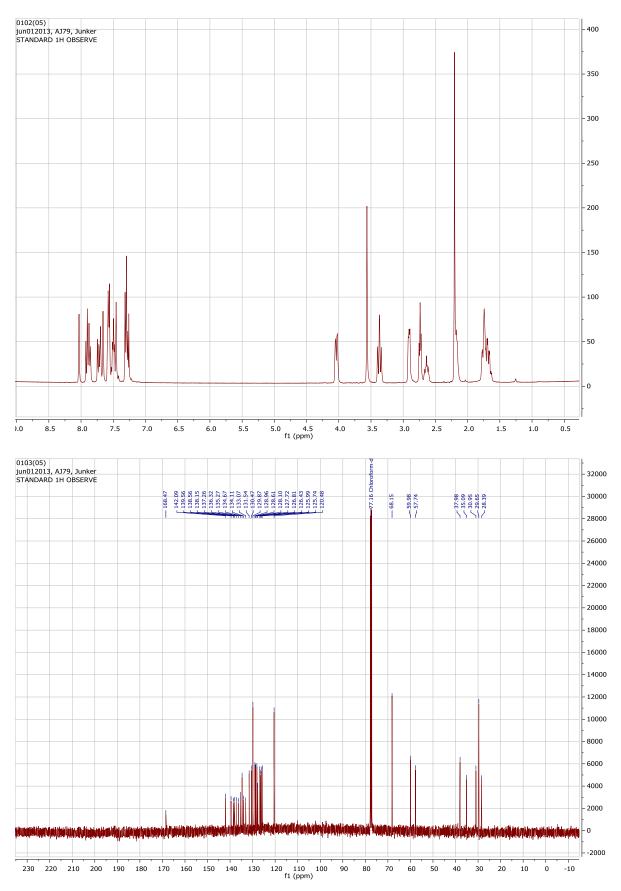

Peak rejection level: 0

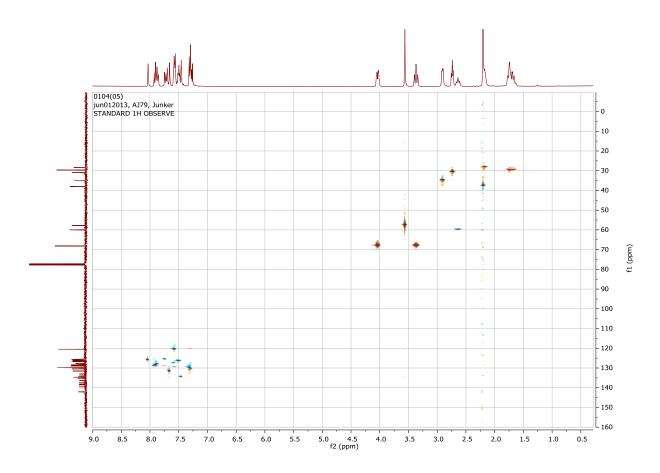


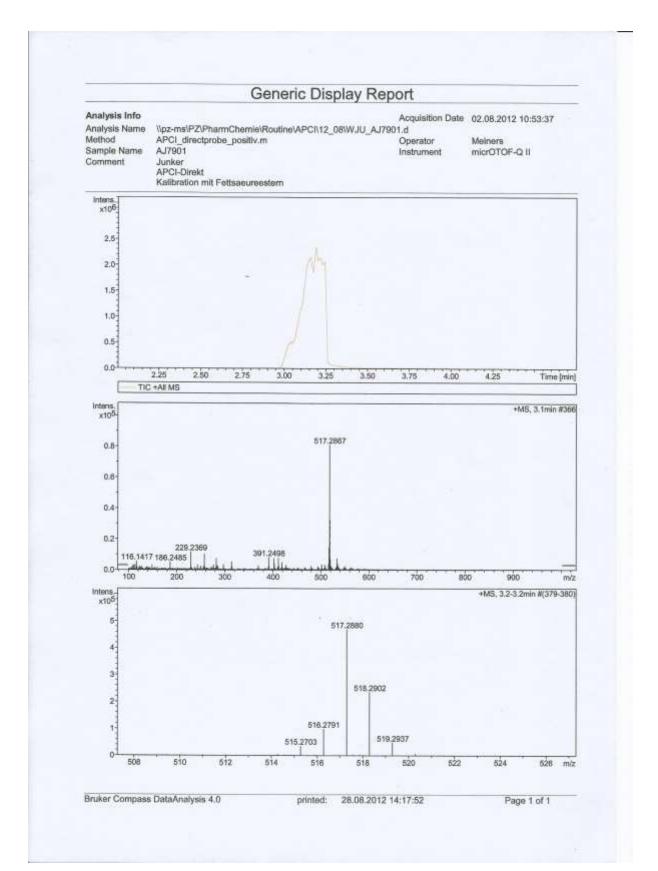
		Mass S	Spectri	um Sn	nartFor	mula R	leport				
Analysis Info Analysis Name Method Sample Name Comment	APCI AJ69 Junk APCI			Operator				9/4/2012 11:32:37 AM Sendker micrOTOF-Q II 10252			
Acquisition Par Source Type Focus Scan Begin Scan End	ocus Not active Si ican Begin 100 m/z Se			Ion Polarity Positive Set Capillary 4000 V Set End Plate Offset -500 V Set Collision Cell RF - 130.0 Vpp			Set Nebuilzer Set Dry Heater Set Dry Gas Set Divert Valve			0.7 Bar 200 °C 3.0 Vmin Waste	
Intens. x10 ⁵ 8-		-						1410	Contraction of the local	nin #(146-154	
6-				523.	3335						
4- 2-											
0	200	303,1750 300	408.2324	500	600	70		800	900	m	
Meas. m 523.33:	z #	Formula C 40 H 43 C 35 H 43 N 2 O 2 C 31 H 39 N 8 C 28 H 47 N 2 O 7 C 25 H 39 N 12 O C 23 H 47 N 4 O 9 C 24 H 43 N 8 O 5 C 20 H 39 N 14 O 3 C 16 H 35 N 20 O C 19 H 43 N 10 O 7	Score 100.00 89.82 4.84 1.38 2.76 10.87 3.76 2.27 0.09	m/z 523.3359 523.3319 523.3378 523.3378 523.338 523.338 523.3351 523.3324 523.324	err [mDa] 24 -15 -4.3 4.3 2.9 0.3 16 -1.1 -3.8 -2.4	err [ppm] 4.6 -3.0 -8.2 8.2 6.5 3.0 -2.1 -7.2 -4.6	mSigma 604 761 1028 1182 1266 1320 1465 1593 1594	rdb 19.5 15.5 16.6 8.5 2.5 2.5 7.5 8.5 3.5	e Conf even even even even even even even ev		
Bruker Compas	i DataA	nalysis 4.0		printed:	8/4/2012	2:25:55 PM			Page	1 of 1	

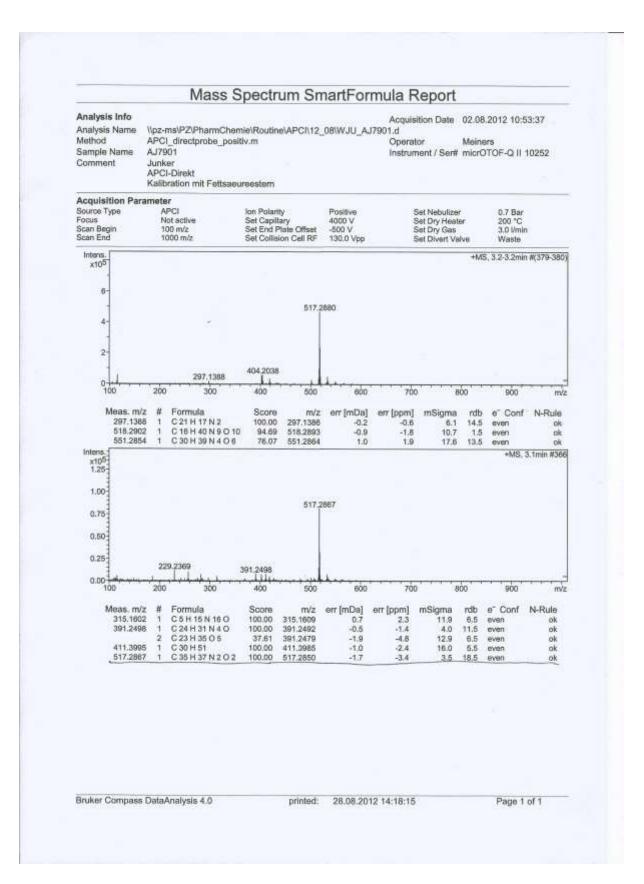
2-([1,1'-Biphenyl]-4-yl)-N-{4-[N-methyl-N-(tetrahydro-2H-pyran-4yl)aminomethyl]phenyl}-

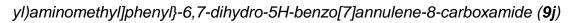

6,7-dihydro-5H-benzo[7]annulene-8-carboxamide (9g)

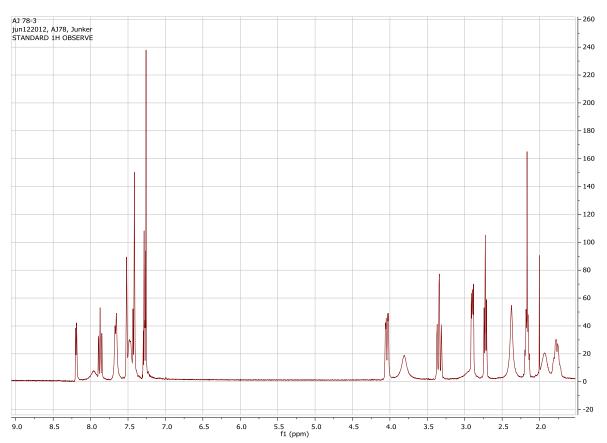

Peak rejection level: 0

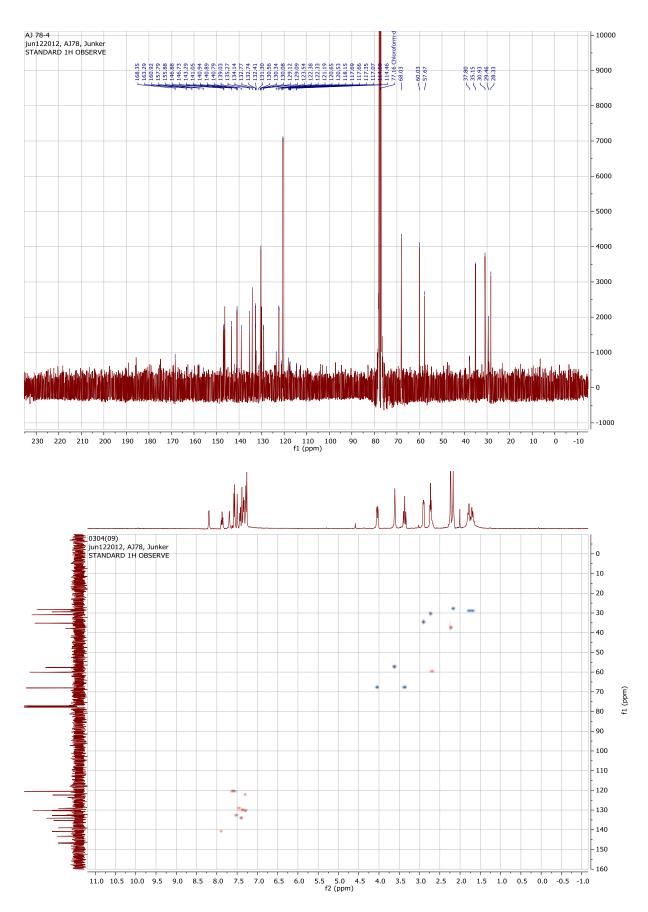

Generic Display Report Acquisition Date 10/22/2012 3:34:21 PM D:\Data\IPMC\PharmChemie\Routine\LC-MS\2012_10_22/AJ76_BA6_01_8456.d tune_tow_toms_routine_positiv_10min.m Operator Meiners AJ76 Analysis Info Analysis Name Method Sample Name Comment Junker LCMS-ESI+ Kalibration mit Li-Formate intens, x10⁶ AJ76_BA6_01_8456.d: TIC +All MS 1.0 0.5 Intens x10⁵ AJ75_BA6_01_8456.d EXC 544.3000 + 0.75 0.50 0.25 0.00 ż 3 Time [min] 8 ġ â Ŕ, ÷ intens. x10⁵ 2.0 +MS, 6.4min #757 543,3017 1.5 1.0 0.5 1085,5851 428 1994 0.0 100 200 400 500 600 900 300 700 800 1000 m/z +MS, 6.4min #757 Intens. x10⁵ 543.3017 1.5 1.0 0.5 0.0 535.0 540.0 552.5 555.0 537.5 542.5 547.5 550.0 557.5 m/z 545.0 Bruker Compass DataAnalysis 4.0 10/23/2012 7:55:44 AM Page 1 of 1 printed:

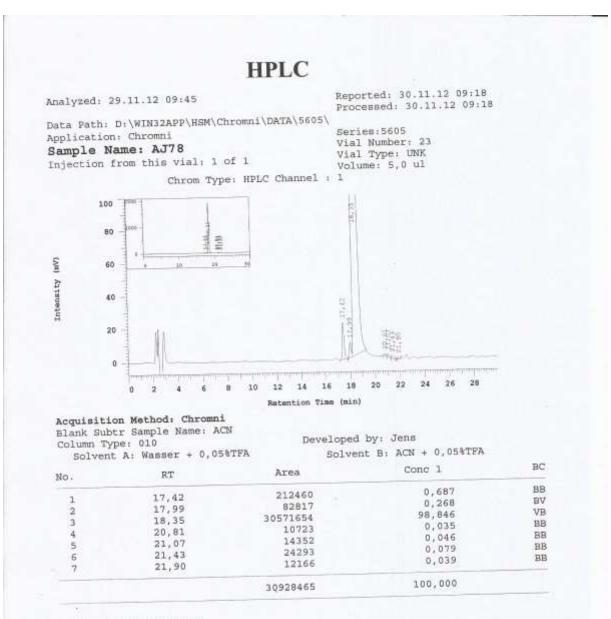

N-{4-[N-Methyl-N-(tetrahydro-2H-pyran-4-yl)aminomethyl]phenyl}-2-(naphtalen-2-yl)-6,7-


dihydro-5H-benzo[7]annulene-8-carboxamide (9h)

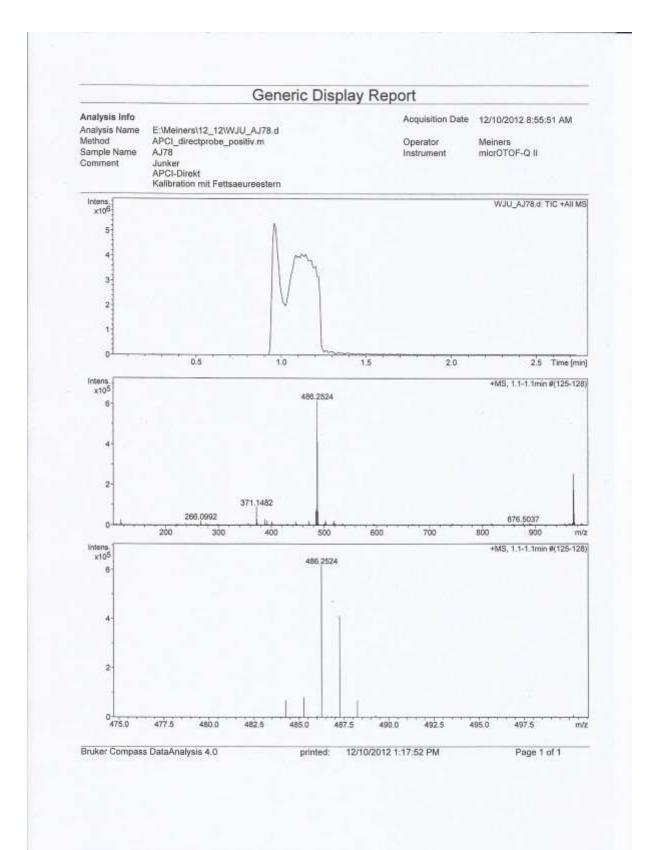


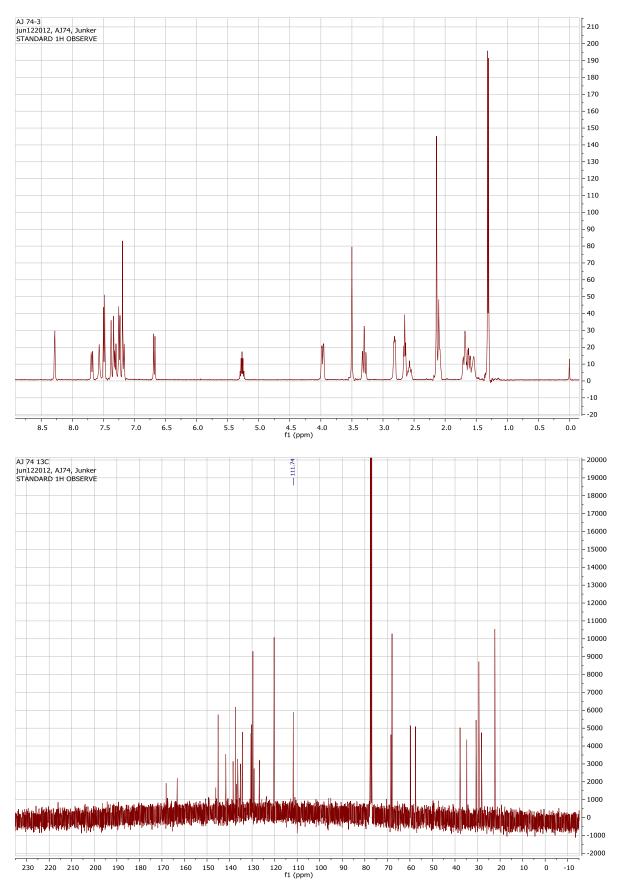

HPLC Analyzed: 05.07.12 06:07 Reported: 05.07.12 15:50 Processed: 05.07.12 15:50 Data Path: D:\WIN32APP\HSM\Chromni\DATA\4975\ Application: Chromni Series:4975 Vial Number: 16 Vial Type: UNK Sample Name: AJ7901 Injection from this vial: 1 of 1 Volume: 5,0 ul Chrom Type: HPLC Channel : 1 100 80 Intensity (mV) 60 10 22 40 20 12,463 0 0 2 10 12 б 8 14 15 18 20 22 24 26 28 Retention Time (min) Acquisition Method: Chromni Blank Subtr Sample Name: ACN Column Type: 010 Developed by: Jens Solvent A: Wasser + 0,05%TFA Solvent B: ACN + 0,05%TFA No. RT Area Conc 1 BC 1 17,65 69519 0,309 MC 19,09 2 29553 0,132 BB з 46234 0,206 MC 4 20,35 85375 0,380 MC 5 21,15 1,692 96,199 380256 MC б 21,57 22,38 21616632 MC 7 0,798 179392 MC 8 23,51 51409 MC 9 23,91 12416 0,055 MC 22470786 100,000 Peak rejection level: 0

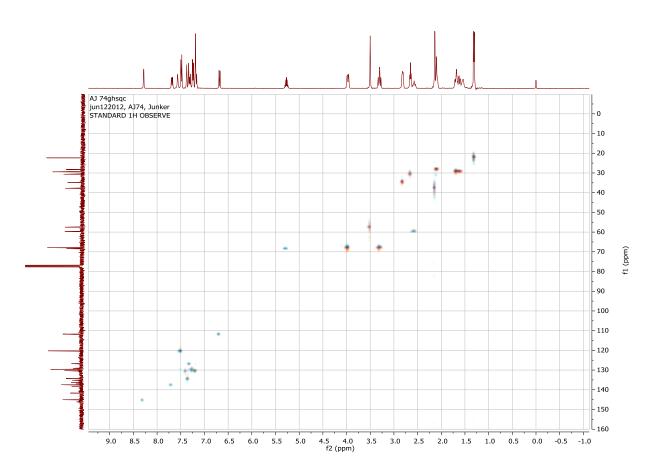


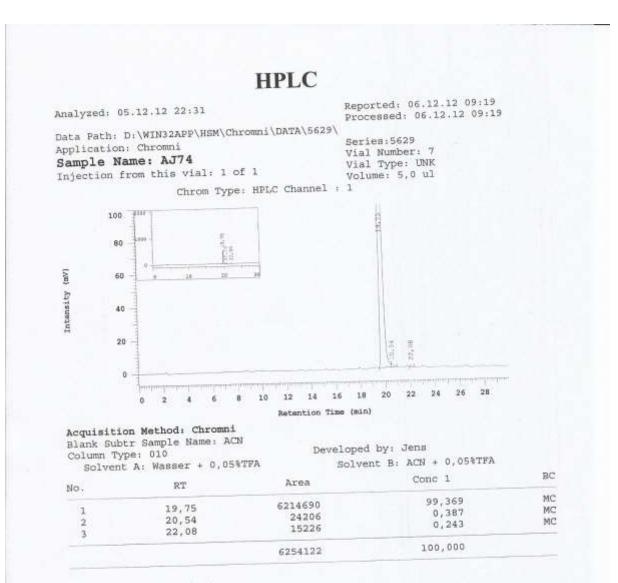


2-(2-Fluoropyridin-3-yl)-N-{4-[N-methyl-N-(tetrahydro-2H-pyran-4-

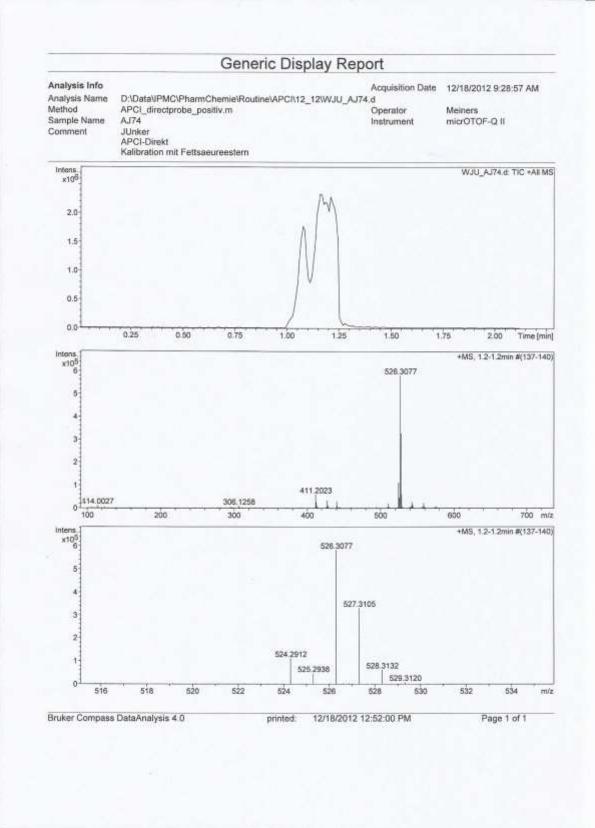


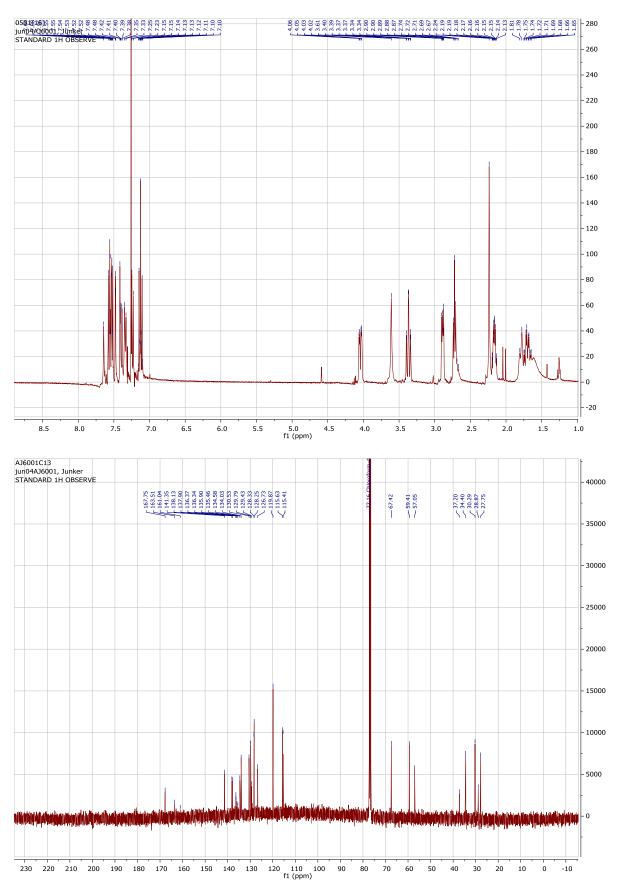

Peak rejection level: 0



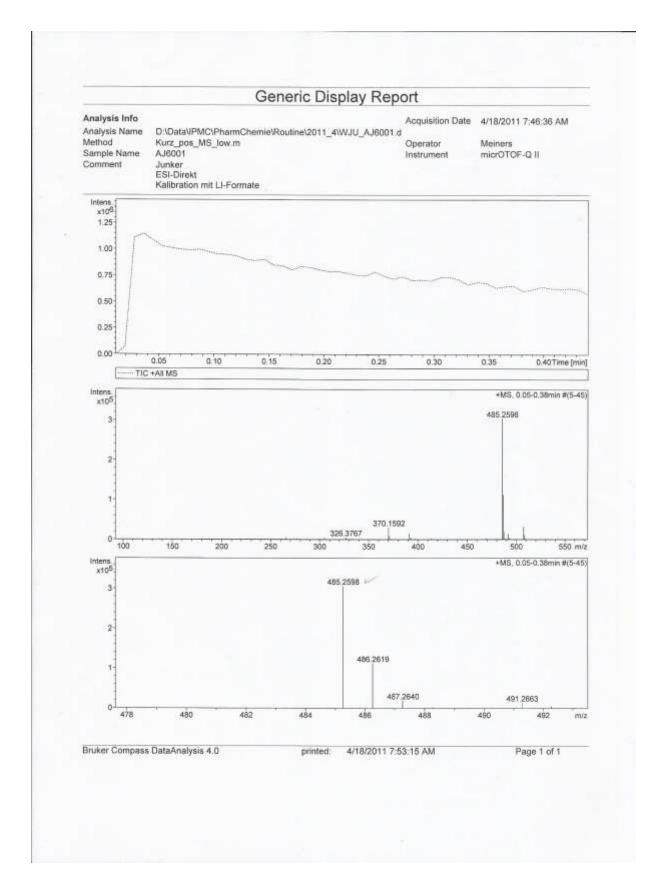

Makyas Name E-MainersN12_12!WJU_AJ78.d APC1_directprobe_positiv.m AJ78 Operator Meliners Instrument / Sert MicroTOF-Q II 10252 mment Junker AZ78 Operator Meliners mment Junker AZ78 Instrument / Sert MicroTOF-Q II 10252 mment Junker APC1-Direkt Kalibration mit Feitsaeureestern Positive Set Nebulzer 0.7 Bar rouge Type APC1 Ise Polarity Positive Set Nebulzer 0.7 Bar rouge Type APC1 Set Collision Cell RF 100 Vypp Set Divert Valve Waste an Ead 1000 miz Set Collision Cell RF 130.0 Vyp Set Divert Valve Waste 485.2524	Analysis Name E			111 3111	artForm	ula Re	port			
ethod APCL_directprobe_positiv.m Operator Meiners pmment AJ78 Junker AJ78 Instrument / Sent MicroTOF-Q II 10252 guistion Parameter APCL-Direkt Set Capillary Positive Set Netbullzer 0.7 Bar guistion Parameter Not active Set Capillary Positive Set Ory Heaer 0.7 Bar guistion Parameter Not active Set Collision Cell RF 130.0 Vpp Set Divert Valve 0.7 Bar guistion Parameter Set Collision Cell RF 130.0 Vpp Set Divert Valve 0.7 Bar guistion Parameter Set Collision Cell RF 130.0 Vpp Set Divert Valve 0.7 Bar guistion Parameter Set Collision Cell RF 130.0 Vpp Set Divert Valve Waste guistion Parameter Set Collision Cell RF 130.0 Vpp Set Divert Valve Waste guistion Parameter Set Collision Cell RF 130.0 Vpp Set Divert Valve Waste guistion Parameter Set Collision Cell RF 130.0 Vpp Set Divert Valve Waste guistion Parameter Set Collis		Analysis lafe						2/10/2	012 8:55:5	51 AM
Minipe Au/28 prime in Junkor APCI-Direkt Kalibration mit Fettsaeureestern Instrument / Serit micrOTOF-Q II 10252 microsoft rguistion Parameter urde Type an Begin 1000 m/z Ion Polarity Set Collision Cell RF 1000 m/z Positive Set Collision Cell RF 1000 V Set Nebulizer Set Dry Heater 200 °C Set Dry Heater Set Dry He						Onerator				
APCI-Direkt Kalibration mit Fettsaeureestern rguisition Parameter urde Type APCI an Begin 1000 m/z Set Collisity Set Collision Cell RF 300 V Set Divert Vake O 7 Bar 200 °C 300	Sample Name A	J78	obiav.m			and the second second second				
umme Type: cosa APCI Not active an Begin Ion Potentity 100 m/z Dos Potentity Set Capilary Set Collision Cell RF Positive 500 V Set Hory Heater Set Dyr Cass 0.7 Bar 200 °C an Begin 1000 m/z Set Collision Cell RF 500 V Set Dyr Heater 300 V Set Dyr Heater Set Dyr Heater 300 V 0.7 Bar Set Dyr Heater 300 V niteres x10 ⁹	APCI-Direkt									
Cus Not active an Begin 100 m/z Set Capillary Set End Plate Offset Set Collision Cell RF 4000 V 130.0 Vpp Set Diver Valve 200 °C 30 °C set Diver Valve 488.pin 1000 m/z Set Collision Cell RF 130.0 Vpp Set Diver Valve Waste 498.2524 +MS, 1.1-1.1min #(125-1 +MS, 1.1-1.1min #(125-1 +MS, 1.1-1.1min #(125-1 0.6								-		
an Begin 100 m/z Set Collision Cell RF 130.0 Vpp Set Divers Valve 3.0 t/min mitens x10 ⁹ 0.8 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	Focus									
x10 ⁶ 0.8 0.9 0.4 0.4 0.2 0.4 0.2 0.4 0.2 0.5 0.6 0.4 0.2 0.5 0.6 0.4 0.2 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Scan Begin Scan End		Set End Plat	e Offset		Set	Dry Gas		3.0 i/min	
03 498.2524 04 266.0992 371.1482 0100 200 300 400 500 600 700 800 900 Meas.m/z # Formula Score m/z err [mDa] err [mDa] mSigma rdb e ⁻ Conf N-Ri 468.2524 1 C.20H 33F N 3 O.2 45.16 486.251 2.7 5.5 163.7 15.5 even 2 C.22H 34F 2 N 3 O.3 4.18 486.2521 0.3 0.5 175.7 15.5 even 3 C.27H 34F 2 N 3 O.3 4.18 486.2524 0.0 0.0 204.4 16.5 even 4 C.24H 37F N 0.8 2.67 4.55 199.6 5.5 even 6 2.8 5.5 even 6 2.8 even 6 2.8 5.5 199.6 5.5 even 6 2.8 5.5 1.99.7 1.5 twen 6 2.8 5.5 even 6.5	Intens.							+MS,	1.1-1.1min	#(125-12
495.2524 04 371.1482 04 300 300 400 500 600 700 800 900 Meas.m/z # Formula Score m/z err [mDa] err [mpm] mSigma rdb e ⁻ Conf N-Ri 465.2524 1 C30 H 33 F N 3 O 2 46.16 486.261 2.7 5.5 163.7 15.5 even 2 C 228 H 32 F 4 N 3 100.00 486.2527 0.3 0.5 178.4 12.5 even 3 C 27 H 34 F 2 N 3 O 3 4.11 446.2528 0.0 0.0 20.44 16.5 even 4 C 28 H 32 F N 3 O 3 1.6 446.2529 0.0 0.0 20.44 15.5 even 6 C 28 H 32 F N 3 O 3 1.6 446.2529 0.1 21.11 12.5 even 7 C 21 H 33 F N 3 O 4 0.06 446.2509 -1.01 21.11 12.5 even 7 C 22 H 33 F N 3 O 4	x100									
04- 04- 02 371,1482 371,1482 971,53 010 200 300 400 500 600 700 800 900 Meas.m/2 # Formula 2 C 28 H 37 F N 3 O 2 46.16 486 2851 2.7 55 163.7 15.5 even 2 C 28 H 32 F 4 N 3 O 3 100.007 486 2851 2.7 5.5 163.7 15.5 even 2 C 28 H 32 F 4 N 3 O 3 100.007 486 2851 2.7 5.5 153.7 15.5 even 4 C 24 H 37 F N O 8 2.87 486 2496 -7 -5.5 199.5 6.5 even 5 C 28 H 33 F N S O 4 1.64 486 2524 0.0 0.0 204.4 16.5 even 6 C 28 H 31 F S N S O 4 1.64 486 2536 1.2 2.4 2.5 even 7 C 21 H 38 F 2 N S O 1 1.09 486 2536 1.2 2.4 2.21.8 8.5 even 10 C 23 H 30 F 2 N S O 1 1.05 486 2536 1.2 2.4 2.23.8 1.5	0.8									
04 02 02 02 02 02 02 02 02 02 02	0.6-			486.2524						
0.1 371,1482 371,1482 371,1482 0.1 200 300 400 500 600 700 800 900 Meas.m/z # Formula Score m/z err [mDa] err [ppm] mSigma rdb e ⁻ Conf N-R 468.2524 1 C.30 H 33 F N 3 O 2 46.16 486.2551 2.7 5.5 163.7 15.5 even 2 C 28 H 32 F N 3 O 2 46.16 486.2563 3.8 7.9 180.3 11.5 even 4 C 24 H 37 F N O 8 2.87 486.2498 -2.7 -5.5 199.9 6.5 even 5 C 26 H 25 F N 9 10.64 486.2524 -0 0 204.4 16.5 even 6 C 26 H 35 F N S O 4 1.64 486.2511 -1.3 -2.7 216.6 15.5 even 9 C 25 H 33 F N S O 4 0.02 486.2536 1.2 2.4 23.8 12.5 even 10<	-									
0.2- 0.0 371,1482 371,1482 0.0 200 300 400 500 600 700 800 900 Meas.m/z # Formula Score m/z err [mDa] err [ppm] mSigma rdb e ⁻ Conf N-Ri 468.2524 1 C.30 H 33 F N 3 O 2 46.16 466.2651 2.7 5.5 163.7 15.5 even 3 C.27 H 34 F 2 N 3 O 3 4.18 46.2653 3.8 7.9 180.3 11.5 even 4 C.24 H 37 F N O 8 2.87 486.2498 -2.7 -5.5 199.5 6.5 even 5 C.26 H 25 F N 9 1.06.4 466.2524 0.0 0.0 204.4 16.8 even 6 C.26 H 35 F N S O 4 1.64 466.2536 1.2 2.4 223.8 8.5 even 9 C.25 H 33 F N S O 4 0.02 466.2536 1.2 2.4 223.8 8.5 even 10 C.	0.4-									
0.0 200 300 400 500 600 700 800 900 Meas.m/z # Formula Score m/z err [mDa] err [ppm] mSigma rdb e'Conf N-Ri 465.2524 1 C 30 H 33 F N 3 O 2 46.16 486.2551 2.7 5.5 163.7 15.5 even 3 C 27 H 34 F 2 N 3 O 3 100 00 486.2563 3.8 7 180.3 11.5 even 4 C 24 H 37 F N O 8 2.87 486.2463 3.8 7 180.3 11.5 even 5 C 26 H 29 F N 9 10.64 486.2454 0.0 10.0 204.4 18.5 even 6 C 28 H 33 F N 5 O 4 1.84 486.2501 -1.3 2.7 21.6 15.5 even 9 C 25 H 33 F N 5 O 4 1.84 486.2574 5.0 10.2 227.3 7.5 even 10 C 23 H 35 F N 5 O 4 1.64 486.2570 4.5	0.2-									971.530
100 200 300 400 500 600 700 800 900 Meas.m/z # Formula Score m/z err [mDa] err [pmn] mSigma ndb e Conf N-Ri 486.2524 1 C 30 H 33 F N 3 O 2 46.16 486.2651 2.7 55 163.7 15.5 even 2 C 2B H 32 F 4 N 3 100.00 486.2527 0.3 0.5 175.4 12.5 even 4 C 24 H 37 F N 0.8 2.87 486.2498 -2.7 -5.5 199.5 6.5 even 5 C 26 H 29 F N 9 10.64 486.2524 0.0 0.0 204.4 16.5 even 6 C 26 H 33 F N 3 O 1 0.08 486.2475 4.9 -10.1 211.1 12.5 even 8 C 25 H 33 F N 5 O 4 1.84 488.2511 -1.3 -2.7 216.6 11.5 even 9 C 25 H 33 F N 5 O 4 1.05 486.2536 1.2	00	266.0992	371,1482							
468.2524 1 C 30 H 33 F N 3 O 2 46.16 486.251 2.7 5.5 163.7 15.5 even 3 C 27 H 34 F 2 N 3 O 3 4.18 486.2563 3.8 7.9 180.3 11.5 even 4 C 24 H 37 F N O 8 2.87 486.2496 -2.7 -5.5 199.5 6.5 even 5 C 26 H 29 F N 9 10.64 486.2524 0.0 0.0 204.4 16.5 even 6 C 26 H 31 F 3 N 5 O 0 0.8 488.2475 4.9 -10.1 211.1 12.5 even 7 C 21 H 38 F 2 N O 9 1.66 486.2538 1.4 2.9 221.8 8.5 even 9 C 25 H 33 F N 5 O 4 1.84 486.2570 4.5 9.4 225.5 2.5 even 10 C 23 H 30 F 2 N 9 O 1.05 486.2538 1.4 2.9 221.8 8.5 even 11 C 18 H 37 F N 5 O 9 0.04 486.2574 5.0 10.2	100	200 300	400	500	600	700	800		900	,
466.2524 1 C 30 H 33 F N 3 O 2 46.16 466.2551 2.7 5.5 163.7 15.5 even 2 C 2B H 32 F A N 3 100.00 486.2563 3.8 7.9 180.3 11.5 even 3 C 27 H 34 F 2 N 3 O 3 4.11 486.2563 3.8 7.9 180.3 11.5 even 4 C 24 H 37 F N O 8 2.87 486.2561 0.0 0.0 204.4 185.5 even 5 C 26 H 29 F N 9 10.64 486.2509 -1.5 3.1 216.4 2.5 even 7 C 21 H 38 F 2 N 5 O 4 1.64 486.2511 -1.3 -2.7 216.5 11.5 even 8 C 25 H 33 F N 5 O 4 1.64 486.2516 -1.2 2.4 223.8 12.5 even 10 C 23 H 30 F 2 N 9 O 1.05 486.2574 5.0 10.2 227.7 7.5 even 12 C 24 H 35 F 3 N 3 O 4 0.02 486.2574 5.0 10.2 <td></td> <td>The second second</td> <td></td> <td>m/s</td> <td>z err [mDa]</td> <td>err [ppm]</td> <td>mSigma</td> <td>rdb</td> <td>e⁻Conf</td> <td>N-Ru</td>		The second		m/s	z err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	N-Ru
3 C 27 H 34 F 2 N 3 O 3 4.18 486 2563 3.8 7.9 180.3 11.5 even 4 C 24 H 37 F N O 8 2.87 486 2498 -2.7 -5.5 199.5 6.5 even 5 C 26 H 29 F N 9 10.64 486 2524 0.0 0.0 204.4 18.5 even 6 C 26 H 31 F 3 N 5 O 0.08 488 2475 -4.9 -10.1 211.1 12.5 even 7 C 21 H 38 F 2 N 0 9 1.66 486 2509 -1.5 3.1 216.6 11.5 even 9 C 25 H 33 F 5 N 3 O 1.09 486 2538 1.4 2.9 221.8 8.5 even 10 C 23 H 30 F 2 N 9 O 1.05 486 2576 5.0 10.2 227.7 7.5 even 12 C 24 H 35 F 3 N 3 O 4 0.02 486 2574 5.0 10.2 227.7 7.5 even 13 C 23 H 32 F 4 N 5 O 2 0.06 486 2487 -3.8 -7.8 230.0 8.5 even 14 C 21 H 29 F N 11 O 2 0.04 486 24	488.2524					5.5	163.7		and the second se	
5 C 26 H 29 F N 9 10.64 486.2524 0.0 0.0 204.4 16.5 even 7 C 21 H 3B F 2 N 0 9 1.66 486.2509 -1.5 3.1 216.4 25.5 even 7 C 21 H 3B F 2 N 0 9 1.66 486.2509 -1.5 3.1 216.4 125.5 even 9 C 25 H 33 F N 5 O 4 1.84 486.2511 -1.3 -2.7 216.6 11.5 even 9 C 25 H 33 F N 5 O 4 1.05 486.2538 1.4 2.9 221.8 8.5 even 10 C 23 H 30 F 2 N 9 O 1.05 486.2570 4.5 9.4 225.5 2.5 even 12 C 24 H 35 F N 5 O 2 0.06 486.2487 -3.8 -7.8 230.0 8.5 even 14 C 21 H 32 F N 10 2 0.04 486.2447 2.3 4.7 240.6 8.5 even 15 C 22 H 34 F 5 N 5 O 3 0.03 486.2447 2.3 4.7 240.6		3 C27H34F2N	(3O3 4.18	486.256	3 3.8	7.9	180.3	11.5	even	
6 C 26 H 31 F 3 N 5 O 0.08 488.2475 -4.9 -10.1 211.1 12.5 even 7 C 21 H 3B F 2 N O 9 1.66 486.2509 -1.5 3.1 218.4 2.5 even 8 C 25 H 33 F N 5 O 4 1.84 486.2511 -1.3 -2.7 216.6 11.5 even 9 C 25 H 33 F N 5 O 4 1.84 486.2538 1.4 2.9 221.8 8.5 even 10 C 23 H 30 F 2 N 9 O 1.05 486.2576 4.5 9.4 225.5 2.5 even 11 C 18 H 37 F N 5 O 9 0.04 486.2574 5.0 10.2 227.3 7.5 even 12 C 24 H 35 F N 3 O 4 0.02 486.2574 5.0 10.2 227.3 7.5 even 13 C 21 H 29 F N 11 O 2 0.04 486.2487 -3.8 -7.8 230.0 8.5 even 15 C 22 H 34 F 2 N 5 O 5 0.56 486.2523 -0.2 -0.4 235.7 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td>										2
7 C 21 H 38 F 2 N O 9 1.66 486.2509 -1.5 -3.1 216.4 2.5 even 9 C 25 H 33 F N S O 4 1.84 486.2511 -1.3 -2.7 216.6 11.5 even 9 C 25 H 33 F N S O 1 1.05 486.2538 1.4 2.9 221.8 8.5 even 10 C 23 H 30 F 2 N 9 O 1.05 486.2576 1.2 2.4 223.8 12.5 even 11 C 18 H 37 F N 5 O 9 0.04 486.2570 4.5 9.4 227.3 7.5 even 12 C 24 H 35 F 3 N 3 O 4 0.02 486.2487 -3.8 -7.8 230.0 8.5 even 13 C 23 H 32 F 4 N 5 O 5 0.56 486.2523 0.2 0.4 235.7 7.5 even 14 C 21 H 29 F N 11 O 2 0.04 486.25447 2.3 4.7 240.5 8.5 even 15 C 22 H 34 F 5 N 3 O 2 0.07 486.2550 2.5 5.2 240.7 4.5 even 16 C 20 H 33 F 5 N 5 O 3 0.03 4									21211	
8 C 26 H 33 F N 5 O 4 1.84 486.2511 -1.3 -2.7 216.6 11.5 even 9 C 25 H 33 F S N 3 O 1.09 486.2538 1.4 2.9 221.8 8.5 even 10 C 23 H 30 F 2 N 9 O 1.05 486.2538 1.2 2.4 223.8 12.5 even 11 C 18 H 37 F N 5 O 9 0.04 486.2570 4.5 9.4 225.5 2.5 even 12 C 24 H 35 F 3 N 3 O 4 0.02 486.2487 -3.8 -7.8 230.0 8.5 even 13 C 21 H 32 F 4 N 5 O 2 0.06 486.2484 -4.0 -8.2 231.9 12.6 oven 14 C 21 H 34 F 6 N 3 O 2 0.07 486.2550 2.5 5.2 240.7 4.5 even 16 C 20 H 31 F 5 N 5 O 3 0.03 486.2498 -2.6 -5.4 240.0 4.5 even 17 C 22 H 34 F 6 N 3 O 2 0.07 486.2526 0.1 0.2 2										
10 C 23 H 30 F 2 N 9 O 1.05 486.2536 1.2 2.4 223.8 12.5 even 11 C 18 H 37 F N 5 O 9 0.04 486.2570 4.5 9.4 225.5 2.5 even 12 C 24 H 35 F 3 N 3 O 4 0.02 486.2574 5.0 10.2 227.3 7.5 even 13 C 23 H 32 F 4 N 5 O 2 0.06 486.2487 -3.8 -7.8 230.0 8.5 even 14 C 21 H 29 F N 11 O 2 0.04 486.2484 -4.0 -8.2 231.9 12.5 even 15 C 22 H 34 F 2 N 5 O 5 0.56 486.2523 0.2 -0.4 235.7 7.5 even 16 C 20 H 31 F 5 N 5 O 3 0.03 486.2447 2.3 4.7 240.5 8.5 even 18 C 20 H 33 F 5 N 5 O 3 0.03 486.2495 -2.9 5.9 251.0 8.5 even 20 C 20 H 33 F 5 N 5 O 6 0.05 486.2525 0.1 0.2 254.6 3.5 even 21 C 19 H 35 F 3 N 5 O 6 0.05				486.251				11.5		
11 C 18 H 37 F N 5 O 9 0.04 486 2570 4.5 9.4 225.5 2.5 even 12 C 24 H 35 F 3 N 3 O 4 0.02 486 2574 5.0 10.2 227.3 7.5 even 13 C 23 H 32 F 4 N 5 O 2 0.06 486 2484 -4.0 -8.2 231.9 12.6 even 14 C 21 H 29 F N 11 O 2 0.04 486 2484 -4.0 -8.2 231.9 12.6 even 15 C 22 H 34 F 2 N 5 O 5 0.56 486 2523 -0.2 -0.4 235.7 7.5 even 16 C 20 H 31 F 3 N 9 O 2 0.09 486 2547 2.3 4.7 240.5 8.5 even 17 C 22 H 34 F 6 N 3 O 2 0.07 486 2550 2.5 5.2 240.7 4.5 even 18 C 20 H 33 F 5 N 5 O 3 0.03 486 2496 -2.6 -5.4 249.0 4.5 even 20 C 20 H 33 F 5 N 5 O 6 0.05 486 2525 0.1 0.2 254.6 3.5 even 21 C 18 H 35 F 3 N 5 O 6 0.07 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>C</td> <td></td>									C	
12 C 24 H 35 F 3 N 3 O 4 0.02 486.2574 5.0 10.2 227.3 7.5 even 13 C 23 H 32 F 4 N 5 O 2 0.06 486.2487 -3.8 -7.8 230.0 8.5 even 14 C 21 H 29 F N 11 O 2 0.04 486.2487 -3.8 -7.8 231.9 12.5 oven 15 C 22 H 34 F 2 N 5 O 5 0.56 486.2523 -0.2 -0.4 235.7 7.5 even 16 C 20 H 31 F 3 N 9 O 2 0.09 486.2547 2.3 4.7 240.6 8.5 oven 17 C 22 H 34 F 6 N 3 O 2 0.07 486.2553 -2.5 5.2 240.7 4.5 even 18 C 20 H 33 F 5 N 5 O 3 0.03 486.2496 -2.9 -5.9 251.0 8.5 even 20 C 20 H 33 F 5 N 5 O 6 0.05 486.2525 0.1 0.2 254.6 3.5 even 21 C 18 H 30 F 6 N 9 0.07 486.2520 -0.4 -0.8 255.7 8.5 even 22 C 18 H 30 F 6 N 9 0.07		The second second second		- CONTRACTOR						경
13 C 23 H 32 F 4 N 5 O 2 0.05 486.2487 -3.8 -7.8 230.0 8.5 even 14 C 21 H 29 F N 11 O 2 0.04 486.2484 4.0 -8.2 231.9 12.5 oven 15 C 22 H 34 F 2 N 5 O 5 0.56 486.2523 -0.2 -0.4 235.7 7.5 even 16 C 20 H 31 F 3 N 9 O 2 0.09 486.2547 2.3 4.7 240.5 8.5 oven 17 C 22 H 34 F 6 N 3 O 2 0.07 486.2550 2.5 5.2 240.7 4.5 even 18 C 20 H 33 F 5 N 5 O 3 0.03 486.2496 -2.9 5.9 251.0 8.5 even 20 C 20 H 33 F 5 N 5 O 6 0.05 486.2525 0.1 0.2 254.6 3.5 even 21 C 19 H 35 F 7 N 15 0.07 486.2520 -0.4 -0.8 255.7 9.5 even 23 C 18 H 30 F 6 N 9 0.07 486.2523 -0.1 -0.3 256.0 5.5 even 24 C 17 H 32 F 4 N 9 O 3 0.00		- 10. CO. CO. CO. CO. C. C. C.								
14 C 21 H 29 F N 11 0 2 0.04 486 2484 -4.0 -8.2 231.9 12.5 oven 15 C 22 H 34 F 2 N 5 0 5 0.56 486 2523 -0.2 -0.4 235.7 7.5 even 16 C 20 H 31 F 3 N 9 0 2 0.09 486 2560 2.5 5.2 240.7 4.5 even 17 C 22 H 34 F 6 N 3 0 2 0.07 486 2560 2.5 5.2 240.7 4.5 even 18 C 20 H 33 F 5 N 5 0 3 0.03 486 2498 -2.6 -5.4 249.0 4.5 even 20 C 20 H 33 F 5 N 5 0 5 0.09 486 2525 0.1 0.2 254.0 1.5 even 20 C 20 H 33 F 5 N 5 0 6 0.05 486 2525 0.1 0.2 254.6 3.5 even 21 C 16 H 35 F 3 N 5 0 6 0.05 486 2520 -0.4 -0.8 256.7 9.5 even 22 C 16 H 27 F 3 N 15 0.07 486 2520 -0.4 -0.8 256.7 9.5 even 23 C 18 H 30 F 6 N 9 0.00								0.0125		1
15 C 22 H 34 F 2 N 5 0 5 0.56 486.2523 -0.2 -0.4 235.7 7.5 even 16 C 20 H 31 F 3 N 9 0 2 0.09 486.2547 2.3 4.7 240.5 8.5 even 17 C 22 H 34 F 6 N 3 0 2 0.07 486.2547 2.5 5.2 240.7 4.5 even 18 C 20 H 33 F 5 N 5 0 3 0.03 486.2498 -2.6 -5.4 240.0 4.5 even 19 C 18 H 30 F 2 N 11 0 3 0.02 486.2526 0.1 0.2 254.0 1.5 even 20 C 20 H 33 F 5 N 5 0 6 0.05 486.2526 0.1 0.2 254.6 3.5 even 21 C 18 H 35 F 3 N 5 0 6 0.07 486.2520 -0.4 -0.8 255.7 9.5 even 22 C 18 H 35 F 6 N 9 0.07 486.2523 -0.1 -0.3 256.0 5.5 even 23 C 18 H 35 F 0 N 3 0.00 486.2523 -0.1 -0.3 256.0 5.5 even 24 C 17 H 32 F 4 N 9 0 3 0.00 486.2553		No. Contraction of the second								3
17 C 22 H 34 F 6 N 3 O 2 0.07 496 2550 2.5 5.2 240.7 4.5 even 18 C 20 H 33 F 5 N 5 O 3 0.03 486 2498 -2.6 -5.4 249.0 4.5 even 19 C 18 H 30 F 2 N 11 O 3 0.02 486 2496 -2.6 -5.4 249.0 4.5 even 20 C 20 H 33 F 5 N 3 0.09 486 2495 0.1 0.2 254.0 1.5 even 20 C 20 H 35 F 5 N 3 0.09 486 2525 0.1 0.2 254.0 1.5 even 21 C 19 H 35 F 3 N 5 O 6 0.05 486 2520 -0.4 -0.8 255.7 9.5 even 22 C 16 H 27 F 3 N 15 0.07 486 2520 -0.4 -0.8 255.7 9.5 even 23 C 18 H 30 F 6 N 9 0.07 486 2559 3.4 7.1 258.5 4.5 even 24 C 17 H 32 F 4 N 9 O 3 0.00 486 2556 3.2 6.6 261.5 8.5 even 25 C 19 H 35 F 7 N 3 O 3 0.00 48		15 C 22 H 34 F 2 N	505 0.56							
18 C 20 H 33 F 5 N 5 O 3 0.03 486.2498 -2.6 -5.4 249.0 4.5 even 19 C 18 H 30 F 2 N 11 O 3 0.02 486.2496 -2.9 -5.9 251.0 8.5 even 20 C 20 H 33 F 5 N 5 O 6 0.05 486.2525 0.1 0.2 254.0 1.5 even 21 C 19 H 35 F 3 N 5 O 6 0.05 486.2520 -0.4 -0.8 255.7 9.5 even 22 C 18 H 30 F 6 N 9 0.07 486.2520 -0.4 -0.8 256.7 9.5 even 23 C 18 H 30 F 6 N 9 0.07 486.2520 -0.4 -0.8 256.7 9.5 even 24 C 17 H 32 F 4 N 9 O 3 0.00 486.2559 3.4 7.1 259.5 4.5 even 25 C 19 H 35 F 7 N 3 O 3 0.00 486.2561 3.7 7.6 259.6 0.5 even 26 C 15 H 29 F N 15 O 3 0.00 486.2556 3.2 6.6					COLUMN THE COLUMN					3
19 C 18 H 30 F 2 N 11 O 3 0.02 486.2496 -2.9 -5.9 251.0 8.5 even 20 C 20 H 33 F 9 N 3 0.09 486.2525 0.1 0.2 254.0 1.5 even 21 C 19 H 35 F 3 N 5 O 6 0.05 486.2520 -0.4 -0.8 255.7 8.5 even 22 C 16 H 27 F 3 N 15 0.07 486.2520 -0.4 -0.8 255.7 8.5 even 23 C 18 H 30 F 6 N 9 0.07 486.2520 -0.4 -0.8 255.7 8.5 even 24 C 17 H 32 F 4 N 9 O 3 0.00 486.2561 3.7 7.6 259.6 0.5 even 25 C 19 H 35 F 7 N 3 O 3 0.00 486.2566 3.2 6.6 261.5 8.5 even 26 C 15 H 29 F N 15 O 3 0.00 486.2566 3.2 6.6 261.5 8.5 even 27 C 17 H 34 F 2 N 7 O 7 0.00 486.2482 -4.2 -8.6 263.0 -0.5 even 28 C 19H 37 F 5 N O 7 0.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
20 C 20 H 33 F 9 N 3 0.09 486.2525 0.1 0.2 254.0 1.5 even 21 C 19 H 35 F 3 N 5 O 6 0.05 486.2534 1.0 2.0 254.6 3.5 even 22 C 18 H 27 F 3 N 15 0.07 486.2523 -0.4 -0.8 255.7 8.5 even 23 C 18 H 30 F 6 N 9 0.07 486.2523 -0.1 -0.3 256.0 5.5 even 24 C 17 H 32 F 4 N 9 O 3 0.00 486.2559 3.4 7.1 259.5 4.5 even 25 C 19 H 35 F 7 N 3 O 3 0.00 486.2558 3.2 6.6 281.5 8.5 even 26 C 15 H 29 F N 15 O 3 0.00 486.2558 3.2 6.6 281.5 8.5 even 27 C 17 H 34 F 2 N 7 O 7 0.00 486.2485 -4.0 -8.2 262.9 3.5 even 28 C 19 H 37 F 5 N O 7 0.00 486.2485 -4.0 -8.2 263.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>										1
21 C 19 H 35 F 3 N 5 C 6 0.05 486.2534 1.0 2.0 254.6 3.5 even 22 C 16 H 27 F 3 N 15 0.07 486.2520 -0.4 -0.8 255.7 9.5 even 23 C 18 H 30 F 6 N 9 0.07 486.2520 -0.1 -0.3 256.0 5.5 even 24 C 17 H 32 F 4 N 9 C 3 0.00 486.2559 3.4 7.1 259.5 4.5 even 25 C 19 H 35 F 7 N 3 C 3 0.00 486.2556 3.2 6.6 261.5 8.5 even 26 C 15 H 29 F N 15 C 3 0.00 486.2556 3.2 4.6 262.9 3.5 even 27 C 17 H 34 F 2 N 7 O 7 0.00 486.2482 -4.2 -8.6 262.9 3.5 even 28 C 19 H 37 F 5 N O 7 0.00 486.2485 -4.0 -8.2 263.0 -0.5 even 29 C 15 H 31 F 3 N 11 O 4 0.01 486.2507 -1.7 -3.5			11.11.11.11.11.11.11.11.11.11.11.11.11.							3
22 C 16 H 27 F 3 N 15 0.07 486.2520 -0.4 -0.8 255.7 9.5 even 23 C 18 H 30 F 6 N 9 0.07 486.2523 -0.1 -0.3 256.0 5.6 even 24 C 17 H 32 F 4 N 9 O 3 0.00 486.2523 3.4 7.1 259.5 4.5 even 25 C 19 H 35 F 7 N 3 C 3 0.00 486.2561 3.7 7.6 259.6 0.5 even 26 C 15 H 29 F N 15 O 3 0.00 486.2556 3.2 6.6 261.5 8.5 even 27 C 17 H 34 F 2 N 7 O 7 0.00 486.2482 -4.2 -8.6 262.9 3.5 even 28 C 19 H 37 F 5 N O 7 0.00 486.2485 -4.0 -8.2 263.0 -0.5 even 29 C 15 H 31 F 3 N 11 O 4 0.01 486.2507 -1.7 -3.5 267.8 4.5 even								10000		
23 C 18 H 30 F 6 N 9 0.07 486.2523 -0.1 -0.3 256.0 5.5 even 24 C 17 H 32 F 4 N 9 O 3 0.00 486.2559 3.4 7.1 259.5 4.5 even 25 C 19 H 35 F 7 N 3 O 3 0.00 486.2561 3.7 7.6 259.6 0.5 even 26 C 15 H 29 F N 15 O 3 0.00 486.2566 3.2 6.6 261.5 8.5 even 27 C 17 H 34 F 2 N 7 O 7 0.00 486.2482 -4.2 -8.6 262.9 3.5 even 28 C 19 H 37 F 5 N O 7 0.00 486.2482 -4.2 -8.6 262.9 3.5 even 28 C 19 H 37 F 5 N O 7 0.00 486.2507 -1.7 -3.5 267.8 4.5 even 29 C 15 H 31 F 3 N 11 O 4 0.01 486.2507 -1.7 -3.5 267.8 4.5 even										- 3
24 C 17 H 32 F 4 N 9 O 3 0.00 486.2559 3.4 7.1 259.5 4.5 even 25 C 19 H 35 F 7 N 3 O 3 0.00 486.2561 3.7 7.6 259.6 0.5 even 26 C 15 H 29 F N 15 O 3 0.00 486.2558 3.2 6.6 281.5 8.5 even 27 C 17 H 34 F 2 N 7 O 7 0.00 486.2482 -4.2 -8.8 262.9 3.5 even 28 C 19 H 37 F 5 N O 7 0.00 486.2485 -4.0 -8.2 283.0 -0.5 even 29 C 15 H 31 F 3 N 11 O 4 0.01 486.2507 -1.7 -3.5 267.8 4.5 even										1.1
25 C 19 H 35 F 7 N 3 O 3 0.00 486 2561 3.7 7.6 259.6 0.5 even 26 C 15 H 29 F N 15 O 3 0.00 486 2556 3.2 6.6 261.5 8.5 even 27 C 17 H 34 F 2 N 7 O 7 0.00 486 2482 -4.2 -8.6 262.9 3.5 even 28 C 19 H 37 F 5 N O 7 0.00 486 2485 -4.0 -8.2 263.0 -0.5 even 29 C 15 H 31 F 3 N 11 O 4 0.01 486 2507 -1.7 -3.5 267.8 4.5 even										1
26 C 15 H 29 F N 15 O 3 0.00 486 2556 3.2 6.6 261.5 8.5 even 27 C 17 H 34 F 2 N 7 O 7 0.00 486 2482 -4.2 -8.6 262.9 3.5 even 28 C 19 H 37 F 5 N O 7 0.00 486 2485 -4.0 -8.2 263.0 -0.5 even 29 C 15 H 31 F 3 N 11 O 4 0.01 486 2507 -1.7 -3.5 267.8 4.5 even					527					- 3
28 C 19 H 37 F 5 N O 7 0.00 488.2485 -4.0 -8.2 263.0 -0.5 even 29 C 15 H 31 F 3 N 11 O 4 0.01 486.2507 -1.7 -3.5 267.8 4.5 even				486.255	8 3.2					2
29 C 15 H 31 F 3 N 11 O 4 0.01 486.2507 -1.7 -3.5 267.8 4.5 even									even	- 34
						-3.1	267.8	0.5	even	8
31 C 15 H 31 F 7 N 9 O 0.01 496.2534 1.0 2.0 273.0 1.5 even 32 C 14 H 33 F N 11 O 7 0.00 486.2543 1.9 3.8 273.4 3.5 even								102252		

2-(6-Isopropoxypyridin-3-yl)-N-{4-[N-methyl-N-(tetrahydro-2H-pyran-4-

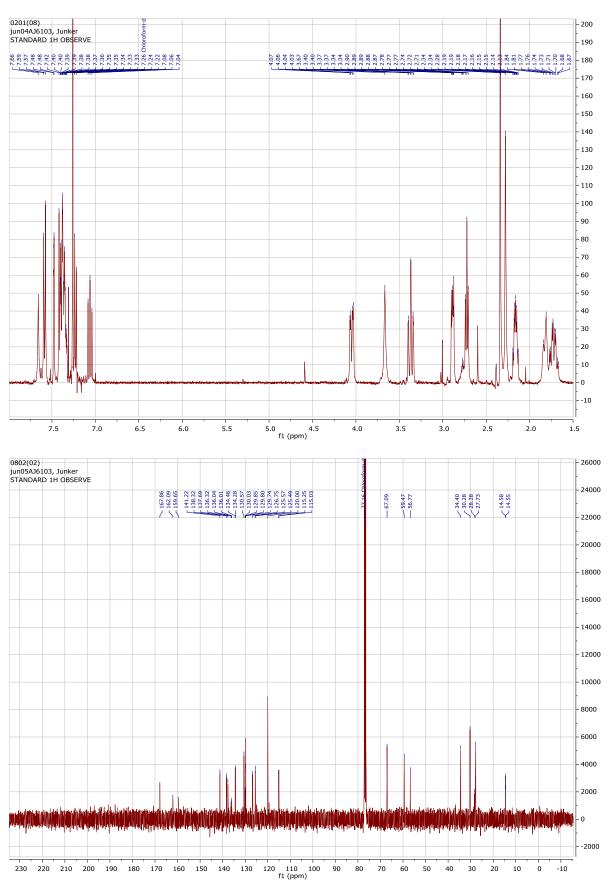



Peak rejection level: 0

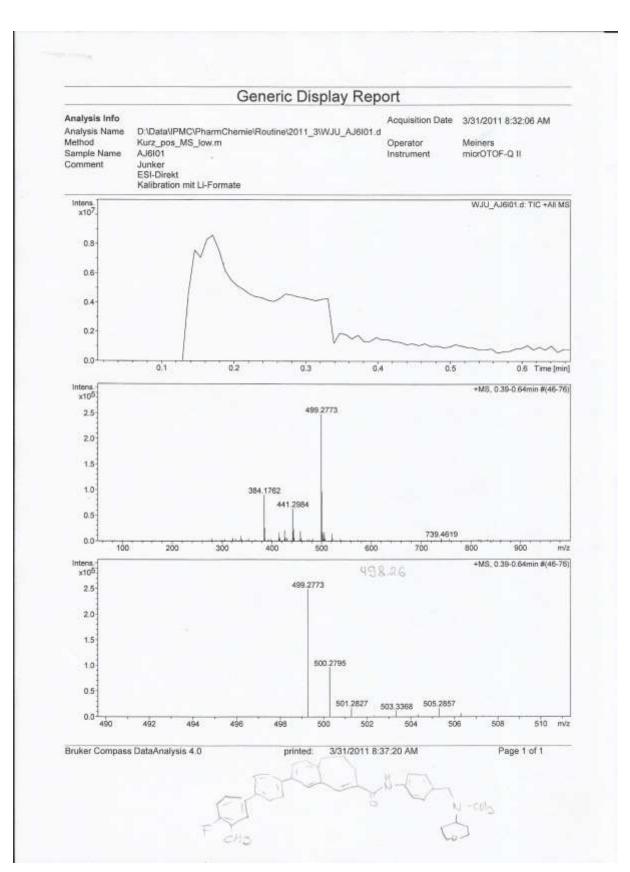
Mass Spectrum SmartFormula Report Analysis Info Acquisition Date 12/18/2012 9:28:57 AM Analysis Name D:\Data\\PMC\PharmChemie\Routine\APCI\12_12\WJU_AJ74.d Method APCI_directprobe_positiv.m Meiners Operator Sample Name AJ74 Instrument / Ser# micrOTOF-Q II 10252 Comment JUnker APCI-Direkt Kalibration mit Fettsaeureestern Acquisition Parameter APCI Not active 100 m/z 1000 m/z ton Polarity Set Capitlary Set End Plate Offset Set Collision Cell RF Positive 4000 V 0.7 Bar 200 °C 3.0 l/min Waste Source Type Focus Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Scan Begin Scan End -500 V 130.0 Vpp +MS, 1,2-1.2min #(137-140) 526.3077 411,2023 1 1 mSigma 73.8 97.8 109.7 Meas. m/z # Formula err [mDa] err (ppm) 5.3 rdb e Conf Score N-Rule m/z 526.3077 C 38 H 40 N O 85.35 526.3104 2.8 19.5 even ok C 33 H 40 N 3 O 3 C 29 H 36 N 9 O 100.00 528.3064 526.3037 -1.2 -2.4 16.5 even **a**k ok even C 26 H 36 N 9 O C 26 H 44 N 3 O 8 C 23 H 36 N 13 O 2 C 21 H 44 N 5 O 10 C 19 H 32 N 19 4 5 0.49 526.3123 526.3109 4.6 8.8 138.1 156.4 6.5 12.5 even ok ok 3.3 6.2 even 157.9 2.5 13.5 7.5 8.5 6 4.49 528.3083 0.6 1.2 even ok ok 526,3083 0.6 7 even ok ok C 22 H 40 N 9 O 6 C 18 H 36 N 15 O 4 1.9 89 0.80 526.3096 3.7 170.5 even 0.62 526.3069 -1.4 183.9 even C 14 H 32 N 21 O 2 C 17 H 40 N 11 O 8 C 13 H 36 N 17 O 6 -3.4 -2.1 -4.8 ok ok 10 0.03 526.3042 6.5 197.3 9.5 even 80.0 11 526 3056 -3.9 197.8 3.5 even 12 0.00 526,3029 9.1 211.1 4.5 even ok 12/18/2012 12:51:54 PM Page 1 of 1 Bruker Compass DataAnalysis 4.0 printed:

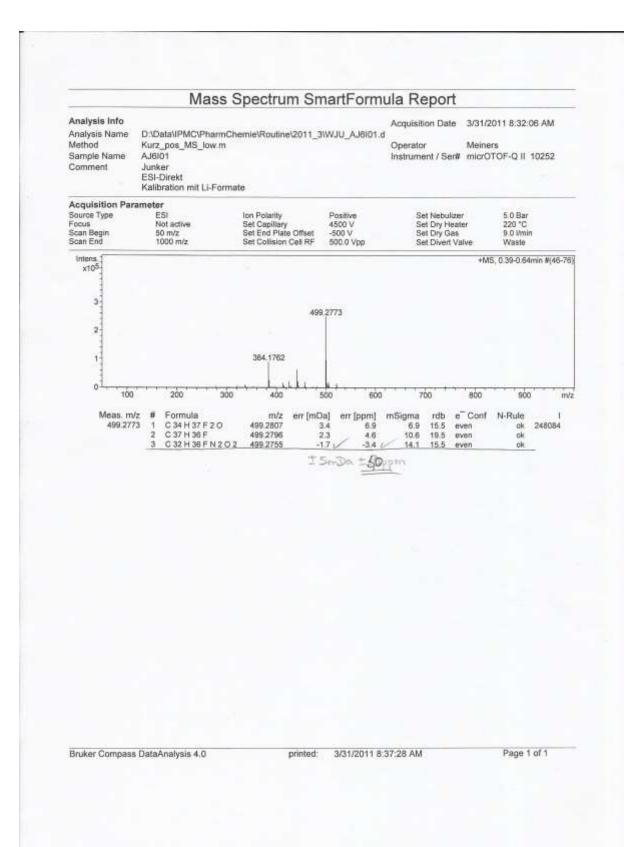

2-(4-Fluorophenyl)-N-{[N-methyl-N-(tetrahydro-2H-pyran-4-yl)aminomethyl]phenyl}-6,7-

dihydro-5H-benzo[7]annulene-8-carboxamide (9I)

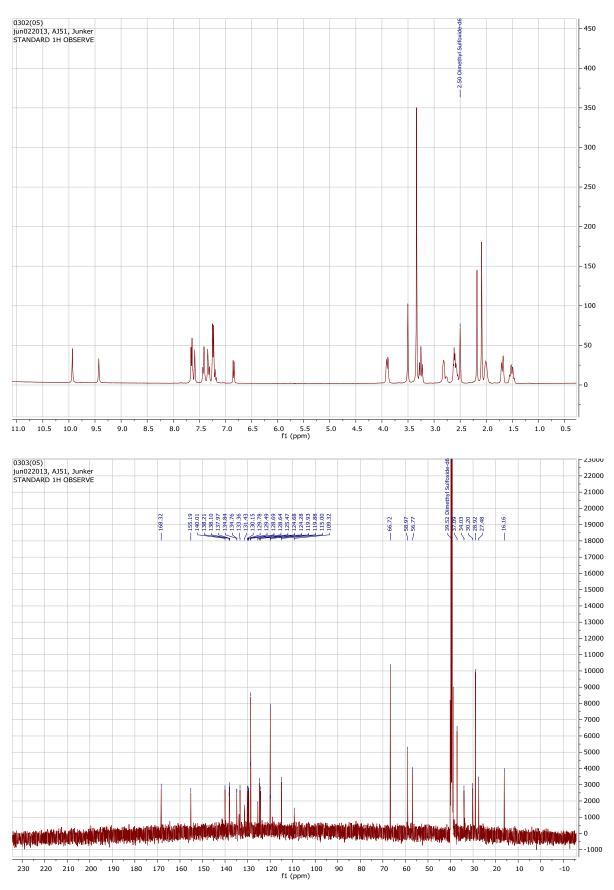

HPLC Analyzed: 07.04.11 00:01 Reported: 08.04.11 08:04 Processed: 08.04.11 08:04 Data Path: D:\WIN32APP\HSM\Chromni\DATA\2932\ Series:2932 Application: Chromni Vial Number: 8 Vial Type: UNK Sample Name: AJ6001 Injection from this vial: 1 of 1 Volume: 5,0 ul Chrom Type: HPLC Channel : 1 50 2111 40 潮 11.16 4 30 (ME) Intensity 20 10 121.04 84425 0 -10 30 0 5 10 15 20 25 Retention Time (min) Acquisition Method: Chromni Blank Subtr Sample Name: ACN Column Type: 010 Solvent A: Wasser + 0,05%TFA Developed by: Jens Solvent B: ACN + 0,05%TFA BC Conc 1 No. RT Area 0,056 0,080 MC 11,46 9825 1 MC 2 14,11 13863 MC 18,09 476322 2,736 3 BB 19,29 10713 0,062 4 0,070 12243 MC 5 MC 16915 20,40 6 16857190 96,819 BB 20,78 14032 0,081 MC B 100,000 17411103

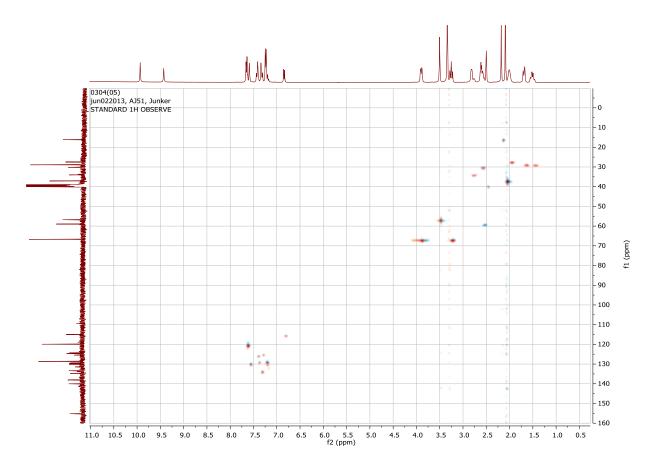
Peak rejection level: 0


Mass Spectrum SmartFormula Report Analysis Info Acquisition Date 4/18/2011 7:46:36 AM Analysis Name Method D-\Data\IPMC\PharmChemie\Routine\2011_4\WJU_AJ6001.d Kurz_pos_MS_low.m AJ6001 Operator Meiners Sample Name instrument / Ser# micrOTOF-Q II 10252 Comment Junker ESI-Direkt Kalibration mit LI-Formate Acquisition Parameter Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF Source Type Focus Scan Begin Scan End Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Positive 4500 V -500 V 500.0 Vpp 5.0 Bar 220 °C 9.0 l/min ESI Not active 50 m/z 1000 m/z Waste +MS, 0.05-0.38min #(5-45) 485.2598 370,1592 Meas. m/z # Formula m/z 485.2598 1 C 31 H 34 F N 2 O 2 485.2599 err [mDa] err [ppm] 0.1 0.2 mSigma rdb e C 9.9 15.5 even m/z rdb e Conf N-Rule ok 304884 🗸 Bruker Compass DataAnalysis 4.0 printed: 4/18/2011 7:53:23 AM Page 1 of 1

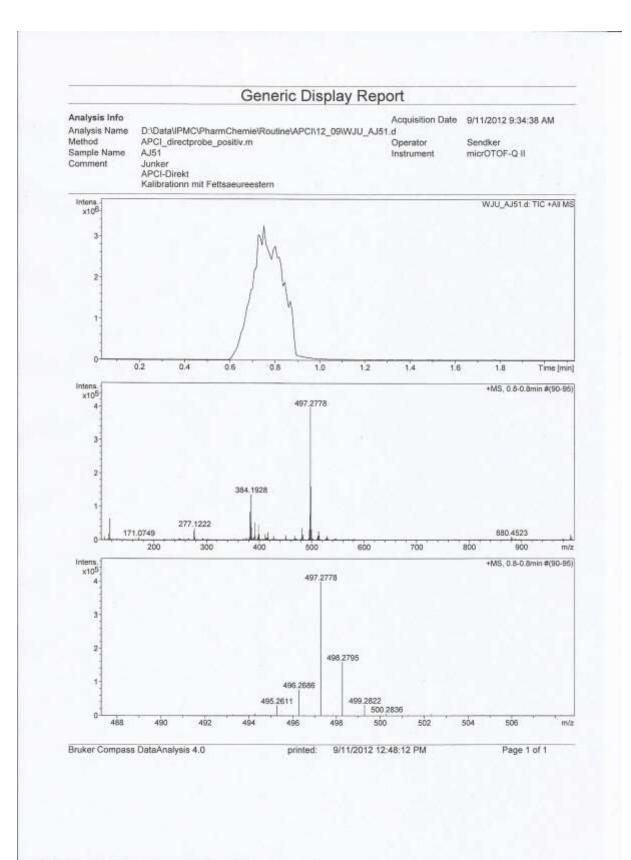

yl)aminomethyl]phenyl}-6,7-dihydro-5H-benzo[7]annulene-8-carboxamide (9m)

HPLC Reported: 08.04.11 07:59 Analyzed: 06.04.11 22:38 Processed: 08.04.11 07:59 Data Path: D:\WIN32APP\HSM\Chromni\DATA\2930\ Series:2930 Application: Chromni Vial Number: 7 Sample Name: AJ6103 Vial Type: UNK Injection from this vial: 1 of 1 Volume: 5,0 ul Chrom Type: HPLC Channel : 1 50 40 「日本」 8 30 (Vint) зń 24 Intensity 20 10 11.33 13,40 28,13 32 0 -10 30 5 10 15 20 25 0 Retention Time (min) Acquisition Method: Chromni Blank Subtr Sample Name: ACN Developed by: Jens Column Type: 010 Solvent A: Wasser + 0,05%TPA Solvent B: ACN + 0,05%TFA BC Conc 1 No. RT Area 0,000 2,75 0 1 0,027 MC 2 11,33 13420 MC 3 18,13 7228 0,054 MC 19,55 27104 4 MC 20,22 21,05 40302 5 0,474 MC 6 235918 21,05 21,48 22,47 22,95 23,48 MC 98,441 48993769 MC 122196 0,246 8 0,337 MC 167799 9 MC 84561 0,170 10 MC 25720 0,052 23,88 11 0,021 0,030 TR. 10467 24,97 12 25,93 MC 14890 13 0,052 BB 26122 28,56 14 100,000 49769496


Peak rejection level: 0



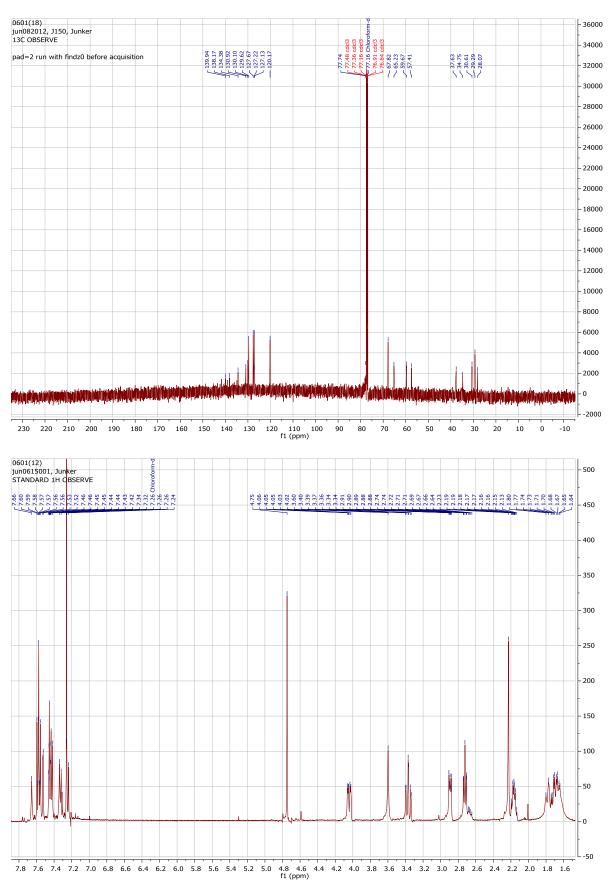
2-(4-Hydroxy-3-methylphenyl)-N-{4-[N-methyl-N-(tetrahydro-2H-pyran-4-


yl)aminomethyl]phenyl}-6,7-dihydro-5H-benzo[7]annulene-8-carboxamide (90)

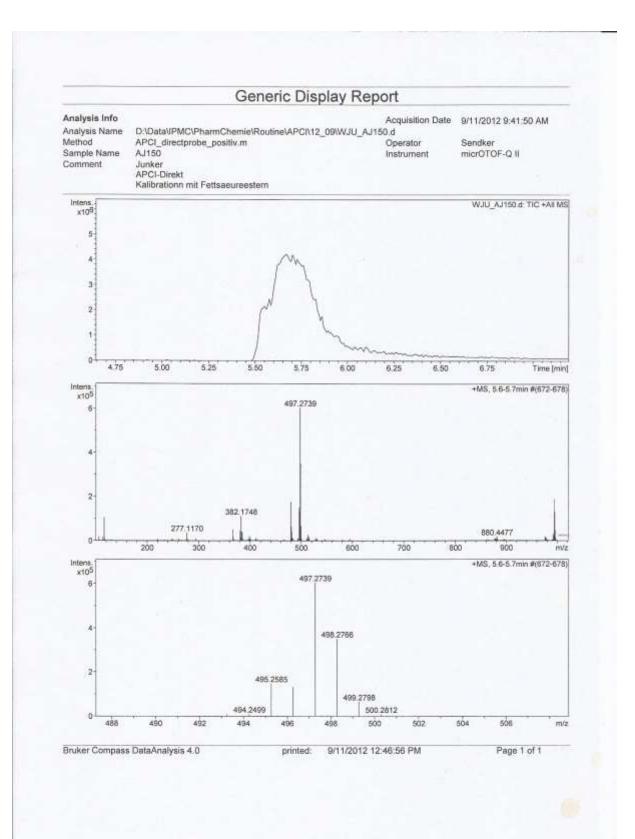
HPLC Analyzed: 04.08.11 03:37 Reported: 04.08.11 13:46 Processed: 04.08.11 13:46 Data Path: D:\WIN32APP\HSM\Chromni\DATA\3414\ Series:3414 Vial Number: 12 Vial Type: UNK Application: Chromni Sample Name: AJ5101 Injection from this vial: 1 of 1 Volume: 5,0 ul Chrom Type: HPLC Channel : 1 100 100 much 80 調査 C. C. W. (A)II) 60 10 20,91 Intensity 40 21.47 20 10.19 0 25 30 0 10 15 20 Retention Time (min) Acquisition Method: Chromni Blank Subtr Sample Name: ACN Developed by: Jens Column Type: 010 Solvent A: Wasser + 0,05%TFA Solvent B: ACN + 0,05%TFA RT Conc 1 BC No. Area 6,77 17,50 11420 0,028 MC 1 1,063 1,181 0,122 437070 BV 2 17,97 485438 VB 3 MC 50137 18,92 4 96,045 MC 5 19,32 39483280 MC 36383 6 20,36 0,971 0,502 MC 7 20,71 398976 MC 206541 8 21,47 41109245 100,000

Peak rejection level: 0

Mass Spectrum SmartFormula Report Analysis Info Acquisition Date 9/11/2012 9:34:38 AM Analysis Name Method D:\Data\IPMC\PharmChemie\Routine\APCI\12_09\WJU_AJ51.d APCI_directprobe_positiv.m 0 Operator Sendker Sample Name Comment AJ51 Instrument / Ser# micrOTOF-Q II 10252 Junker APCI-Direkt Kalibrationn mit Fettsaeureestern Acquisition Parameter APCI Not active 100 m/z 1000 m/z Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Source Type Positive 4000 V -500 V 0.7 Bar 200 °C 3.0 Vmin Focus Scan Begin Scan End 130.0 Vpp Waste Inters x10⁵ +MS. 0.8-0.8min #(90-95) 6 497.2778 4 2 384, 1928 277.1222 171.0749 880.4523 h. 100 300 200 600 700 800 900 400 500 m/z Meas. m/z # Formula 497.2778 1 C 37 H 37 O 2 C 34 H 33 N 4 3 C 32 H 37 N 2 O 3 err (ppm) 12.3 -15.7 Score m/z err [mDa] mSigma rdb e Conf N-Rule 497.2839 1.10 6.1 2.9 8.4 19.5 20.5 even even ok ok 100.00 497 2799 2.1 4.2 22.2 15.5 even ok


Bruker Compass DataAnalysis 4.0

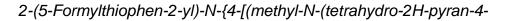
printed: 9/11/2012 12:48:20 PM


Page 1 of 1

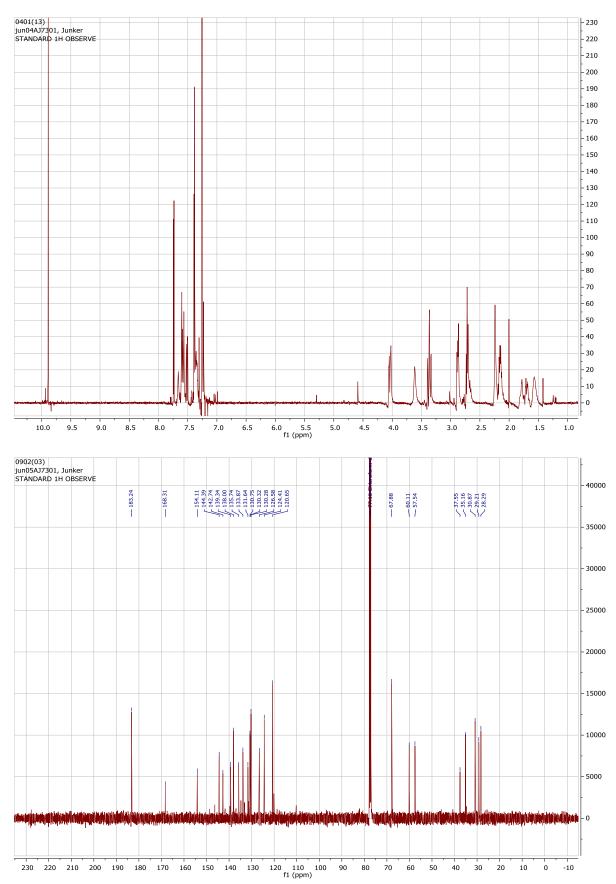
2-[4-(Hydroxymethyl)phenyl]-N-{4-[N-methyl-N-(tetrahydro-2H-pyran-4-

yl)aminomethyl]phenyl}-6,7-dihydro-5H-benzo[7]annulene-8-carboxamide (9p)

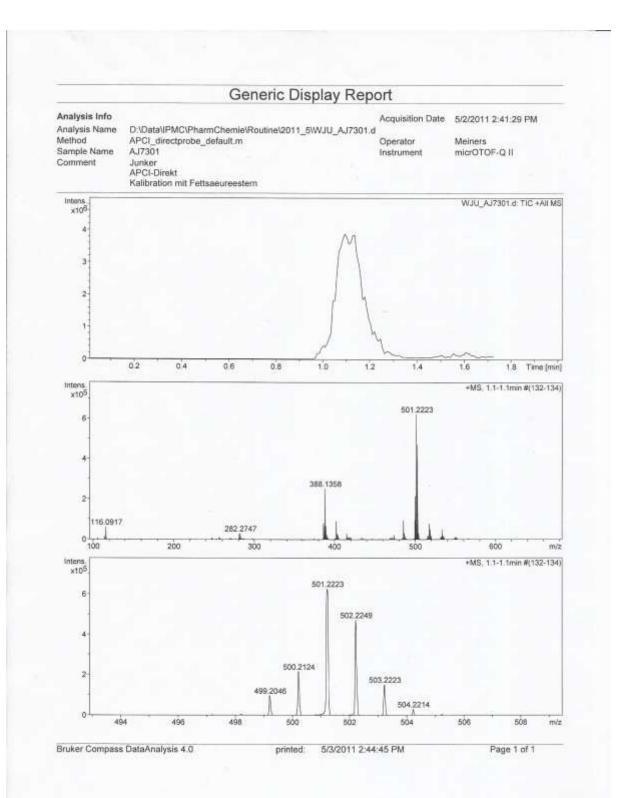
HPLC Analyzed: 04.08.11 05:42 Reported: 04.08.11 13:50 Processed: 04.08.11 13:50 Data Path: D:\WIN32APP\HSM\Chromni\DATA\3417\ Series:3417 Vial Number: 14 Vial Type: UNK Volume: 5,0 ul Application: Chromni Sample Name: AJ15001 Injection from this vial: 1 of 1 Chrom Type: HPLC Channel : 1 100 2115 80 (mV) 60 Intensity. 19,81 40 20 0 0 5 10 15 20 25 30 Retention Time (min) Acquisition Method: Chromni Blank Subtr Sample Name: ACN Column Type: 010 Developed by: Jens Solvent A: Wasser + 0,05%TFA Solvent B: ACN + 0,05%TFA No. RT Area Conc 1 BC 1 15,99 7672 0,028 MC 16,93 17,26 17,71 2 16812 0,061 MC 3 5207 0,019 MC 4 57119 0,209 MC 0,632 95,867 5 17,99 MC 173110 б 18,37 26258558 MC 19,08 0,328 0,128 7 89935 MC MC 34927 8 19,81 20,60 MC 9 411366 1,502 10 1,226 MC 335801 27390507 100,000 Peak rejection level: 0

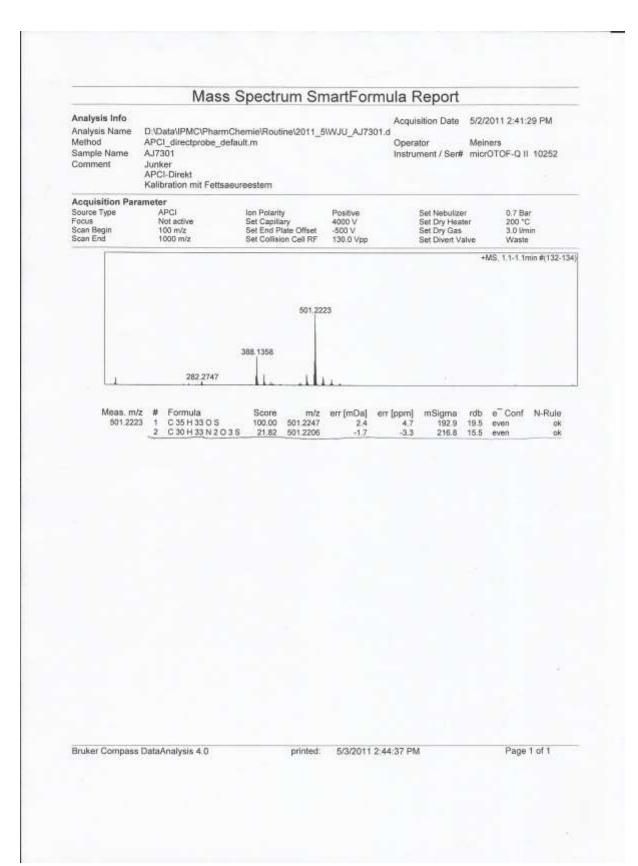


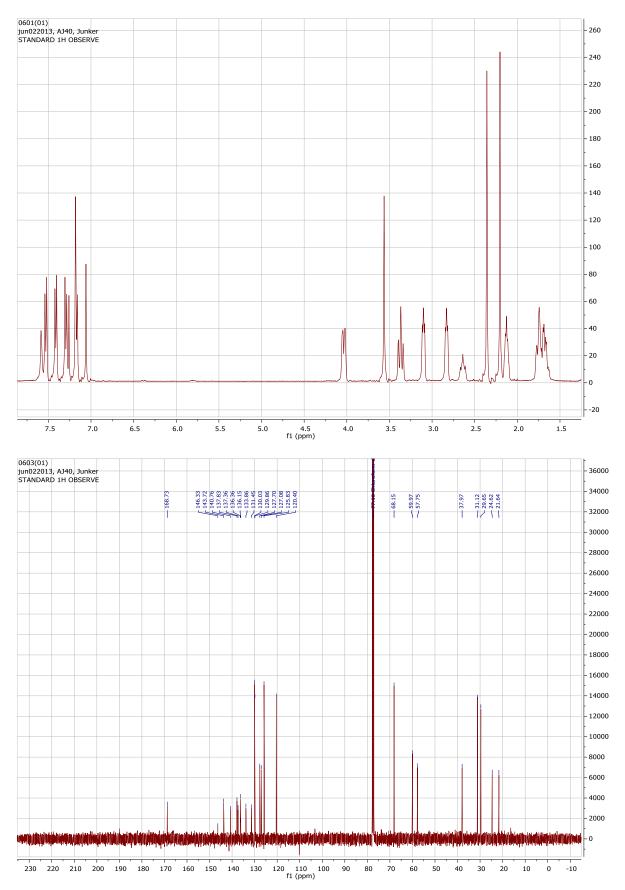
Mass Spectrum SmartFormula Report Analysis Info Acquisition Date 9/11/2012 9:41:50 AM Analysis Name D:\Data\IPMC\PharmChemie\Routine\APCI\12_09\WJU_AJ150.d Method APCI_directprobe_positiv.m Sendker Operator Sample Name AJ150 Instrument / Ser# micrOTOF-Q II 10252 Comment Junker APCI-Direkt Kalibrationn mit Fettsaeureestern Acquisition Parameter APCI Not active 100 m/z 1000 m/z Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF Positive 4000 V -500 V 130.0 Vpp 0.7 Bar 200 °C 3.0 Vmin Waste Source Type Focus Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Scan Begin Scan End Intens. x10⁶ +MS, 5.6-5.7min #(672-678) 0.8 497.2739 0.6 0.4 0.2 382,1748 0.04 277,1170 880.4477 1.1 300 200 400 500 600 700 800 900 m/z mSigma 97.9 rdb 20.5 15.5 16.5 Meas. m/z # Formula m/z 497.2700 N-Rule err [ppm] -8.0 -10.7 e Conf Score err [mDa] C 34 H 33 N 4 C 33 H 37 O 4 C 32 H 37 N 2 O 3 100.00 497.2739 -4.0 -5.3 5.9 1 even ak 497.2686 497.2799 110.3 2 even ok 3 3.23 11.9 ok. even


Bruker Compass DataAnalysis 4.0

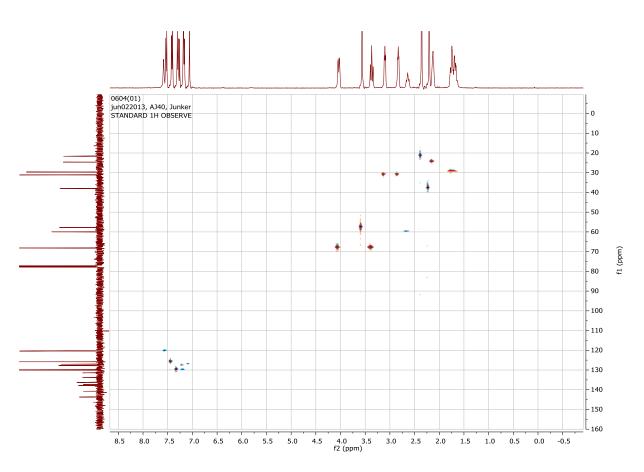
printed: 9/11/2012 12:46:48 PM


Page 1 of 1



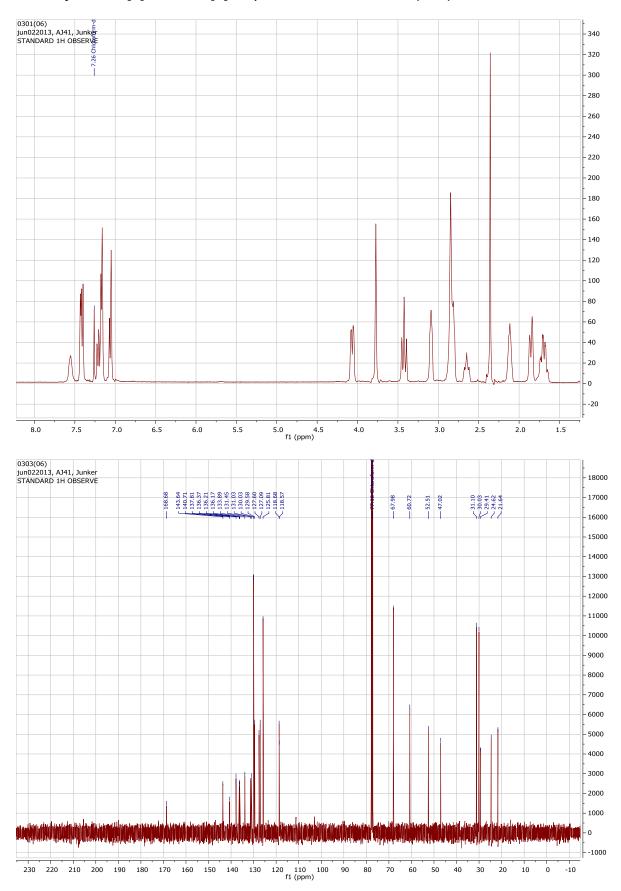


HPLC Analyzed: 14.04.11 01:25 Reported: 14.04.11 14:02 Processed: 14.04.11 14:02 Data Path: D:\WIN32APP\HSM\Chromni\DATA\2964\ Application: Chromni Series:2964 Sample Name: AJ7301 Vial Number: 10 Vial Type: UNK Injection from this vial: 1 of 1 Volume: 5,0 ul Chrom Type: HPLC Channel : 1 50 192.66 40 が開 10,43 8 30 (AE) 13 21 Intensity 20 10 17,418 0 ~10 0 5 10 15 20 25 30 Retention Time (min) Acquisition Method: Chromni Blank Subtr Sample Name: ACN Column Type: 010 Developed by: Jens Solvent A: Wasser + 0,05%TFA Solvent B: ACN + 0,05%TFA No. RT Area Conc 1 BC 0,044 0,056 0,822 98,442 1, 17,18 12357 MC 18,15 2 15586 MC 3 229788 MC 4 19,66 20,62 27517846 MC 5 28816 0,103 MC 6 20,78 26502 0,095 MC 7 21,44 72029 0,258 MC 8 21,89 21067 0,075 MC 9 22,55 13198 0,047 MC 10 22,70 16295 0,058 MC 27953484 100,000 Peak rejection level: 0

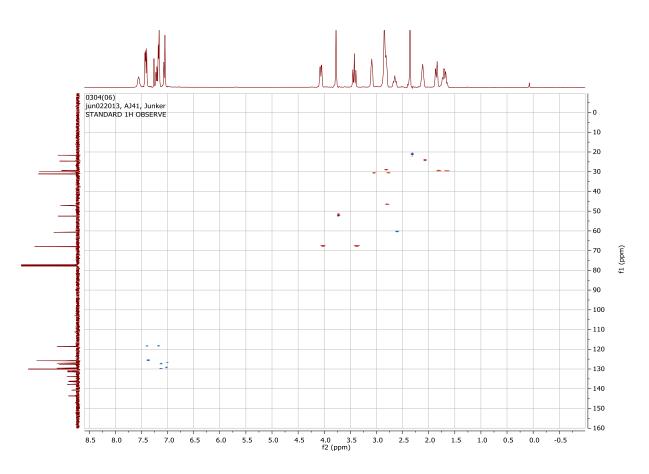


2-(4-Methylphenyl)-N-{4-[N-methyl-N-(tetrahydro-2H-pyran-4-yl)aminomethyl]phenyl}-

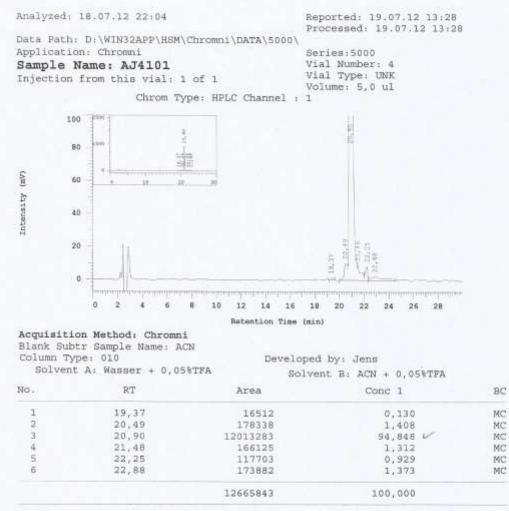
7,8-dihydro-6H-[7]annuleno[b]thiophene-5-carboxamide (14a)

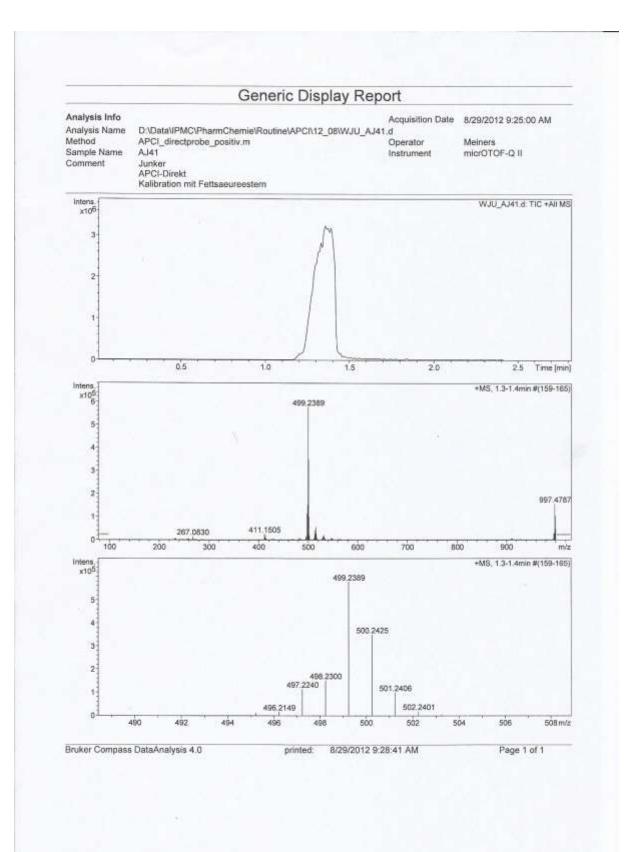

HPLC Analyzed: 06.02.13 19:20 Reported: 12.02.13 17:36 Processed: 12.02.13 17:36 Data Path: D:\WIN32APP\HSM\Chromni\DATA\5913\ Application: Chromni Series:5913 Vial Number: 2 Vial Type: UNK Sample Name: AJ40 Injection from this vial: 1 of 1 Volume: 5,0 ul Chrom Type: HPLC Channel : 1 100 80 (MR) 60 Intensity 40 20 0 10 12 14 16 18 0 2 20 22 24 8 26 28 Retention Time (min) Acquisition Method: Chromni Blank Subtr Sample Name: ACN Column Type: 010 Developed by: Jens Solvent A: Wasser + 0,05%TFA Solvent B: ACN + 0,05%TFA ÷ No. RT Conc 1 Area BC 20,89 21,13 22,43 271402 1 4,285 MC 2 6026153 95,148 MC 3 14036 0,222 BB 4 23,07 21881 0,345 MC. 6333472 100,000

Peak rejection level: 0


Generic Display Report Analysis Info Acquisition Date 8/29/2012 9:35:27 AM D:\Data\IPMC\PharmChemie\Routine\APCI\12_08\WJU_AJ40.d APCI_directprobe_positiv.m Oi AJ40 In Analysis Name Method Meiners micrOTOF-Q II Operator Sample Name Comment Instrument Junker APCI-Direkt Kalibration mit Fettsaeureestern Intens x10⁶ WJU_AJ40.d: TIC +All MS 4 3 2 1 0 0.5 1.0 1.5 2.0 2.5 Time (min) Intens. x10⁵ +MS, 1.4-1.5min #(169-177) 487,2381 6 4 372.1384 2 257.0817 860.3892 0100 200 300 600 700 800 900 400 500 m/z Intens. x10⁵ +MS, 1.4-1.5min #(169-177) 487.2381 6 4 488,2411 2 489,2407 486.2290 490.2412 476 482 478 480 484 488 488 490 492 494 496 m/z Bruker Compass DataAnalysis 4.0 8/29/2012 9:40:19 AM printed: Page 1 of 1

Mass Spectrum SmartFormula Report Analysis Info Acquisition Date 8/29/2012 9:35:27 AM Analysis Name D:\Data\IPMC\PharmChemie\Routine\APCI\12_08\WJU_AJ40.d Method APCI_directprobe_positiv.m Meiners Operator Sample Name AJ40 Instrument / Ser# micrOTOF-Q II 10252 Comment Junker APCI-Direkt Kalibration mit Fettsaeureestern Acquisition Parameter ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF Source Type Focus APCI Not active Positive 4000 V Set Nebulizer 0.7 Bar Set Dry Heater Set Dry Gas Set Divert Valve 200 °C 3.0 Vmin Scan Begin Scan End 100 m/z 1000 m/z -500 V 130.0 Vpp Waste Intens +M5, 1.4-1.5min #(169-177) x10⁶ 0.8 487.2381 0.6 0.4 372.1384 0.2 267.0817 860.3892 200 300 400 500 600 700 800 900 m/z e Conf Meas. m/z # Formula err [mDa] N-Rule Score mSigma rdb. m/z err (ppm) C 30 H 35 N 2 O 2 S C 25 H 43 O 3 S 3 C 21 H 39 N 6 O S 3 487.2414 487.2369 487.2342 487.2381 20.76 32 6. 125.9 14.5 4.5 5.5 even ał -1.2 126.8 136.6 100.00 -2.8 even ak 5.22 3 -8.1 ok even 4 C 26 H 31 N 8 S C 22 H 47 O 3 S 4 75.20 26.36 487.2387 487.2403 0.6 1.1 138.1 138.9 15.5 even ak 5 2.1 ak even C 23 H 35 N 8 S 2 C 18 H 43 N 6 O S 4 6 3.16 40.67 487.2421 487.2376 3.9 8.1 144.6 147.8 10.5 even ak ak 7 -0.6 -1.2 0.5 even C 25 H 35 N 4 O 4 S C 22 H 39 N 4 O 4 S 2 487.2374 487.2407 149.8 156.9 я 31.90 -0.8 -1,6 10.5 even ok ak 9 5.55 2.6 5.3 5.5 even C 15 H 39 N 10 O 2 S 3 C 24 H 39 O 8 S 10 2.47 487.2414 3.3 6.7 159.1 1.5 even ok ok 5.95 487,2380 -2.1 4.3 161.7 6.5 ечеп C 21 H 31 N 10 O 2 S C 18 H 35 N 10 O 2 S 2 12 1.70 487.2347 -3.5 -7.1 161.8 11.5 ok even 13 14 15 -0.2 -0.1 12.21 487.2380 168.4 6.5 even ak C21H43O8S2 6.35 487.2394 169.2 0.5 ok even C14H31N16S2 487.2354 487.2387 -2.8 -1.4 3.7 -5.7 0.88 180.0 7.5 even ok ak 16 17 18 C 17 H 39 N 6 O 6 S 2 2.42 180.6 1.5 even C 15 H 31 N 14 O 3 S C 14 H 35 N 10 O 7 S C 11 H 27 N 20 O S 0.18 487.2419 487.2405 7.7 187.3 7.5 2.5 even ak ok 198,9 2.4 even 19 0.58 487.2392 1.1 2.2 201.0 8.5 even iok Bruker Compass DataAnalysis 4.0 Page 1 of 1 printed: 8/29/2012 9:40:27 AM

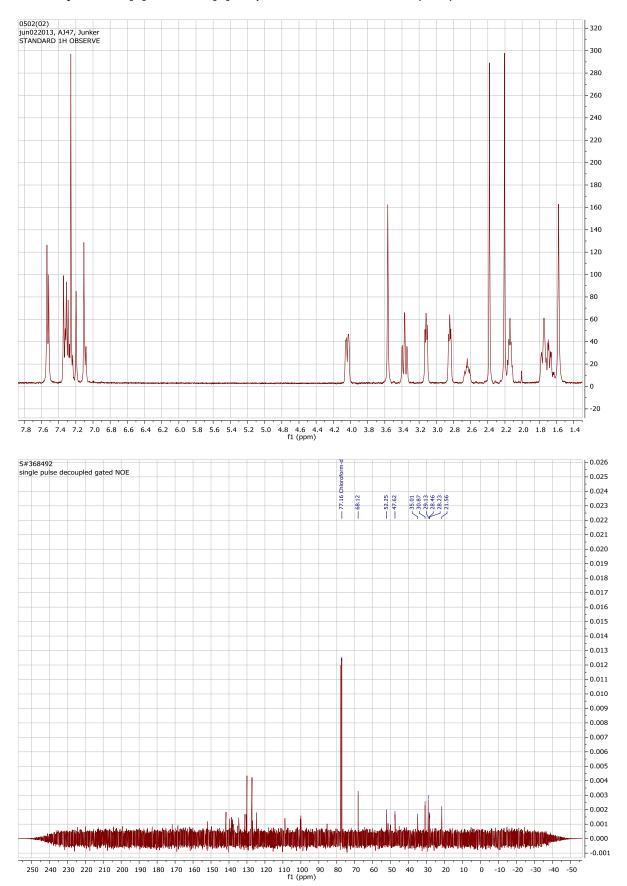

2-(4-Methylphenyl)-N-[2-(tetrahydro-2H-pyran-4-yl)-1,2,3,4-tetrahydroisoquinolin-7-yl]-


7,8-dihydro-6H-[7]annuleno[b]thiophene-5-carboxamide (14b)

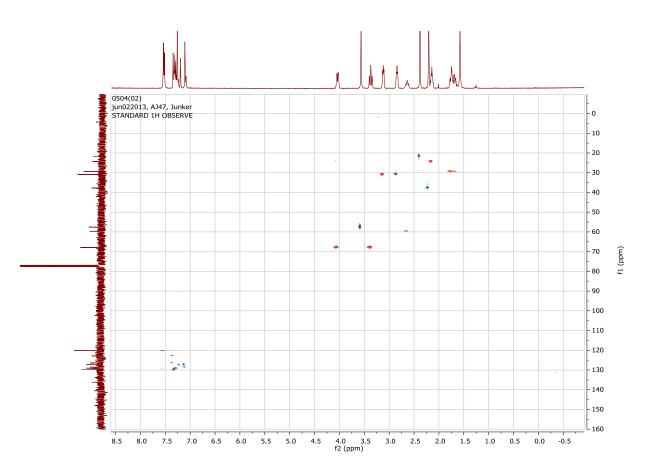
HPLC

Peak rejection level: 0

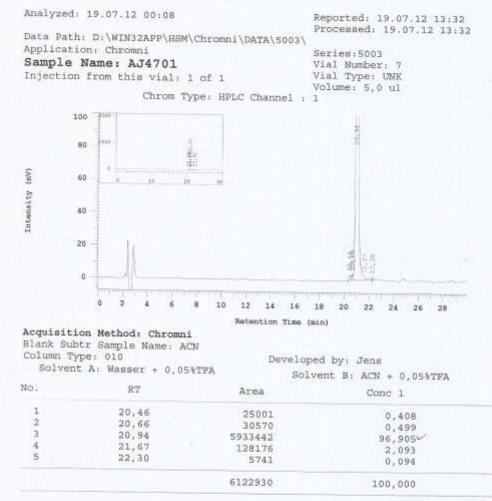
Mass Spectrum SmartFormula Report Analysis Info Acquisition Date 8/29/2012 9:25:00 AM Analysis Name D:\Data\JPMC\PharmChemie\Routine\APCI\12_08\WJU_AJ41.d Method APCI_directprobe_positiv.m Operator Meiners Sample Name AJ41 Instrument / Ser# micrOTOF-Q II 10252 Junker APCI-Direkt Comment Kalibration mit Fettsaeureestern Acquisition Parameter Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF 0.7 Bar 200 °C 3.0 Vmin Waste Source Type Focus APCI Not active Positive 4000 V Set Nebulizer Set Dry Heater Set Dry Gas Scan Begin 100 m/z +500 V Scan End 1000 m/z 130.0 Vpp Set Divert Valve Intens +MS, 1.3-1.4min #(159-165) x10⁶ 0.8 0.6 499.2389 0.4 0.2 411.1505 267.0830 0.0 200 300 400 500 600 700 800 900 m/z Meas. m/z # Formula Score err [mDa] mSigma e Conf N-Rule rdb. m/z err [ppm] C 31 H 35 N 2 O 2 S C 26 H 43 O 3 S 3 499.2389 49.01 499.2414 2.5 4.5 129.6 15.5 even σk 58.43 -4.1 5.5 16.5 499 2365 20 132.7 even ok C 27 H 31 N 8 S C 23 H 47 O 3 S 4 3 100.00 499.2387 0.2 141.5 ok even 4 42.39 7.51 499,2403 1.3 2.7 145.6 149.6 0.5 even ok ok C 24 H 35 N 8 S 2 C 26 H 35 N 4 O 4 S C 19 H 43 N 6 O S 4 5 499.2421 6.3 even 21.76 24.27 6 499.2374 499.2376 -1.6 -3.1 153.7 154.2 11.5 even ok ok 1.5 even C 23 H 39 N 4 O 4 S 2 C 16 H 39 N 10 O 2 S 3 10.24 5.00 499.2407 499.2414 A 1.8 3,6 162.0 6.5 even ok ak ğ 2.5 5.0 164.5 2.5 even C 25 H 39 O 8 S C 19 H 35 N 10 O 2 S 2 -5.8 10 11 3.19 499.2360 -2.9 165.8 6.5 even ok ok 8.22 499,2380 -0.9 7.5 173.4 even C 12 H 35 N 16 S 3 C 22 H 43 O 8 S 2 12 13 14 15 10.75 499.2387 -0.2 -0.4 174.2 3.5 ak even ak ak ak 9.27 1.0 174.4 499,2394 0.5 1.5 even C 15 H 31 N 16 S 2 C 18 H 39 N 6 O 6 S 2 0.39 499.2354 -3.6 184.8 8.5 even 1.30 499,2387 .22 -4.4 185.7 2.5 even 16 C 16 H 31 N 14 O 3 S 0.43 499.2419 3.0 5.9 191.2 8.5 ak even C 15 H 35 N 10 O 7 S C 12 H 27 N 20 O S 17 18 0.48 499,2405 1.6 3.3 203.0 3.5 9.5 even ak ak 0.88 499.2392 0.6 204.8 0.3 even 19 C11H31N16O5S 0.25 499.2379 -1.1 -21 214.6 4.5 even ak


Bruker Compass DataAnalysis 4.0

printed:


8/29/2012 9:28:33 AM

Page 1 of 1


N-{4-[N-Methyl-N-(tetrahydro-2H-pyran-4-yl)aminomethyl]phenyl}-2-(3-methylphenyl)-

7,8-dihydro-6H-[7]annuleno[b]thiophene-5-carboxamide (14d)

HPLC

BC

MC

MC

MC

MC

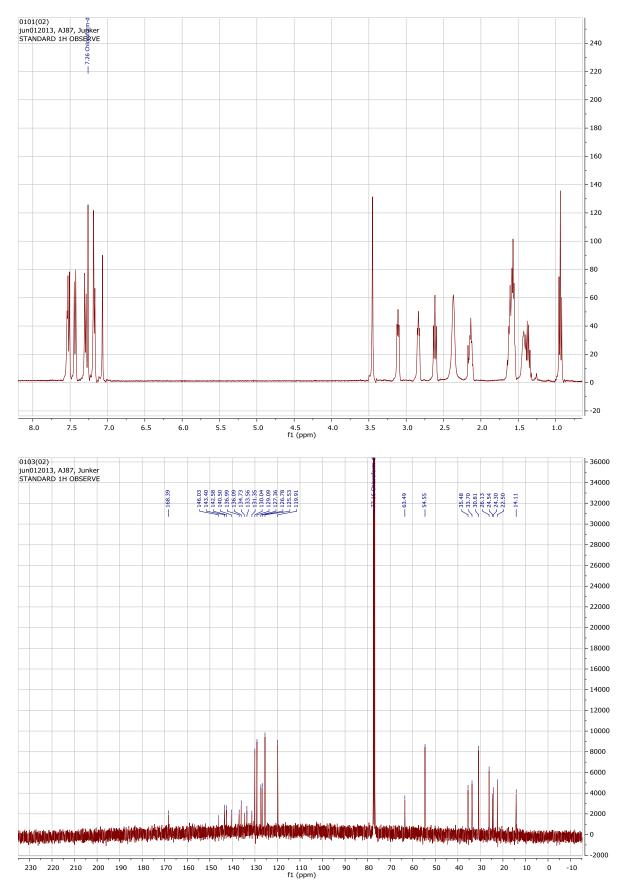
MC

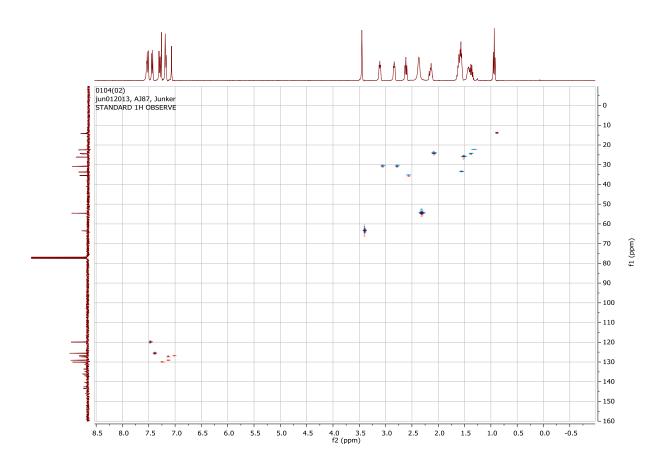
Peak rejection level: 0

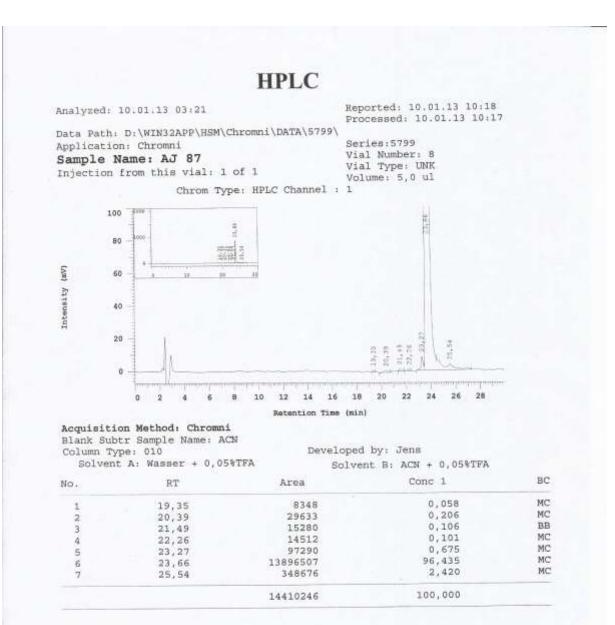
Generic Display Report Analysis Info Acquisition Date 8/29/2012 8:37:55 AM Analysis Name Method D:\Data\PMC\PharmChemie\Routine\APCI\12_08\WJU_AJ47.d APCI_directprobe_positiv.m Meiners micrOTOF-Q II Operator Sample Name AJ47 Instrument Junker APCI-Direkt Kalibration mit Fettsaeureestern Comment intens. x10⁶ WJU_AJ47.d: TIC +AI MS 4 3 2 t-0 0.5 1.0 2.0 2.5 Time [min] 1.5 Intens. x10⁵ +MS, 1.6-1.6min #(186-195) 487.2395 6 4 973.4802 372.1399 2 267.0828 860.3922 100 200 600 900 300 400 800 500 700 m/z Intens. x10⁵ +MS, 1.6-1.6min #(186-196) 487.2395 6 4 488 2429 2 489.2414 486.2308 490.2410 0 480.0 482.5 495.0 497.5 490.0 492.5 485.0 487.5 m/z Bruker Compass DataAnalysis 4.0 printed: 8/29/2012 8:42:29 AM Page 1 of 1

Mass Spectrum SmartFormula Report Analysis Info Acquisition Date 8/29/2012 8:37:55 AM Analysis Name D:\Data\/PMC\PharmChemie\Routine\APCI\12_08\WJU_AJ47.d Method APCI_directprobe_positiv.m Operator Meiners Sample Name AJ47 Instrument / Ser# micrOTOF-Q II 10252 Comment Junker APCI-Direkt Kalibration mit Fettsaeureestern Acquisition Parameter ion Polarity Set Capillary Set End Plate Offset Source Type Focus APCI Not active Positive 4000 V Set Nebulizer 0.7 Bar 200 °C 3.0 l/min Set Dry Heater Scan Begin Scan End Set Dry Gas Set Divert Valve 100 m/z -500 V 1000 m/z Set Collision Cell RF 130.0 Vpp Waste Intens. +MS, 1.6-1.6min #(186-196) x10⁶ 0.8 487.2395 0.6 0.4 372,1399 0.2 267.0828 860.3922 0.0 200 300 400 500 600 700 800 900 m/z Meas. m/z # Formula err [mDa] mSigma Score e Conf N-Rule m/z rdb . err [ppm] C 30 H 35 N 2 O 2 S C 25 H 43 O 3 S 3 C 26 H 31 N 8 S C 22 H 47 O 3 S 4 487,2414 487.2395 100.00 3:8 -5.4 -1.7 134.4 1.9 14.5 even OH 48.64 even ok ok 3 90.65 487.2387 0.8 146.5 15.5 even 4 84.91 487.2403 0.7 1.5 148.3 -0.5 10.5 even ok ok C 23 H 35 N 5 S 2 C 18 H 43 N 5 O S 4 C 19 H 43 N 4 O 4 S 3 5 16.68 487.2421 154.0 5.2 even 6 21.86 487.2376 487.2441 -1.9 -4.0 9.4 157.1 158.2 0.5 even ck ck ck ck ck ck 4.6 even C 25 H 35 N 4 O 4 S C 22 H 39 N 4 O 4 S 2 487.2374 487.2407 -2.2 4.4 8 16.80 158.5 10.5 even ğ 19.00 166.3 5.5 even 10 11 C 15 H 39 N 10 O 2 S 3 C 21 H 31 N 10 O 2 S 487.2414 487.2347 10.64 1.9 3.9 167.9 1.5 even 0.40 11.5 4.9 -10.0 170.3 even C 24 H 39 O 8 S C 18 H 35 N 10 O 2 S 2 12 2.05 487,2360 -3.5 -7.2 170.5 5.5 even ak ak ak ak ak 13 -1.5 -3.0 177.7 6.86 487 2380 6.5 even 14 C21H43O8S2 13.17 487 2394 -0.3 178.7 0.5 even 15 C 14 H 31 N 16 S 2 0.23 487 2354 -4.2 -8.6 189.2 7.5 even 16 C 17 H 39 N 6 O 6 S 2 0.91 487.2367 2.8 -5.8 190.0 1.5 even 17 18 C 15 H 31 N 14 O 3 S C 18 H 39 N 4 O 9 S 0.84 487,2419 2.4 3.7 4.8 195.9 7.5 1.5 even ok ak 0.22 487.2432 196.0 even C 14 H 35 N 10 O 7 S C 11 H 27 N 20 O S 2.1 ok ok 19 0.79 487.2405 1.0 207.6 2.5 even 487.2392 8.5 20 0.95 -0.3 209.5 even

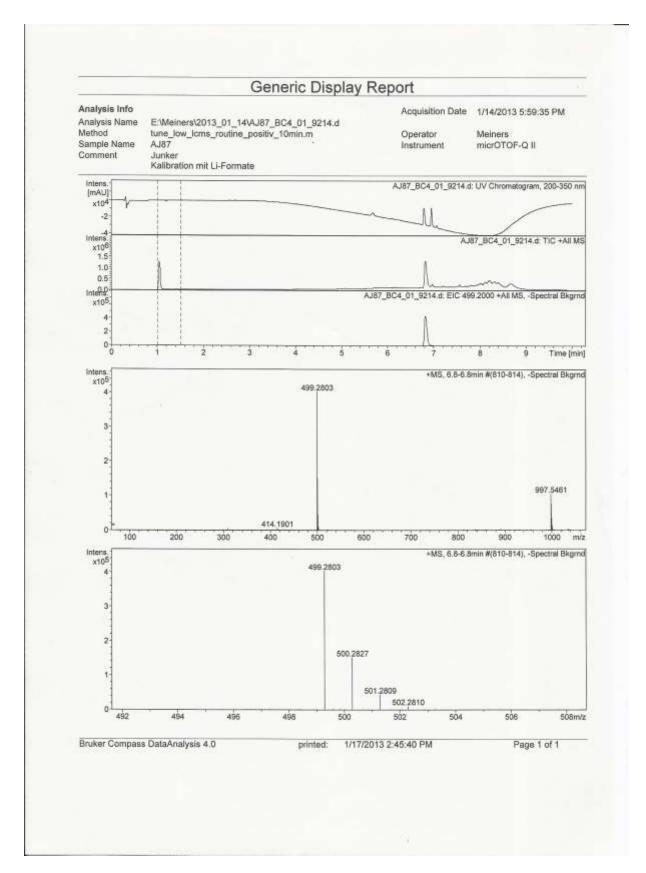
Bruker Compass DataAnalysis 4.0

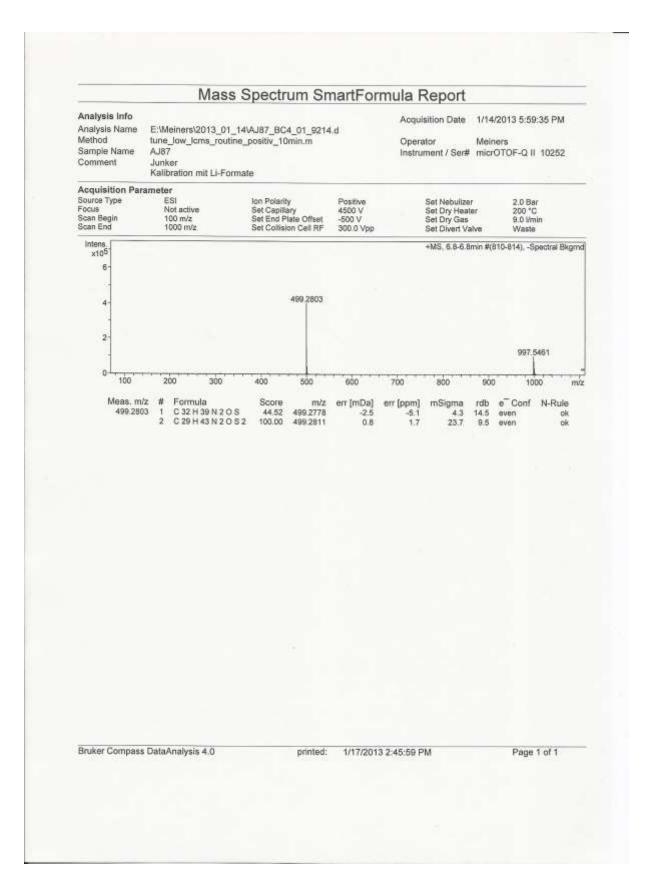

printed


8/29/2012 8:42:36 AM

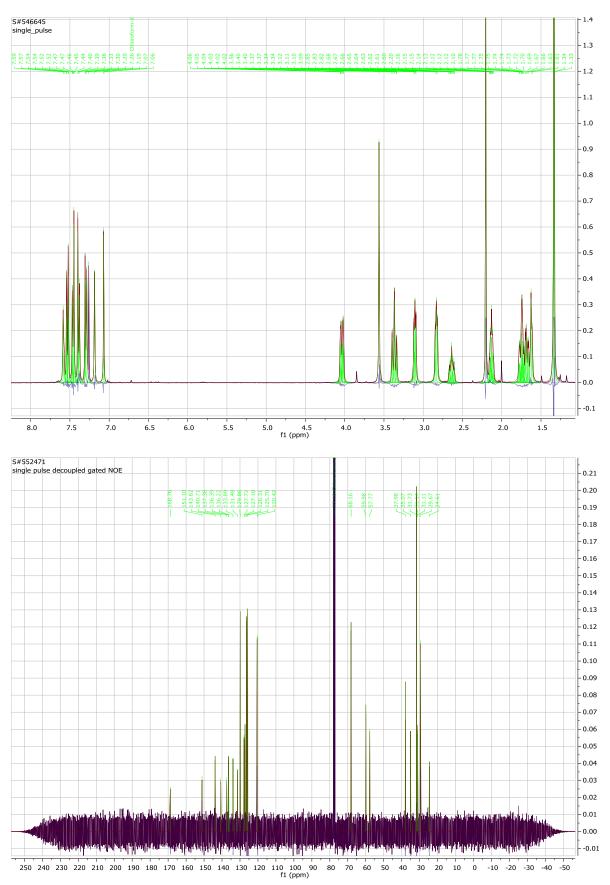

Page 1 of 1

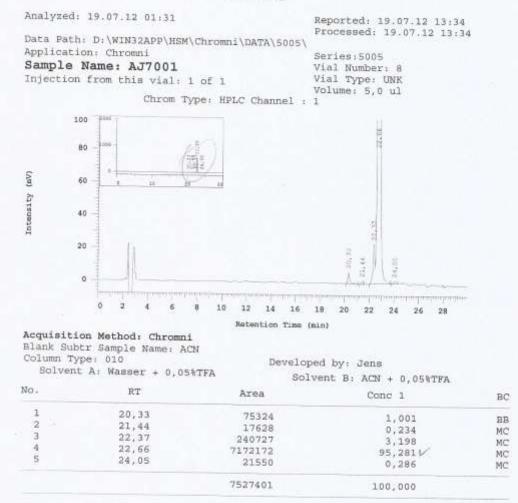
2-(4-Butylphenyl)-N-[4-(piperidin-1-ylmethyl)phenyl]-7,8-dihydro-6H-



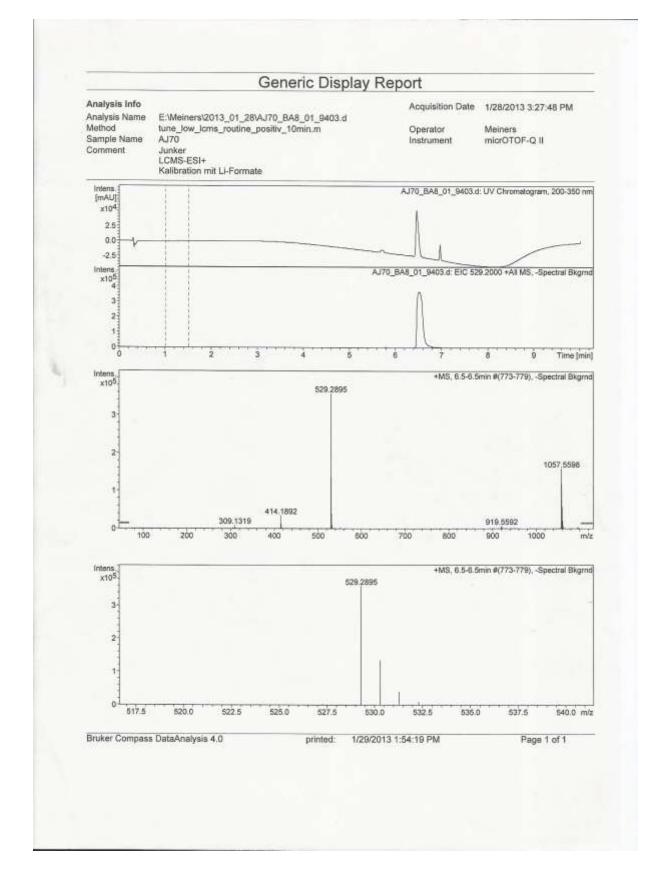


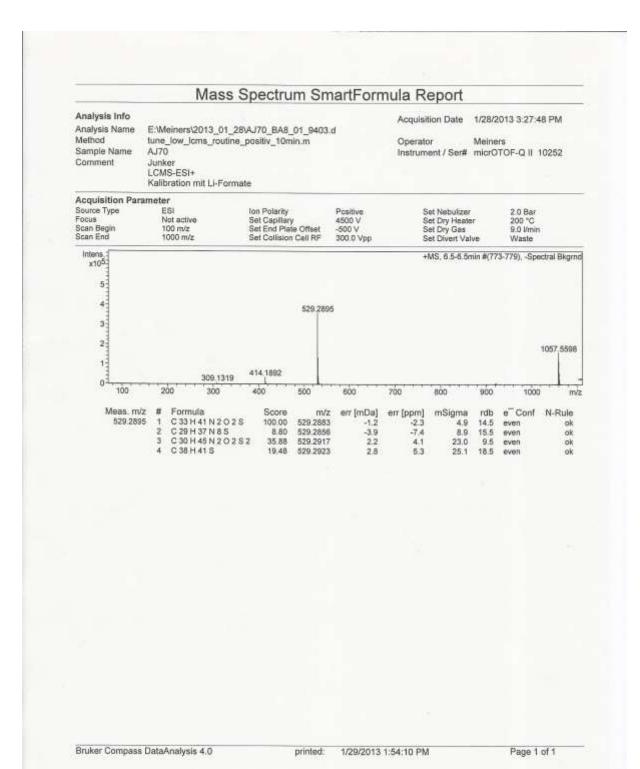
Peak rejection level: 0


-> NHR



2-(4-tert-Butylphenyl)-N-{4-[N-methyl-N-(tetrahydro-2H-pyran-4-yl)aminomethyl]phenyl}-





HPLC

Peak rejection level: 0

