## SUPPORTING INFORMATION

## Energy Transfer Between Amphiphilic Porphyrin Polymer Shells and Upconverting Nanoparticle Cores in Water-Dispersible Nano-assemblies

Tuoqi Wu, Sandeep Kaur and Neil R. Branda\*

4D LABS and Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6

## Estimate of loading of the porphyrin molecules in nano-assemblies TPP-NP and PP1-NP.

The numbers of porphyrin molecules integrated within the nanoparticle systems were estimated using the UV-vis absorption data for each chromophore by comparing the absorptivity of the samples to the free tetra-phenyl porphyrin (**TPP**) and amino porphyrin (**AP**) in solution.<sup>1</sup> The methods are shown in the following tables.

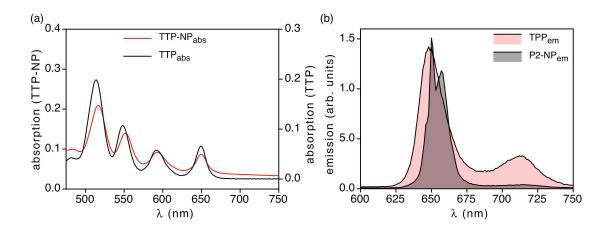
| Calculated mass of single nanoparticle crystal (NaYF4:ErYb)                                                                    |                                                     |                          |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------|--|--|
| The shape of the particle is approximated to be a sphere and the density of NaYF <sub>4</sub> :ErYb is taken to be the same as |                                                     |                          |  |  |
| for NaYF <sub>4</sub>                                                                                                          |                                                     |                          |  |  |
| Radius of one particle on average (cm)                                                                                         | $= 1.175 \times 10^{-6}$                            |                          |  |  |
| Volume of particle (cm <sup>3</sup> ) using $v = 4/3\pi r^3$                                                                   | $= 4/3 \times 3.14 \times (1.175 \times 10^{-6})^3$ | $= 6.79 \times 10^{-18}$ |  |  |
| Density of NaYF <sub>4</sub> (g/cm <sup>3</sup> )                                                                              | = 4.23                                              |                          |  |  |
| Mass of one single particle (g)                                                                                                | $= 4.23 \times 6.79 \times 10^{-18}$                | $= 2.87 \times 10^{-17}$ |  |  |

<sup>&</sup>lt;sup>1</sup> All calculations are based on the assumption that the molar absorptivity coefficient ( $\epsilon$ ) of the porphyrins free in solution and incoperated in the nanoparticle systems are the same.

Calculated loading of porphyrin molecules in TPP-NP

| For the solution of the free porphyrin <b>TPP</b>                        |                                                         |                         |
|--------------------------------------------------------------------------|---------------------------------------------------------|-------------------------|
| Concentration (M) of <b>TPP</b> in THF                                   | $= 9.8 \times 10^{-6}$                                  |                         |
| A (516 nm)                                                               | = 0.19298                                               |                         |
| Following Beer's law, $\varepsilon$ (M <sup>-1</sup> .cm <sup>-1</sup> ) | = 19692                                                 |                         |
| For the solution of the <b>TPP-NP</b> :                                  |                                                         |                         |
| A <sub>TPP</sub> (516 nm) in <b>TPP-NP</b>                               | = 0.20882                                               |                         |
| Concentration (M) of porphyrin <b>TPP</b> in <b>TPP-NP</b> <sup>2</sup>  |                                                         | $= 1.06 \times 10^{-5}$ |
| V (L) of sample                                                          | $= 9.00 \times 10^{-4}$                                 |                         |
| Moles of porphyrin <b>TPP</b>                                            | $= (1.06 \times 10^{-5}) \times (9.00 \times 10^{-4})$  | $= 9.54 \times 10^{-9}$ |
| Molecular equivalents of <b>TPP</b>                                      | $= (9.54 \times 10^{-9}) \times (6.023 \times 10^{23})$ | $= 5.75 \times 10^{15}$ |
| Mass (g) of particles in sample <sup>3</sup>                             |                                                         | $= 3.23 \times 10^{-3}$ |
| Mass (g) of one particle                                                 | $= 2.87 \times 10^{-17}$                                |                         |
| Number of particles                                                      | $= 3.23 \times 10^{-3} / (2.87 \times 10^{-17})$        | $= 1.13 \times 10^{14}$ |
| Loading of porphyrin <b>TPP</b> per particle                             | $= (5.75 \times 10^{15}) / (1.13 \times 10^{14})$       | = 51                    |

| Calculated loading of porphyrin molecules in PP1-NP                                |                                                         |                         |
|------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------|
| For the solution of the free porphyrin <b>AP</b>                                   |                                                         |                         |
| Concentration (M) of <b>AP</b> in THF                                              | $= 1 \times 10^{-5}$                                    |                         |
| A (516 nm)                                                                         | = 0.08682                                               |                         |
| Following Beer's law, $\epsilon$ (M <sup>-1</sup> .cm <sup>-1</sup> )              | = 21705                                                 |                         |
| For the solution of the <b>PP1-NP</b> :                                            |                                                         |                         |
| A <sub>PP1</sub> (516 nm) in <b>PP1-NP</b>                                         | = 0.6293                                                |                         |
| Concentration (M) of porphyrinic compound <b>PP1</b> in <b>PP1-NP</b> <sup>4</sup> |                                                         | $= 7.24 \times 10^{-5}$ |
| V (L) of sample                                                                    | $=9.00 \times 10^{-4}$                                  |                         |
| Moles of porphyrinic compound PP1                                                  | $= (7.23 \times 10^{-5}) \times (9.00 \times 10^{-4})$  | $= 6.51 \times 10^{-8}$ |
| Molecular equivalents of compound PP1                                              | $= (6.51 \times 10^{-8}) \times (6.023 \times 10^{23})$ | $= 3.92 \times 10^{16}$ |
| Mass (g) of particles in sample <sup>5</sup>                                       | $= 3.4 \times 10^{-3} \times 76.2\%$                    | $= 2.59 \times 10^{-3}$ |
| Mass (g) of one particle                                                           | $= 2.87 \times 10^{-17}$                                |                         |
| Number of particles                                                                | $= 2.59 \times 10^{-3} / (2.87 \times 10^{-17})$        | $= 9.02 \times 10^{13}$ |
| Loading of porphyrin molecules per particle                                        | $= (3.92 \times 10^{16}) / (9.02 \times 10^{13})$       | = 435                   |


<sup>2</sup> Following Beer's law.

\_\_\_\_\_

<sup>&</sup>lt;sup>3</sup> Assuming 100% of the particles was transferred from the organic solution to water.

<sup>&</sup>lt;sup>4</sup> Following Beer's law.

<sup>&</sup>lt;sup>5</sup> The wt-% of the nanoparticle was determined by TGA.



**Figure S1.** (a) Selective UV-vis absorption spectra of an aqueous solution  $(1.1 \times 10^{-5} \text{ M})^6$  of the nano-assemblies (**TPP-NP**) containing the UCNPs and tetra-phenyl porphyrin wrapped with the amphiphilic polymer (red line), and a THF solution  $(9.8 \times 10^{-6} \text{ M})$  of the free tetra-phenyl porphyrin **TPP** (black line). (b) Comparison of the red emissions for the aqueous solution of **TPP-NP** (grey shaded area) when excited with 980 nm light) and the THF solution of tetra-phenyl porphyrin **TPP** (red shaded area) when excited with 550 nm light).

<sup>&</sup>lt;sup>6</sup> This concentration is determined from the UV-vis spectrum of **TTP-NP** based on the assumption that the molar absorption coefficient of the tetra-phenyl porphyrin (**TTP**) is the same as that for the porphyrins in the **TTP-NP nano-assembly**.