Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information

P-Stereogenic PNP Pincer-Pd Catalyzed Intramolecular Hydroamination of Amino-1,3-dienes

Zehua Yang^a, Chao Xia^a, Delong Liu^a, Yangang Liu^a, Masashi Sugiya^b, Tsuneo Imamoto^{b,c,*} and Wanbin Zhang^{a,d,*}

^a School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China

^b Organic R&D Department, Nippon Chemical Industrial Co., Ltd., Kameido, Koto-ku, Tokyo 136-85 15, Japan

^c Department of Chemistry, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

^d School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China

Fax: +86-21-5474-3265; Tel: +86-21-5474-3265; E-mail: wanbin@sjtu.edu.cn, imamoto@faculty.chiba-u.jp.

CONTENTS

1.	General	S2
2.	Synthesis of Substrates	S2
3.	Crystal Data for Pincer-Pd Complex 3	S14
4.	NMR Spectra	S15
	4.1 NMR Spectra of Catalyst	S15
	4.2 NMR Spectra of Substrates	S17
	4.3 NMR Spectra of Products	S54
5.	HPLC Spectra of Products	S76
6.	Crystal Data for Complex 50	S999

1. General

All air and moisture sensitive manipulations were carried out with standard Schlenk techniques or in a glove box under nitrogen atmosphere. Column chromatography was performed using 200-300 mesh silica gels. PhMe, CH₂Cl₂, EtOAc, Acetone, EtOH, and 1,2-dichloroethane were distilled before use from appropriate drying agents (sodium benzophenone, CaH₂, K₂CO₃, Mg, CaCl₂, respectively) under nitrogen. The other reagents were purchased from Adamas-Beta Ltd., Energy Chemical Inc. or J&K Scientific Inc. and used without further purification unless otherwise specified. The NMR spectra were recorded on a Varian MERCURY plus-400 (400 MHz, ¹H; 101 MHz, ¹³C; 162 MHz, ³¹P) spectrometer with chemical shifts reported in ppm relative to the residual deuterated solvents or the internal standard tetramethylsilane. Mass spectrometer, Melting points were measured out using an electrospray spectrometer Waters Micromass Q-TOF Premier Mass Spectrometer. Melting points were measured with SGW X-4 micro melting point apparatus. IR spectra were recorded on a Thermo Scientific Nicolet IS10 infrared spectrometer. Optical rotations were measured on a Rudolph Research Analytical Autopol VI automatic polarimeter using a 50 mm path-length cell at 589 nm. Enantiomeric excess analyses were performed on a Shimadzu LC-2010 HPLC system and using Daicel Chiralcel IC-3, IE, OD-H, OJ-H, AD-H, and OZ-H columns with *n*-hexane / *i*-propyl alcohol as a eluent. The X-ray diffraction data were collected on an Oxford Diffraction Gemini A Ultra diffractometer with graphite monochromator.

2. Synthesis of Substrates

Procedure A

Under an atmosphere of nitrogen, (*E*)-2,2-dimethylhepta-4,6-dien-1-amine (7) (200.0 mg, 1.44 mmol) was dissolved in CH_2Cl_2 (10 mL). The mixture was cooled to 0 °C and acid anhydrides (1.44 mmol) was added to the solution. The reaction mixture was allowed to stir at room temperature overnight. After the reaction completed, the mixture was concentrated and the remaining oil was purified by a flash chromatography (EtOAc / petroleum ether) to afford the target product.

Procedure B

Under an atmosphere of nitrogen, (*E*)-2,2-dimethylhepta-4,6-dien-1-amine (**7**) (200.0 mg, 1.44 mmol) and *N*,*N*-diisopropylethylamine (0.297 mL, 1.80 mmol) was dissolved in CH₂Cl₂ (10 mL). After the mixture was cooled to 0 °C, chloroformate (1.80 mmol) was added to the solution and the reaction mixture was allowed to stir at room temperature overnight. The reaction was quenched with HCl (1 mol^{L^{-1}}, 10 mL), and the layers were separated. The water layer was extracted with EtOAc (2×10 mL). The organic layers combined, dried over MgSO₄, filtered and concentrated under reduced pressure, then purified by flash chromatography (EtOAc / petroleum ether) to afford the target product. **Procedure C**

Under an atmosphere of nitrogen, (E)-2,2-dimethylhepta-4,6-dien-1-amine (7) (200.0 mg, 1.44 mmol) and NEt₃ (0.500

mL, 3.60 mmol) was dissolved in CH₂Cl₂ (10 mL). After the mixture was cooled to 0 $^{\circ}$ C, benzenesulfonyl chloride (1.80 mmol) was added to the solution and the reaction mixture was allowed to stir at room temperature overnight. The reaction was quenched with HCl (1 mol⁻L⁻¹, 10 mL), and the layers were separated. Water phase was extracted with EtOAc (2×10 mL). The organic layers combined, dried over MgSO₄, filtered and concentrated under reduced pressure to give a pale yellow oil which was purified by flash chromatography (EtOAc / petroleum ether) to afford the target product.

(E)-2,2-dimethylhepta-4,6-dien-1-amine (7)

Synthetic procedure according to a literature.¹ Pale yellow oil (2.94g, 85%). ¹H NMR (400 MHz, CDCl₃): δ 6.30 (dt, *J* = 17.0, 10.3 Hz, 1H), 6.04 (dd, *J* = 15.0, 10.4 Hz, 1H), 5.68 (dt, *J* = 15.2, 7.7 Hz, 1H), 5.08 (d, *J* = 16.9 Hz, 1H), 4.95 (d, *J* = 10.1 Hz, 1H), 2.43 (s, 2H), 1.98 (d, *J* = 7.7 Hz, 2H), 1.17 (brs, 2H), 0.83 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 137.3, 133.6, 131.8 115.3, 52.9, 42.9, 35.7, 24.9.

(E)-Benzyl 2,2-dimethylhepta-4,6-dienylcarbamate (4a)

Synthetic procedure according to a literature.¹ Colourless oil (561.3mg, 57%). ¹H NMR (400 MHz, CDCl₃): δ 7.44 – 7.28 (m, 5H), 6.42 – 6.21 (m, 1H), 6.13 – 5.98 (m, 1H), 5.70 (dt, *J* = 15.2, 7.7 Hz, 1H), 5.10 (s, 2H), 5.10 (d, *J* = 16.8 Hz, 1H), 4.99 (d, *J* = 11.1 Hz, 1H), 4.77 (s, 1H), 3.03 (d, *J* = 6.5 Hz, 2H), 1.99 (d, *J* = 7.6 Hz, 2H), 0.88 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 156.9, 137.2, 136.8, 134.0, 131.0, 128.8, 128.4, 115.7, 67.0, 51.1, 43.2, 35.5, 25.0.

(E)-tert-Butyl 2,2-dimethylhepta-4,6-dienylcarbamate (4b)

Procedure A. Colourless oil (224.0 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃): δ 6.39 – 6.23 (m, 1H), 6.12 – 5.97 (m, 1H), 5.70 (dt, J = 15.2, 7.7 Hz, 1H), 5.10 (d, J = 17.1 Hz, 1H), 4.98 (d, J = 10.1 Hz, 1H), 4.55 (brs, 1H), 2.95 (d, J = 6.3 Hz, 2H), 1.98 (d, J = 7.9 Hz, 2H), 1.44 (s, 9H), 0.86 (s, 6H); ¹H NMR (400 MHz, CDCl₃): δ 6.39 – 6.23 (m, 1H), 6.12 – 5.97 (m, 1H), 5.70 (dt, J = 15.2, 7.7 Hz, 1H), 5.10 (d, J = 17.1 Hz, 1H), 4.98 (d, J = 10.1 Hz, 1H), 4.55 (brs, 1H), 2.95 (d, J = 6.3 Hz, 2H), 1.98 (d, J = 7.9 Hz, 2H), 1.44 (s, 9H), 0.86 (s, 6H); ¹H NMR (400 MHz, CDCl₃): δ 6.39 – 6.23 (m, 1H), 2.95 (d, J = 6.3 Hz, 2H), 1.98 (d, J = 7.9 Hz, 2H), 1.44 (s, 9H), 0.86 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 156.4, 137.3, 133.9, 131.2, 115.6, 50.6, 43.2, 35.5, 28.6, 27.6, 25.0; HRMS (ESI): calcd. for C₁₄H₂₆NO₂ [M+H]⁺ 240.1964, found 240.1961; IR (KBr disc) v/cm⁻¹: 3465, 3361, 3086, 3007, 2964, 2930, 1705, 1510, 1391, 1366, 1248, 1171, 1004, 897, 860, 779.

(E)-(9H-Fluoren-9-yl)methyl 2,2-dimethylhepta-4,6-dienylcarbamate (4c)

Procedure B. Pale yellow solid (510.2 mg, 98% yield). m.p. 74.2 – 76.0 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, J

= 7.5 Hz, 2H), 7.60 (d, J = 7.5 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.32 (t, J = 7.4 Hz, 2H), 6.41 – 6.21 (m, 1H), 6.17 – 5.95 (m, 1H), 5.75 – 5.67 (m, 2H), 5.12 (d, J = 17.0 Hz, 1H), 5.00 (d, J = 10.2 Hz, 1H), 4.78 (brs, 1H), 4.45 (d, J = 6.5 Hz, 2H), 4.22 (t, J = 6.8 Hz, 1H), 3.03 (d, J = 6.5 Hz, 2H), 2.00 (d, J = 7.6 Hz, 2H), 0.88 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 156.7, 144.0, 141.3, 137.0, 133.8, 130.8, 127.6, 127.0, 125.0, 119.9, 115.5, 66.5, 50.9, 47.4, 43.0, 35.4, 24.8; HRMS (ESI): calcd. for C₂₄H₂₈NO₂ [M+H]⁺ 362.2120, found 362.2132; IR (KBr disc) v/cm⁻¹: 3342, 2958, 704, 1526, 1450, 1244, 759, 740.

(E)-N-(2,2-Dimethylhepta-4,6-dienyl)acetamide (4d)

Procedure A. Colourless oil (198.4 mg, 76% yield). ¹H NMR (400 MHz, CDCl₃): δ 6.32 (dt, J = 17.0, 10.3 Hz, 1H), 6.06 (dd, J = 15.1, 10.4 Hz, 1H), 5.71 (dt, J = 15.2, 7.7 Hz, 1H), 5.47 (br, 1H), 5.11 (d, J = 16.9 Hz, 1H), 5.00 (d, J = 10.2 Hz, 1H), 3.09 (d, J = 6.4 Hz, 2H), 2.00 (s, 3H), 2.00 (d, J = 7.1 Hz), 0.88 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 170.5, 137.2, 134.0, 131.1, 115.8, 49.39, 43.5, 35.4, 25.2, 23.7; HRMS (ESI): calcd. for C₁₁H₂₀NO [M+H]⁺ 182.1545, found 182.1545; IR (KBr disc) v/cm⁻¹: 3307, 3087, 2960, 2927, 2871, 1660, 1558, 1470, 1373, 1291, 1004, 898, 603.

$(E) \hbox{-} N \hbox{-} (2, 2 \hbox{-} Dimethylhepta \hbox{-} 4, 6 \hbox{-} dienyl) benzenesulfonamide} (4e)$

Procedure C. Pale yellow solid (298.0 mg, 83% yield). m.p. 61.3 - 62.7 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.88 - 7.82 (m, 2H), 7.61 - 7.48 (m, 3H), 6.26 (dt, J = 17.0, 10.3 Hz, 1H), 6.01 (dd, J = 15.1, 10.4 Hz, 1H), 5.58 (dt, J = 15.3, 7.7 Hz, 1H), 5.10 (d, J = 17.0 Hz, 1H), 4.99 (d, J = 10.1 Hz, 1H), 4.57 (t, J = 6.6 Hz, 1H), 2.70 (d, J = 6.9 Hz, 2H), 1.98 (d, J = 7.7 Hz, 2H), 0.86 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 140.1, 137.1, 134.3, 132.8, 130.4, 129.3, 127.2, 115.9, 53.1, 42.8, 34.9, 25.1; HRMS (ESI): calcd. for C₁₅H₂₂NO₂S [M+H]⁺ 280.1371, found 280.1366; IR (KBr disc) v/cm⁻¹: 3289, 2961, 1716, 1447, 1328, 1160, 1094, 756, 719, 691, 587, 567, 419.

(E)-N-(2,2-Dimethylhepta-4,6-dienyl)-4-nitrobenzenesulfonamide (4f)

Procedure C. Pale yellow solid (389.9 mg, 84% yield). m.p. 71.2 - 73.0 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.34 (d, J = 9.0 Hz, 2H), 8.05 (d, J = 8.8 Hz, 2H), 6.23 (dt, J = 17.0, 10.3 Hz, 1H), 5.98 (dd, J = 15.1, 10.5 Hz, 1H), 5.56 (dt, J = 15.2, 7.6 Hz, 1H), 5.36 (br s, 1H), 5.06 (d, J = 16.7 Hz, 1H), 4.96 (d, J = 10.1 Hz, 1H), 2.71 (d, J = 6.7 Hz, 2H), 1.97 (d, J = 7.7 Hz, 2H), 0.85 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 150.2, 145.9, 136.9, 134.5, 130.0, 128.5, 124.7, 116.2, 53.1, 42.7, 35.0, 25.1; HRMS (ESI): calcd. for C₁₅H₂₁N₂O₄S [M+H]⁺ 325.1222, found 325.1213; IR (KBr disc) v/cm⁻¹: 3297, 3106, 2965, 2931, 2873, 1606, 1532, 1471, 1456, 1418, 1349, 1311, 1165, 1093, 1007, 903, 855, 736, 686, 612, 563, 464.

$(E) \hbox{-} N \hbox{-} (2, 2 \hbox{-} Dimethylhepta \hbox{-} 4, 6 \hbox{-} dienyl) \hbox{-} 2 \hbox{-} methylbenzenesulfonamide} (4g)$

Procedure C. Pale yellow solid (367.6 mg, 87% yield). m.p. 63.2 – 65.1 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, *J* = 7.1 Hz, 1H), 7.45 (t, *J* = 6.9 Hz, 1H), 7.31 (t, *J* = 6.8 Hz, 2H), 6.24 (dt, *J* = 17.0, 10.3 Hz, 1H), 5.99 (dd, *J* = 15.1, 10.4 Hz, 1H), 5.58 – 5.50 (m, 1H), 5.08 (d, *J* = 16.9 Hz, 1H), 4.98 (d, *J* = 10.1 Hz, 1H), 4.74 (br s, 1H), 2.67 (d, *J* = 6.9 Hz, 2H), 2.64 (s, 3H), 1.95 (d, *J* = 7.7 Hz, 2H), 0.83 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 137.9, 137.1, 137.0, 134.3, 133.0, 132.8, 130.4, 129.7, 126.4, 116.0, 52.89, 42.9, 34.9, 25.12, 20.5; HRMS (ESI): calcd. for C₁₆H₂₄NO₂S [M+H]⁺ 294.1528, found 294.1518; IR (KBr disc) v/cm⁻¹: 3302, 2960, 2926, 2872, 1716, 1457, 1320, 1159, 1132, 1068, 761, 711, 690, 595.

(E)-N-(2,2-Dimethylhepta-4,6-dienyl)-3-methylbenzenesulfonamide (4h)

Procedure C. Pale yellow solid (343.2 mg, 81% yield). m.p. 49.6 – 50.9 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.71 – 7.63 (m, 2H), 7.43 – 7.34 (m, 2H), 6.26 (dt, *J* = 17.0, 10.3 Hz, 1H), 6.00 (dd, *J* = 15.1, 10.4 Hz, 1H), 5.58 (dt, *J* = 15.2, 7.7 Hz, 1H), 5.09 (d, *J* = 17.0 Hz, 1H), 4.98 (d, *J* = 10.1 Hz, 1H), 4.81 (brs, 1H), 2.68 (d, *J* = 6.9 Hz, 2H), 2.42 (s, 3H), 1.98 (d, *J* = 7.7 Hz, 2H), 0.86 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 139.8, 139.3, 136.9, 134.1, 133.4, 130.3 129.0 127.4, 124.1, 115.7, 52.9, 42.6, 34.7, 24.9, 21.4; HRMS (ESI): calcd. for C₁₆H₂₄NO₂S [M+H]⁺ 294.1528, found 294.1524; IR (KBr disc) v/cm⁻¹: 3287, 2963, 2927, 2872, 1602, 1472, 1218, 1328, 1306, 1225, 1157, 1086, 1005, 897, 871, 786, 689, 595.

(*E*)-*N*-(2,2-Dimethylhepta-4,6-dienyl)-4-methylbenzenesulfonamide (4i)²

Procedure C. Pale yellow solid (343.2 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 7.9 Hz, 2H), 6.26 (dt, J = 17.0, 10.2 Hz, 1H), 6.00 (dd, J = 15.1, 10.4 Hz, 1H), 5.57 (dt, J = 15.1, 7.7 Hz, 1H), 5.09 (d, J = 17.0 Hz, 1H), 4.99 (d, J = 10.2 Hz, 1H), 4.44 (brs, 1H), 2.67 (d, J = 7.0 Hz, 2H), 2.43 (s, 3H), 1.97 (d, J = 7.8 Hz, 2H), 0.85 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 143.5, 137.2, 134.2, 130.6, 129.9, 127.3, 115.7, 53.0, 42.7, 34.9, 25.1, 21.8.

(E)-N-(2,2-Dimethylhepta-4,6-dienyl)-2,4-dimethylbenzenesulfonamide (4j)

Procedure C. Pale yellow solid (427.8 mg, 97% yield). m.p. 72.4 – 73.5 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, *J* = 8.6 Hz, 1H), 7.11 – 7.10 (m, 2H), 6.24 (dt, *J* = 16.9, 10.4 Hz, 1H), 5.99 (dd, *J* = 15.1, 10.4 Hz, 1H), 5.61 – 5.46 (m, 1H), 5.08 (d, *J* = 17.0 Hz, 1H), 4.99 (d, *J* = 10.1 Hz, 1H), 4.46 (brs, 1H), 2.64 (d, *J* = 7.0 Hz, 2H), 2.59 (s, 3H), 2.37 (s, 3H), 1.95 (d, *J* = 7.7 Hz, 2H), 0.84 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 143.6, 137.0, 136.9, 135.0, 134.2, 133.5, 130.5, 130.0, 127.0, 115.9, 52.8, 42.8, 34.8, 25.2, 21.5, 20.4; HRMS (ESI): calcd. for C₁₇H₂₆NO₂S [M+H]⁺ 308.1684, found 308.1692; IR (KBr disc) v/cm⁻¹: 3296, 2963, 2929, 1603, 1456, 1418, 1319, 1171, 1157, 1141, 1063, 1005, 932, 899, 820, 659, 581, 550.

$(E) \text{-} N \text{-} (2, 2 \text{-} Dimethyl hepta \text{-} 4, 6 \text{-} dienyl) \text{-} 2, 5 \text{-} dimethyl benzenesul fonamide} (4k)$

Procedure C. Pale yellow oil. The remaining oil was purified by flash chromatography (EtOAc : petroleum ether = 1 : 20) to afford the product as a pale yellow solid (342.8 mg, 78% yield). m.p. 118.5 – 119.7 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.76 (s, 1H), 7.25 (d, *J* = 7.0 Hz, 1H), 7.18 (d, *J* = 7.7 Hz, 1H), 6.25 (dt, *J* = 17.0, 10.2 Hz, 1H), 5.99 (dd, *J* = 15.1, 10.4 Hz, 1H), 5.55 (dt, *J* = 15.2, 7.7 Hz, 1H), 5.09 (d, *J* = 17.0 Hz, 1H), 4.99 (d, *J* = 10.2 Hz, 1H), 4.55 (brs, 1H), 2.65 (d, *J* = 7.0 Hz, 2H), 2.58 (s, 3H), 2.37 (s, 3H), 1.96 (d, *J* = 7.7 Hz, 2H), 0.84 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 136.8, 136.1, 134.1 133.6, 133.4, 132.5, 130.2, 130.0, 115.8, 52.6, 42.6, 34.6, 25.0, 20.9, 19.8; HRMS (ESI): calcd. for C₁₇H₂₆NO₂S [M+H]⁺ 308.1684, found 308.1695; IR (KBr disc) v/cm⁻¹: 3502, 3302, 2960, 2926, 2871, 1456, 1319, 1156, 1069, 820, 697, 600.

(E)-N-(2,2-Dimethylhepta-4,6-dienyl)-2,4,6-trimethylbenzenesulfonamide (41)

Procedure C. Pale yellow oil. The remaining oil was purified by flash chromatography (EtOAc : petroleum ether = 1 : 20) to afford the product as a pale yellow solid (298.5 mg, 67% yield). m.p. 95.8 – 97.2 °C; ¹H NMR (400 MHz, CDCl₃): δ 6.96 (s, 2H), 6.24 (dt, *J* = 17.0, 10.3 Hz, 1H), 5.98 (dd, *J* = 15.6, 10.4 Hz, 1H), 5.55 – 5.53 (m, 1H), 5.09 (d, *J* = 16.8 Hz, 1H), 4.99 (d, *J* = 10.2 Hz, 1H), 4.44 (t, *J* = 4.9 Hz, 1H), 2.63 (s, 6H), 2.62 (d, *J* = 6.9 Hz, 2H), 2.30 (s, 3H), 1.96 (d, *J* = 7.7 Hz, 2H), 0.84 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 142.1, 138.9, 136.7, 134.0, 133.5, 131.9, 130.2, 115.7, 52.1, 42.7, 34.5, 25.0, 22.9, 20.9; HRMS (ESI): calcd. for C₁₈H₂₈NO₂S [M+H]⁺ 322.1841, found 322.1840; IR (KBr disc) v/cm⁻¹: 3308, 2963, 1604, 1471, 1417, 1321, 1155, 1060, 1005, 851, 656, 586, 537.

(E)-N-(2,2-Dimethylhepta-4,6-dienyl)naphthalene-1-sulfonamide (4m)

Procedure C. Pale yellow oil. The remaining oil was purified by flash chromatography (EtOAc : petroleum ether = 1 : 20) to afford the product as a olive solid (437.2 mg, 92% yield). m.p. 83.1 - 84.7 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.68

(d, J = 8.6 Hz, 1H), 8.25 (dd, J = 7.3, 1.1 Hz, 1H), 8.06 (d, J = 8.2 Hz, 1H), 7.95 (d, J = 7.7 Hz, 1H), 7.69 – 7.64 (m, 1H), 7.63 – 7.57 (m, 1H), 7.57 – 7.50 (m, 1H), 6.17 (dt, J = 17.0, 10.3 Hz, 1H), 5.88 (dd, J = 15.1, 10.4 Hz, 1H), 5.45 (dt, J = 15.2, 7.7 Hz, 1H), 5.08 – 4.92 (m, 3H), 2.65 (d, J = 6.8 Hz, 2H), 1.88 (d, J = 7.7 Hz, 2H), 0.76 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 136.8, 134.6, 134.3, 134.0, 130.2, 129.7, 129.2, 128.4, 128.2, 127.0, 124.3, 124.2 115.7, 52.9, 42.6 34.6, 24.9; HRMS (ESI): calcd. for C₁₉H₂₄NO₂S [M+H]⁺ 330.1528, found 330.1527; IR (KBr disc) v/cm⁻¹: 3303, 2964, 2928, 1468, 1417, 1322, 1200, 1161, 1136, 1078, 1005, 900, 846, 804, 771, 677, 634, 593, 519.

(*E*)-Hepta-4,6-dien-1-amine $(8)^3$

As a pale yellow oil (638.9 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃): δ 6.30 (dt, J = 17.1, 10.2 Hz, 1H), 6.06 (dd, J = 15.2, 10.4 Hz, 1H), 5.78 – 5.61 (m, 1H), 5.08 (d, J = 16.9 Hz, 1H), 4.95 (d, J = 10.1 Hz, 1H), 2.69 (t, J = 7.1 Hz, 2H), 2.12 (quartet, J = 7.4 Hz, 2H), 1.54 (quintet, J = 7.4, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 137.1, 134.6, 131.2, 114.9, 41.7 33.1, 29.8.

(E)-N-(Hepta-4,6-dienyl)-2,4-dimethylbenzenesulfonamide (4n)

Under an atmosphere of nitrogen, (*E*)-hepta-4,6-dien-1-amine (**8**) (200.0 mg, 1.80 mmol) and NEt₃ (0.625 mL, 4.50 mmol) was dissolved in CH₂Cl₂ (10 mL). After the mixture was cooled to 0 °C, 2,4-dimethylbenzenesulfonyl chloride (460.2 mg, 2.25 mmol) was added to the solution and the reaction mixture was allowed to stir at room temperature overnight. The reaction was quenched with HCl (1 mol L⁻¹, 10 mL), and the layers were separated. The water phase was extracted with EtOAc (2×10 mL). The organic layers combined, dried over MgSO₄, filtered and concentrated under reduced pressure to give a pale yellow oil which was purified by flash chromatography (EtOAc : petroleum ether = 1 : 10) to afford the product as a pale yellow oil (361.9 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, *J* = 7.8 Hz, 1H), 7.10 (d, *J* = 8.8 Hz, 2H), 6.24 (dt, *J* = 17.0, 10.2 Hz, 1H), 5.96 (dd, *J* = 15.2, 10.4 Hz, 1H), 5.59 – 5.48 (m, 1H), 5.06 (d, *J* = 17.0 Hz, 1H), 4.96 (d, *J* = 10.1 Hz, 1H), 4.68 (brs, 1H), 2.92 (quartet, *J* = 6.8 Hz, 2H), 2.58 (s, 3H), 2.37 (s, 3H), 2.05 (quartet, *J* = 7.2 Hz, 2H), 1.55 (quintet, *J* = 7.2Hz, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 143.4, 136.81, 136.79, 134.8, 133.3, 133.2, 131.9, 129.7, 126.7, 115.5, 42.4, 29.4, 29.1, 21.3, 20.2; HRMS (ESI): calcd. for C₁₅H₂₂NO₂S [M+H]⁺ 280.1371, found 280.1356; IR (KBr disc) v/cm⁻¹: 3299, 2932, 1456, 1318, 1139, 1082, 1062, 658, 549.

(E)-2,2-Diphenylhepta-4,6-dien-1-amine $(9)^1$

As a pale yellow oil (4.15 g, 88% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.31 – 7.26 (m, 4H), 7.24 – 7.13 (m, 6H), 6.25 – 5.99 (m, 2H), 5.26 (dt, J = 14.8, 7.3 Hz, 1H), 5.05 (d, J = 16.1 Hz, 1H), 4.93 (d, J = 10.1 Hz, 1H), 3.31 (s, 2H), 2.95 (d, J = 7.3 Hz, 2H), 0.85 (brs, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 146.4, 137.2, 134.2, 130.9, 128.4, 128.3, 126.4, 115.8, 52.0, 48.91, 40.2.

(E)-N-(2,2-Diphenylhepta-4,6-dienyl)-2,4-dimethylbenzenesulfonamide (40)

Under an atmosphere of nitrogen, (*E*)-2,2-diphenylhepta-4,6-dien-1-amine (**9**) (500.0 mg, 1.90 mmol) and NEt₃ (0.660 mL, 4.75 mmol) was dissolved in CH₂Cl₂ (10 mL). After the mixture was cooled to 0 °C, 2,4-dimethylbenzenesulfonyl chloride (427.4 mg, 2.09 mmol) was added to the solution and the reaction mixture was allowed to stir at room temperature overnight. The reaction was quenched with HCl (1 molL⁻¹, 10 mL), and the layers were separated. The water phase was extracted with EtOAc (2×10 mL). The organic layers combined, dried over MgSO₄, filtered and concentrated under reduced pressure to give a pale yellow oil which was purified by flash chromatography (EtOAc : petroleum ether = 1 : 20) to afford the product as a white solid (672.4 mg, 82% yield). m.p. 127.6 – 128.9 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, *J* = 8.0 Hz, 1H), 7.32 – 7.17 (m, 7H), 7.11 (d, *J* = 7.7 Hz, 1H), 7.08 – 6.99 (m, 4H), 6.04 (dt, *J* = 16.8, 10.1 Hz, 1H), 5.77 (dd, *J* = 15.5, 10.7 Hz, 1H), 5.03 – 4.90 (m, 3H), 3.85 (t, *J* = 6.8 Hz, 1H), 3.44 (d, *J* = 6.5 Hz, 2H), 2.87 (d, *J* = 7.3 Hz, 2H), 2.37 (s, 3H), 2.23 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 144.8, 143.8, 137.0, 136.9, 135.1, 134.1, 133.5, 130.3, 129.1, 128.7, 127.9, 127.1, 127.0, 116.2, 50.0, 49.4 40.1, 21.6, 19.9; HRMS (ESI): calcd. for C₁₅H₂₂NO₂S [M+H]⁺ 432.1997, found 432.2001; IR (KBr disc) v/cm⁻¹: 3309, 2967, 2936, 2879, 1602, 1496, 1445, 1406, 1326, 1172, 1157, 1141, 1061, 1006, 906, 821, 776, 757, 700, 601, 550, 522.

(E)-6-Bromohexa-1,3-diene $(10)^4$

As a khaki oil (1.33 g, 57% yield). ¹H NMR (400 MHz, CDCl₃): δ 6.32 (dt, J = 16.9, 10.2 Hz, 1H), 6.22 – 6.08 (m, 1H), 5.75 – 5.59 (m, 1H), 5.17 (d, J = 16.8 Hz, 1H), 5.06 (d, J = 10.1 Hz, 1H), 3.40 (t, J = 7.1 Hz, 2H), 2.65 (q, J = 7.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 136.6, 133.6, 130.7, 116.7, 35.8, 32.0.

(E)-2,2-Diphenylocta-5,7-dienenitrile (11)

Under an atmosphere of nitrogen, diphenylacetonitrile (1.67 g, 8.67 mmol) was added dropwise to a solution of lithium diisopropyl amide in THF (20 mL) at -78 °C and stirred for 1 h. (*E*)-6-bromohexa-1,3-diene (**10**) (1.33 g, 8.25 mmol) was dissolved in 10 mL THF and added to the reaction mixture. The mixture was allowed to warm to room temperature and stirred for 2 h. The reaction was quenched with saturated aqueous NH₄Cl (20 mL) and extracted with EtOAc. The combined EtOAc extracts were dried (MgSO₄), and concentrated to give a brown oil which was purified by flash chromatography (EtOAc : petroleum ether = 1 : 100) to afford the product as a white solid (1.02 g, 43% yield). m.p. 77.3 – 79.2 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.42 – 7.27 (m, 10H), 6.28 (dt, *J* = 16.9, 10.2 Hz, 1H), 6.07 (dd, *J* = 15.2, 10.4 Hz, 1H), 5.73 – 5.61 (m, 1H), 5.11 (d, *J* = 16.9 Hz, 1H), 5.00 (d, *J* = 10.3 Hz, 1H), 2.51 – 2.43 (m, 2H), 2.24 – 2.19 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 140.2, 137.0, 132.7, 132.3, 129.1, 128.2, 127.1, 122.4, 116.1, 51.7, 39.3, 28.9; HRMS (ESI): calcd. for C₂₀H₂₀N [M+H]⁺ 274.1596, found 274.1584; IR (KBr disc) v/cm⁻¹: 2957, 2935, 2879, 1605, 1493 1445, 1004, 903, 952, 698.

(E)-2,2-Diphenylocta-5,7-dien-1-amine (12)

Under an atmosphere of nitrogen, (*E*)-2,2-diphenylocta-5,7-dienenitrile (**11**) (1.02 g, 3.74 mmol) was dissolved in 10 mL ether and added slowly to a suspension of LiAlH₄ (0.284 g, 7.48 mmol) in ether (20 mL) at 0 °C. The resulting

suspension was allowed to warm to room temperature and stirred for 3 h. NaSO₄ 10H₂O was added carefully until no bubble generated. The resulting suspension was filtered and the precipitate was washed with ether. The combined ether solution was concentrated under reduced pressure to give a colourless oil (0.94 g, 91% yield) and that was used in the subsequent transformation without further purification. ¹H NMR (400 MHz, CDCl₃): δ 7.31 – 7.26 (m, 4H), 7.24 – 7.15 (m, 6H), 6.26 (dt, *J* = 17.0, 10.2 Hz, 1H), 5.99 (dd, *J* = 15.2, 10.4 Hz, 1H), 5.70 – 5.59 (m, 1H), 5.06 (d, *J* = 17.0 Hz, 1H), 4.94 (d, *J* = 10.1 Hz, 1H), 3.33 (s, 2H), 2.27 – 2.13 (m, 2H), 1.82 – 1.76 (m, 2H), 1.07 (brs, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 146.3, 137.2, 135.0, 131.0, 128.3, 128.1, 126.1 115.0, 51.8, 49.1, 36.0, 27.4; HRMS (ESI): calcd. for C₂₀H₂₄N [M+H]⁺ 278.1909, found 278.1902; IR (KBr disc) v/cm⁻¹: 3054, 3029, 2966, 2935, 2879, 1600, 1494, 1444, 1004, 897, 755, 700.

(E)-N-(2,2-Diphenylocta-5,7-dienyl)-2,4-dimethylbenzenesulfonamide (4p)

Under an atmosphere of nitrogen, (*E*)-2,2-diphenylocta-5,7-dien-1-amine (**12**, 277.4 mg, 1.00 mmol) and NEt₃ (0.348 mL, 2.5 mmol) was dissolved in CH₂Cl₂ (10 mL). The mixture was cooled to 0 °C and 2,4-dimethylbenzenesulfonyl chloride (225.1 mg, 1.1 mmol) was added to the solution. The reaction mixture was allowed to warm to room temperature and stirred overnight. The reaction was quenched with HCl (1 mol·L⁻¹, 10 mL), and the layers were separated. The water phase was extracted with EtOAc (2×10 mL). The organic layers combined, dried over MgSO₄, filtered and concentrated under reduced pressure to give a pale yellow oil which was purified by flash chromatography (EtOAc : petroleum ether = 1 : 20) to afford the product as a white solid (366.3 mg, 82% yield). m.p. 134.0 – 135.3 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, *J* = 8.0 Hz, 1H), 7.31 – 7.18 (m, 6H), 7.12 (d, *J* = 8.0 Hz, 1H), 7.09 – 7.00 (m, 5H), 6.22 (dt, *J* = 17.1, 10.3 Hz, 1H), 5.85 (dd, *J* = 14.9, 10.6 Hz, 1H), 5.48 – 5.41 (m, 1H), 5.05 (d, *J* = 17.0 Hz, 1H), 4.94 (d, *J* = 10.0 Hz, 1H), 3.88 (t, *J* = 6.4 Hz, 1H), 3.51 (d, *J* = 6.5 Hz, 2H), 2.37 (s, 3H), 2.23 (s, 3H), 2.17 – 2.07 (m, 2H), 1.63 – 1.52 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 144.8, 143.6, 137.1, 136.9, 134.3, 133.9, 133.3, 131.1, 130.0, 129.0, 128.5, 127.7, 126.8, 115.1, 49.5, 49.2, 36.0, 27.0, 21.3, 19.7; HRMS (ESI): calcd. for C₂₈H₃₂NO₂S [M+H]⁺ 446.2154, found 446.2157; IR (KBr disc) v/cm⁻¹: 3316, 3056, 3030, 2928, 1602, 1495, 1446, 1408, 1327, 1172, 1157, 1142, 1061, 1005, 898, 821, 780, 700, 661, 549, 524.

(E)-Benzyl 4-methyl-2,2-diphenylhepta-4,6-dienylcarbamate (4q)¹

As a wite solid (268.2 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.39 – 7.27 (m, 8H), 7.25 – 7.10 (m, 7H), 6.42 (dt, *J* = 16.8, 10.5 Hz, 1H), 5.70 (d, *J* = 10.9 Hz, 1H), 5.04 (s, 2H), 5.03 – 4.96 (m, 2H), 4.30 (brs, 1H), 3.95 (d, *J* = 5.7 Hz, 2H), 2.88 (s, 2H), 1.07 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 156.4, 145.9, 136.8, 134.8, 133.2, 131.4, 129.3, 128.8, 128.5, 128.4, 126.8, 116.2, 66.9, 50.7, 47.5, 47.3, 18.6.

Procedure D

Under an atmosphere of nitrogen, lithium diisopropyl amide (2 mol⁻¹ in THF, 10 mL, 20 mmol) was added dropwise to a solution of cyclonitrile (**13a-d**) (20 mmol) in THF (20 mL) at -78 °C and stirred for 1 h. (*E*)-5-Bromopenta-1,3-diene

(14) (2.94g, 20 mmol) was dissolved in 10 mL THF and added to the reaction mixture. The mixture was allowed to warm to room temperature and stirred for 2 h. The reaction was quenched with saturated aqueous NH_4Cl (20 mL) and extracted with EtOAc. The combined EtOAc extracts were dried (MgSO₄), and concentrated to give an orange oil which was purified by flash chromatography (EtOAc / petroleum ether) to afford the target product (15a-d).

Procedure E

Under an atmosphere of nitrogen, dienenitrile (**15a-d**) (1 equiv.) was dissolved in 20 mL ether and added slowly to a suspension of LiAlH₄ (2 equiv.) in ether (40 mL) at 0 $^{\circ}$ C. The resulting suspension was allowed to warm to room temperature and stirred for 3 h. NaSO₄ 10H₂O was added carefully until no bubble generated. The resulting suspension was filtered and the precipitate was washed with ether. The combined ether solution was concentrated under reduced pressure to give the target product (**16a-d**) and that was used in the subsequent transformation without further purification.

Procedure F

Under an atmosphere of nitrogen, dienamine (**16a-d**) (2.00 mmol) and NEt₃ (0.695 mL, 5.00 mmol) was dissolved in CH₂Cl₂ (10 mL). The mixture was cooled to 0 °C and 2,4-dimethylbenzenesulfonyl chloride (450.3 mg, 2.20 mmol) was added to the solution. The reaction mixture was allowed to stir at room temperature overnight and was quenched with HCl (1 mol·L⁻¹, 10 mL), The layers were separated and the water phase was extracted with EtOAc (2×10 mL). The organic layers combined, dried over MgSO₄, filtered and concentrated under reduced pressure. The remaining oil was purified by flash chromatography (EtOAc / petroleum ether = 1 : 20) to afford the target product (**17a-d**).

(*E*)-5-Bromopenta-1,3-diene (14)⁵

As a reddish brown oil (26.09g, 75% yield). ¹H NMR (400 MHz, CDCl₃): δ 6.43 – 6.20 (m, 2H), 5.93 – 5.84 (m, 1H), 5.28 (d, J = 16.7 Hz, 1H), 5.17 (d, J = 10.7 Hz, 1H), 4.03 (d, J = 8.1 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 135.5, 135.2, 129.1, 119.4, 32.8.

(E)-1-(Penta-2,4-dienyl)cyclobutanecarbonitrile (15a)

Procedure D. Pale yellow oil (1.66 g, 56% yield). ¹H NMR (400 MHz, CDCl₃): δ 6.33 (dt, J = 16.8, 10.2 Hz, 1H), 6.20 (dd, J = 15.0, 10.4 Hz, 1H), 5.68 (dt, J = 14.9, 7.4 Hz, 1H), 5.19 (d, J = 16.5 Hz, 1H), 5.07 (d, J = 9.5 Hz, 1H), 2.56 – 2.44 (m, 4H), 2.20 – 1.96 (m, 4H); ¹³C NMR (101 MHz, CDCl₃): δ 136.6, 135.5, 127.6, 124.5, 117.4, 40.8, 35.5, 31.5, 16.8; HRMS (ESI): calcd. for C₁₀H₁₄N [M+H]⁺ 148.1126, found 148.1122; IR (KBr disc) v/cm⁻¹: 3419, 2993, 2230, 1682, 1646, 1430, 1009, 974.

(E)-(1-(Penta-2,4-dienyl)cyclobutyl)methanamine (16a)

Procedure E. Pale yellow oil (1.42 g, 86% yield). ¹H NMR (400 MHz, CDCl₃): δ 6.31 (dt, J = 17.0, 10.3 Hz, 1H), 6.10 (dd, J = 15.1, 10.4 Hz, 1H), 5.67 (dt, J = 15.1, 7.5 Hz, 1H), 5.10 (d, J = 17.5 Hz, 1H), 4.97 (d, J = 8.4 Hz, 1H), 2.64 (s, 2H), 2.24 (d, J = 7.5 Hz, 2H), 1.91 – 1.69 (m, 6H), 1.13 (brs, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 137.3, 133.3, 131.5, 115.4, 49.6, 43.3, 40.3, 28.9, 15.2; HRMS (ESI): calcd. for C₁₀H₁₈N [M+H]⁺ 152.1439, found 152.1443; IR (KBr disc) v/cm⁻¹: 2968, 2927, 2855, 1457, 1003, 897.

$(E) \hbox{-} 2, 4 \hbox{-} Dimethyl \hbox{-} N \hbox{-} ((1 \hbox{-} (penta \hbox{-} 2, 4 \hbox{-} dienyl) cyclobutyl) methyl) benzenesulfonamide (4r)$

Procedure F. White solid (568.6 mg, 89% yield). m.p. 81.0 - 82.7 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, J = 8.6 Hz, 1H), 7.12 – 7.10 (m, 2H), 6.21 (dt, J = 16.9, 10.3 Hz, 1H), 5.99 (dd, J = 15.2, 10.4 Hz, 1H), 5.47 (dt, J = 15.0, 7.5 Hz, 1H), 5.08 (d, J = 16.9 Hz, 1H), 4.99 (d, J = 10.1 Hz, 1H), 4.36 (brs, 1H), 2.86 (d, J = 6.7 Hz, 2H), 2.59 (s, 3H), 2.37 (s, 3H), 2.20 (d, J = 7.5 Hz, 2H), 1.91 – 1.62 (m, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 143.6, 137.0, 135.0, 134.0, 133.5, 130.1, 130.0, 126.9, 116.0, 50.0, 41.6, 40.5, 29.1, 21.5, 20.4, 15.1; HRMS (ESI): calcd. for C₁₈H₂₆NO₂S [M+H]⁺ 320.1684, found 320.1684; IR (KBr disc) v/cm⁻¹: 3291, 2930, 1603, 1452, 1319, 1171, 1157, 1140, 1063, 1005, 897, 819, 658, 577, 550.

(E)-1-(Penta-2,4-dienyl)cyclopentanecarbonitrile (15b)

Procedure D. Pale yellow oil (2.20 g, 68% yield). ¹H NMR (400 MHz, CDCl₃): δ 6.34 (dt, J = 16.9, 10.3 Hz, 1H), 6.16 (dd, J = 15.1, 10.4 Hz, 1H), 5.75 (dt, J = 15.0, 7.5 Hz, 1H), 5.17 (d, J = 16.8 Hz, 1H), 5.07 (d, J = 10.1 Hz, 1H), 2.36 (d, J = 7.5 Hz, 2H), 2.13 – 2.06 (m, 2H), 1.88 – 1.78 (m, 2H), 1.77 – 1.70 (m, 2H), 1.69 – 1.61 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 136.4, 135.0, 128.4, 125.1, 117.0, 42.8, 41.2, 37.6, 24.2; HRMS (ESI): calcd. for C₁₁H₁₆N [M+H]⁺ 162.1283, found 162.1279; IR (KBr disc) v/cm⁻¹: 2966, 2876, 2231, 1603, 1454, 1005, 954, 905.

(E)-(1-(Penta-2,4-dienyl)cyclopentyl)methanamine (16b)

Procedure E. Pale yellow oil (1.93 g, 86% yield). ¹H NMR (400 MHz, CDCl₃): δ 6.31 (dt, J = 16.8, 10.3 Hz, 1H), 6.08 (dd, J = 15.1, 10.4 Hz, 1H), 5.69 (dt, J = 14.6, 7.3 Hz, 1H), 5.09 (d, J = 17.0 Hz, 1H), 4.96 (d, J = 10.1 Hz, 1H), 2.51 (s, 2H), 2.13 (d, J = 7.6 Hz, 2H), 1.63 – 1.53 (m, 4H), 1.41 – 1.35 (m, 4H); ¹³C NMR (101 MHz, CDCl₃): δ 137.3, 133.3, 132.4, 115.3, 50.0, 47.6, 40.6, 35.2, 25.2; HRMS (ESI): calcd. for C₁₁H₂₀N [M+H]⁺ 166.1596, found 166.1591; IR (KBr disc) v/cm⁻¹: 3085, 2949, 2865, 1650, 1574, 1456, 1378, 1303, 1004, 952, 897.

(E)-2,4-Dimethyl-N-((1-(penta-2,4-dienyl)cyclopentyl)methyl)benzenesulfonamide (4s)

Procedure F. White solid (572.2 mg, 86% yield). m.p. 84.6 – 87.9 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, J = 8.6 Hz, 1H), 7.11 – 7.09 (m, 2H), 6.21 (dt, J = 16.9, 10.3 Hz, 1H), 6.00 (dd, J = 15.1, 10.4 Hz, 1H), 5.49 (dt, J = 15.1, 7.6 Hz, 1H), 5.08 (d, J = 16.9 Hz, 1H), 4.99 (d, J = 10.1 Hz, 1H), 4.42 (brs, 1H), 2.70 (d, J = 6.8 Hz, 2H), 2.58 (s, 3H), 2.37 (s, 3H), 2.08 (d, J = 7.6 Hz, 2H), 1.57 – 1.47 (m, 4H), 1.38 – 1.32 (m, 4H); ¹³C NMR (101 MHz, CDCl₃): δ 143.5, 137.0, 134.9, 134.0, 133.5, 131.2, 130.0, 126.9, 116.0, 50.1, 46.3, 40.8, 35.5, 24.9, 21.5, 20.4; HRMS (ESI): calcd. for C₁₉H₂₈NO₂S [M+H]⁺ 334.1841, found 334.1845; IR (KBr disc) v/cm⁻¹: 3923, 2949, 2867, 1602, 1456, 1417, 1316, 1171,

1156, 1140, 1061, 1005, 896, 820, 659, 549.

(E)-1-(Penta-2,4-dienyl)cyclohexanecarbonitrile (15c)

Procedure D. Pale yellow oil (3.05 g, 87% yield). ¹H NMR (400 MHz, CDCl₃): δ 6.34 (dt, J = 16.9, 10.2 Hz, 1H), 6.14 (dd, J = 15.1, 10.4 Hz, 1H), 5.75 (dt, J = 15.1, 7.6 Hz, 1H), 5.17 (d, J = 16.9 Hz, 1H), 5.06 (d, J = 10.0 Hz, 1H), 2.31 (d, J = 7.6 Hz, 2H), 1.95 (d, J = 12.6 Hz, 2H), 1.79 – 1.58 (m, 6H), 1.27 – 1.23 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 136.6, 135.7, 127.7, 123.6, 117.2, 43.6, 39.4, 35.6, 25.5, 23.2; HRMS (ESI): calcd. for C₁₂H₁₈N [M+H]⁺ 176.1439, found 176.1438; IR (KBr disc) v/cm⁻¹: 2925, 2854, 1456, 1377, 1027.

(E)-(1-(Penta-2,4-dienyl)cyclohexyl)methanamine (16c)

Procedure E. Pale yellow oil (2.32 g, 76% yield). ¹H NMR (400 MHz, CDCl₃): δ 6.31 (dt, J = 17.0, 10.2 Hz, 1H), 6.07 (dd, J = 15.1, 10.4 Hz, 1H), 5.68 (dt, J = 15.1, 7.7 Hz, 1H), 5.08 (d, J = 17.0 Hz, 1H), 4.96 (d, J = 10.1 Hz, 1H), 2.51 (s, 2H), 2.08 (d, J = 7.7 Hz, 2H), 1.46 – 1.41 (m, 4H), 1.33 – 1.22 (m, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 137.3, 133.4, 131.5, 115.2, 49.0, 38.7, 37.8, 33.5, 26.6, 21.7; HRMS (ESI): calcd. for C₁₂H₂₂N [M+H]⁺ 180.1752, found 180.1750; IR (KBr disc) v/cm⁻¹: 3007, 2925, 2851, 1649, 1600, 1311, 1003, 952, 896, 815.

(E)-2,4-Dimethyl-N-((1-(penta-2,4-dienyl)cyclohexyl)methyl)benzenesulfonamide (4t)

Procedure F. White solid (472.6 mg, 68% yield). m.p. 112.2 – 113.9 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, J = 8.5 Hz, 1H), 7.12 – 7.10 (m, 2H), 6.21 (dt, J = 16.9, 10.2 Hz, 1H), 5.99 (dd, J = 15.1, 10.4 Hz, 1H), 5.52 – 5.45 (m, 1H), 5.08 (d, J = 16.9 Hz, 1H), 4.98 (d, J = 10.1 Hz, 1H), 4.39 (t, J = 7.0 Hz, 1H), 2.71 (d, J = 7.0 Hz, 2H), 2.58 (s, 3H), 2.37 (s, 3H), 2.03 (d, J = 7.8 Hz, 2H), 1.39 – 1.35 (m, 6H), 1.26 – 1.23 (m, 4H); ¹³C NMR (101 MHz, CDCl₃): δ 143.5, 137.0, 134.9, 134.1, 133.5, 130.2, 130.0, 126.9, 115.9, 49.3, 39.4, 37.1, 33.6, 26.2, 21.5, 20.4; HRMS (ESI): calcd. for C₂₀H₃₀NO₂S [M+H]⁺ 348.1997, found 348.1993; IR (KBr disc) v/cm⁻¹: 3295, 2927, 2860, 1305, 1455, 1417, 1318, 1171, 1157, 1140, 1064, 1006, 900, 819, 659, 578, 550.

(E)-1-(Penta-2,4-dienyl)cycloheptanecarbonitrile (15d)

Procedure D. Pale yellow oil (3.14 g, 83% yield). ¹H NMR (400 MHz, CDCl₃): δ 6.34 (dt, J = 16.9, 10.3 Hz, 1H), 6.14 (dd, J = 15.1, 10.4 Hz, 1H), 5.75 (dt, J = 15.1, 7.5 Hz, 1H), 5.17 (d, J = 16.9 Hz, 1H), 5.07 (d, J = 10.1 Hz, 1H), 2.32 (d, J = 7.5 Hz, 2H), 2.03 – 1.94 (m, 2H), 1.67 (dd, J = 9.4, 4.4 Hz, 6H), 1.56 – 1.47 (m, 4H); ¹³C NMR (101 MHz, CDCl₃): δ 136.6, 135.7, 128.3, 124.5, 117.2, 44.1, 41.8, 38.0, 28.0 23.7; HRMS (ESI): calcd. for C₁₃H₂₀N [M+H]⁺ 190.1596, found 190.1596; IR (KBr disc) v/cm⁻¹: 3011, 2933, 2859, 2229, 1603, 1462, 1447, 1005, 955.

(E)-(1-(Penta-2,4-dienyl)cycloheptyl)methanamine (16d)

Procedure E. Pale yellow oil (2.89 g, 90% yield). ¹H NMR (400 MHz, CDCl₃): δ 6.29 (dt, J = 17.0, 10.2 Hz, 1H), 6.05 (dd, J = 15.1, 10.4 Hz, 1H), 5.67 (dt, J = 15.1, 7.7 Hz, 1H), 5.07 (d, J = 16.9 Hz, 1H), 4.95 (d, J = 10.1 Hz, 1H), 2.42 (s, 2H), 2.01 (d, J = 7.5 Hz, 2H), 1.50 – 1.34 (m, 12H), 1.08 (brs, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 137.4, 133.5, 132.1, 115.2, 50.1, 41.2, 41.1, 36.4, 31.2, 23.1; HRMS (ESI): calcd. for C₁₃H₂₄N [M+H]⁺ 194.1909, found 194.1902; IR (KBr disc) v/cm⁻¹: 2922, 2853, 1601, 1462, 1004, 952, 86, 807.

(E)-2,4-Dimethyl-N-((1-(penta-2,4-dienyl)cycloheptyl)methyl)benzenesulfonamide (4u)

Procedure F. White solid (564.0 mg, 78% yield). m.p. 112.2 – 113.9 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, J = 8.5 Hz, 1H), 7.11 – 7.10 (m, 2H), 6.21 (dt, J = 16.9, 10.3 Hz, 1H), 6.01 (dd, J = 15.1, 10.4 Hz, 1H), 5.49 (dt, J = 15.3, 7.7 Hz, 1H), 5.09 (d, J = 16.9 Hz, 1H), 4.99 (d, J = 10.1 Hz, 1H), 4.38 (t, J = 5.8 Hz, 1H), 2.62 (d, J = 7.0 Hz, 2H), 2.57 (s, 3H), 2.37 (s, 3H), 1.99 (d, J = 7.6 Hz, 2H), 1.46 – 1.44 (m, 4H), 1.36 – 1.30 (m, 8H); ¹³C NMR (101 MHz, CDCl₃): δ 143.5, 136.9, 134.9, 134.2, 133.4, 130.7, 130.1, 126.9, 116.0, 50.3, 41.4, 40.4, 36.3, 31.0, 22.8, 21.5, 20.4; HRMS (ESI): calcd. for C₂₁H₃₂NO₂S [M+H]⁺ 362.2154, found 362.2165; IR (KBr disc) v/cm⁻¹: 3295, 2966, 2926, 2855, 1460, 1318, 1157, 1062, 1006, 659, 550.

Benzyl 2-(buta-1,3-dienyl)benzylcarbamate (4v)¹

As a pale yellow oil (564.0 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.54 (d, J = 7.0 Hz, 1H), 7.39 – 7.28 (m, 10H, both), 7.28 – 7.17 (m, 7H, both), 6.84 – 6.64 (m, 2H, both), 6.54 (d, J = 10.8 Hz, 4H, both), 6.34 (t, J = 11.1 Hz, 2H, both), 5.44 – 5.28 (m, 2H, both), 5.19 (t, J = 9.8 Hz, 2H,both), 5.12 (d, J = 5.5 Hz, 4H, both), 4.99 (brs, 2H, both), 4.52 – 4.26 (m, 4H, both); ¹³C NMR (101 MHz, CDCl₃): δ 156.5, 156.3, 137.5, 136.8, 136.4, 136.3, 135.4, 133.2, 132.5, 132.4, 131.1, 130.4, 129.98, 129.4, 129.3, 128.7, 128.6, 128.5, 128.3, 128.1, 127.9, 126.6, 126.7, 126.1, 125.4, 120.1, 118.6, 67.0, 43.4.

Reference

[1] J. M. Pierson, E. L. Ingalls, R. D. Vo and F. E. Michael, Angew. Chem., Int. Ed. 2013, 52, 13311 – 13313.

[2] O. Kanno, W. Kuriyama, Z. J. Wang and F. D. Toste, Angew. Chem., Int. Ed. 2011, 50, 9919 - 9922.

[3] S. Hong and T. J. Marks, J. Am. Chem. Soc. 2002, 124, 7886 - 7887.

- [4] I. H. Wang, G. R. Dobson and P. R. Jones, Organometallics 1990, 9, 2510 2513.
- [5] J. Linder, A. J. Blake and C. J. Moody, Org. Biomol. Chem. 2008, 6, 3908 3916.

3. Crystal Data for Pincer-Pd Complex 3

ORTEP diagram of complex 3.

Table 51. Summary of Crystanographic Details for Complexes 5	Table S1	. Summary	of Cry	stallogra	phic D	etails f	or Cor	nplexes 3
--	----------	-----------	--------	-----------	--------	----------	--------	-----------

Bond precision:	C - C = 0.0143 Å	Wavelength $= 0.71073$				
Cell:	a = 7.2904(3)	b = 10.5177 (4)	c = 31.1288 (10)			
	alpha = 90	beta = 90	gamma = 90			
Temperature:	293 К					
	Calculated	Reported				
Volume	2386.90 (15)	2386.91 (15)				
Space group	P 21 21 21	P 21 21 21				
Hall group	P 2ac 2ab	P 2ac 2ab				
Moiety formula	C ₁₇ H ₃₁ ClNP ₂ Pd, 1.0(Cl)	$C_{17}H_{31}Cl_2NP_2Pd$				
Sum formula	$C_{17}H_{31}Cl_2NP_2Pd$	$C_{17}H_{31}Cl_2NP_2Pd$				
Mr	488.77	488.72				
Dx, g cm ⁻³	1.360	1.360				
Z	4	4				
Mu (mm ⁻¹)	1.135	1.135				
F000	1000.2	1000.0				
F000'	998.40					
h,k,lmax	8, 12, 37	8, 12, 37				
Nref	4387 [2539]	4381				
Tmin, Tmax	0.702, 0.843	0.713, 0.848				
Tmin'	0.689					
Correction method = M	IULTI- SCAN					
Data completeness= 1.7	73/1.00	Theta $(max) = 25.340$				
R (reflections) = 0.053	1 (3924)	wR2 (reflections)= 0.1701 (4381)				
S = 1.143		Npar = 237				

4. NMR Spectra

4.1 NMR Spectra of Catalyst

³¹P NMR (162 MHz, CDCl₃) of complex **3**

 ^1H NMR (400 MHz, CDCl₃) of complex $\boldsymbol{3}$

^{13}C NMR (101 MHz, CDCl₃) of complex $\boldsymbol{3}$

4.2 NMR Spectra of Substrates

 1 H NMR (400 MHz, CDCl₃) of **7**

¹³C NMR (101 MHz, CDCl₃) of 7

¹H NMR (400 MHz, CDCl₃) of 4a

¹³C NMR (101 MHz, CDCl₃) of 4a

1 H NMR (400 MHz, CDCl₃) of **4b**

¹³C NMR (101 MHz, CDCl₃) of **4b**

^1H NMR (400 MHz, CDCl₃) of 4c

^{13}C NMR (101 MHz, CDCl₃) of 4c

¹H NMR (400 MHz, CDCl₃) of **4d**

¹³C NMR (101 MHz, CDCl₃) of 4d

¹H NMR (400 MHz, CDCl₃) of **4e**

^{13}C NMR (101 MHz, CDCl₃) of 4e

1 H NMR (400 MHz, CDCl₃) of **4f**

¹³C NMR (101 MHz, CDCl₃) of **4f**

1 H NMR (400 MHz, CDCl₃) of **4g**

^{13}C NMR (101 MHz, CDCl₃) of 4g

1 H NMR (400 MHz, CDCl₃) of **4h**

¹³C NMR (101 MHz, CDCl₃) of **4h**

¹H NMR (400 MHz, CDCl₃) of 4i

¹³C NMR (101 MHz, CDCl₃) of 4i

¹H NMR (400 MHz, CDCl₃) of 4j

^{13}C NMR (101 MHz, CDCl₃) of 4j

¹H NMR (400 MHz, CDCl₃) of **4**k

¹³C NMR (101 MHz, CDCl₃) of 4k

¹H NMR (400 MHz, CDCl₃) of **4**l

¹³C NMR (101 MHz, CDCl₃) of **4**l

¹H NMR (400 MHz, CDCl₃) of **4m**

¹³C NMR (101 MHz, CDCl₃) of **4m**

¹H NMR (400 MHz, CDCl₃) of $\mathbf{8}$

¹³C NMR (101 MHz, CDCl₃) of **8**

¹H NMR (400 MHz, CDCl₃) of 4n

¹³C NMR (101 MHz, CDCl₃) of **4n**

 1 H NMR (400 MHz, CDCl₃) of **9**

^1H NMR (400 MHz, CDCl₃) of 4o

¹³C NMR (101 MHz, CDCl₃) of **40**

1 H NMR (400 MHz, CDCl₃) of **10**

¹³C NMR (101 MHz, CDCl₃) of **10**

1 H NMR (400 MHz, CDCl₃) of **11**

^1H NMR (400 MHz, CDCl₃) of 12

¹³C NMR (101 MHz, CDCl₃) of **12**

^1H NMR (400 MHz, CDCl₃) of 4p

¹³C NMR (101 MHz, CDCl₃) of **4p**

1 H NMR (400 MHz, CDCl₃) of **4**q

1 H NMR (400 MHz, CDCl₃) of **14**

¹³C NMR (101 MHz, CDCl₃) of **14**

$^1\mathrm{H}$ NMR (400 MHz, CDCl₃) of $\mathbf{15a}$

¹H NMR (400 MHz, CDCl₃) of 16a

¹³C NMR (101 MHz, CDCl₃) of **16a**

^1H NMR (400 MHz, CDCl₃) of 4r

¹³C NMR (101 MHz, CDCl₃) of **4r**

 ^1H NMR (400 MHz, CDCl₃) of 15b

¹³C NMR (101 MHz, CDCl₃) of **15b**

1 H NMR (400 MHz, CDCl₃) of **16b**

¹³C NMR (101 MHz, CDCl₃) of **16b**

¹H NMR (400 MHz, CDCl₃) of 4s

¹³C NMR (101 MHz, CDCl₃) of 4s

$^1\mathrm{H}$ NMR (400 MHz, CDCl₃) of $\mathbf{15c}$

 ^{13}C NMR (101 MHz, CDCl₃) of 15c

$^1\mathrm{H}$ NMR (400 MHz, CDCl₃) of **16c**

^{13}C NMR (101 MHz, CDCl₃) of **16c**

^1H NMR (400 MHz, CDCl₃) of 4w

^{13}C NMR (101 MHz, CDCl₃) of **4t**

1 H NMR (400 MHz, CDCl₃) of **15d**

¹³C NMR (101 MHz, CDCl₃) of **15d**

1 H NMR (400 MHz, CDCl₃) of **16d**

¹³C NMR (101 MHz, CDCl₃) of 16d

¹H NMR (400 MHz, CDCl₃) of 4u

¹³C NMR (101 MHz, CDCl₃) of **4u**

^1H NMR (400 MHz, CDCl₃) of 4v

¹³C NMR (101 MHz, CDCl₃) of **4v**

4.3 NMR Spectra of Product

¹H NMR (400 MHz, CDCl₃) of **5a**

^{13}C NMR (101 MHz, CDCl₃) of 5a

¹H NMR (400 MHz, CDCl₃) of **5b**

¹H NMR (400 MHz, CDCl₃) of **5c**

¹³C NMR (101 MHz, CDCl₃) of **5c**

 1 H NMR (400 MHz, CDCl₃) of **5d**

¹³C NMR (101 MHz, CDCl₃) of **5d**

 1 H NMR (400 MHz, CDCl₃) of **5**e

¹³C NMR (101 MHz, CDCl₃) of **5e**

 1 H NMR (400 MHz, CDCl₃) of **5**f

 1 H NMR (400 MHz, CDCl₃) of **5**g

¹³C NMR (101 MHz, CDCl₃) of **5**g

 ^1H NMR (400 MHz, CDCl₃) of $\mathbf{5h}$

¹³C NMR (101 MHz, CDCl₃) of **5h**

¹H NMR (400 MHz, CDCl₃) of **5i**

¹³C NMR (101 MHz, CDCl₃) of **5**i

¹H NMR (400 MHz, CDCl₃) of **5**j

¹³C NMR (101 MHz, CDCl₃) of **5**j

¹H NMR (400 MHz, CDCl₃) of **5**k

¹³C NMR (101 MHz, CDCl₃) of **5**k

1 H NMR (400 MHz, CDCl₃) of **5**l

^{13}C NMR (101 MHz, CDCl₃) of **51**

¹H NMR (400 MHz, CDCl₃) of **5m**

^{13}C NMR (101 MHz, CDCl₃) of **5m**

1 H NMR (400 MHz, CDCl₃) of **5n**

¹³C NMR (101 MHz, CDCl₃) of **5n**

 $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) of $\mathbf{5o}$

¹H NMR (400 MHz, CDCl₃) of **5p**

^{13}C NMR (101 MHz, CDCl₃) of 5p

 1 H NMR (400 MHz, CDCl₃) of **5**q

¹³C NMR (101 MHz, CDCl₃) of 5q

¹H NMR (400 MHz, CDCl₃) of **5r**

^{13}C NMR (101 MHz, CDCl₃) of 5r

¹H NMR (400 MHz, CDCl₃) of **5s**

 ^{13}C NMR (101 MHz, CDCl₃) of **5s**

¹H NMR (400 MHz, CDCl₃) of **5t**

¹³C NMR (101 MHz, CDCl₃) of 5t

^1H NMR (400 MHz, CDCl₃) of 5u

¹³C NMR (101 MHz, CDCl₃) of **5u**

¹H NMR (400 MHz, CDCl₃) of **5v**

^{13}C NMR (101 MHz, CDCl₃) of 5v

5. HPLC Spectra of Products

Racemic benzyl 2-allyl-4,4-dimethylpyrrolidine-1-carboxylate (**5a**) mV

Enantioenriched benzyl 2-allyl-4,4-dimethylpyrrolidine-1-carboxylate (5a)

Racemic tert-butyl 2-allyl-4,4-dimethylpyrrolidine-1-carboxylate (5b)

Enantioenriched *tert*-butyl 2-allyl-4,4-dimethylpyrrolidine-1-carboxylate (**5b**) mV

Racemic (9*H*-fluoren-9-yl)methyl 2-allyl-4,4-dimethylpyrrolidine-1-carboxylate (5c)

Enantioenriched (9*H*-fluoren-9-yl)methyl 2-allyl-4,4-dimethylpyrrolidine-1-carboxylate (5c)

Racemic 1-(2-allyl-4,4-dimethylpyrrolidin-1-yl)ethanone (5d)

 $Enantio enriched \ 1-(2-allyl-4,4-dimethyl pyrrolidin-1-yl) e than one \ ({\bf 5d})$

Racemic 2-allyl-4,4-dimethyl-1-(phenylsulfonyl)pyrrolidine (**5e**) mV

Enantioenriched 2-allyl-4,4-dimethyl-1-(phenylsulfonyl)pyrrolidine (5e) $_{\rm mV}$

Racemic 2-allyl-4,4-dimethyl-1-(4-nitrophenylsulfonyl)pyrrolidine (5f)

Enantioenriched 2-allyl-4,4-dimethyl-1-(4-nitrophenylsulfonyl)pyrrolidine (5f)

Racemic 2-allyl-4,4-dimethyl-1-(o-tolylsulfonyl)pyrrolidine (5g)

Enantioenriched 2-allyl-4,4-dimethyl-1-(o-tolylsulfonyl)pyrrolidine (5g)

ee

28.7

Racemic 2-allyl-4,4-dimethyl-1-(*m*-tolylsulfonyl)pyrrolidine (**5h**) mV

Enantioenriched 2-allyl-4,4-dimethyl-1-(*m*-tolylsulfonyl)pyrrolidine (**5h**) mV

Racemic 2-allyl-4,4-dimethyl-1-tosylpyrrolidine (5i) mV

Enantioenriched 2-allyl-4,4-dimethyl-1-tosylpyrrolidine (5i) mV

Racemic 2-allyl-1-(2,4-dimethylphenylsulfonyl)-4,4-dimethylpyrrolidine (**5j**) mV

Enantioenriched 2-allyl-1-(2,4-dimethylphenylsulfonyl)-4,4-dimethylpyrrolidine (5j) $_{\rm mV}$

Racemic 2-allyl-1-(2,5-dimethylphenylsulfonyl)-4,4-dimethylpyrrolidine (**5**k)

Enantioenriched 2-allyl-1-(2,5-dimethylphenylsulfonyl)-4,4-dimethylpyrrolidine (5k) mV

ee

28.6

Racemic 2-allyl-1-(mesitylsulfonyl)-4,4-dimethylpyrrolidine (51)

Enantioenriched 2-allyl-1-(mesitylsulfonyl)-4,4-dimethylpyrrolidine (51)

 $Racemic \ 2-allyl-4, 4-dimethyl-1-(naphthalen-1-ylsulfonyl) pyrrolidine \ (\mathbf{5m})$

 $Enantio enriched \ 2-allyl-4, 4-dimethyl-1-(naphthalen-1-ylsulfonyl) pyrrolidine \ (5m)$

Racemic 2-allyl-1-(2,4-dimethylphenylsulfonyl)pyrrolidine (5n)

 $Enantio enriched \ 2-allyl-1-(2,4-dimethylphenylsulfonyl) pyrrolidine \ (5n)$

Racemic 2-allyl-1-(2,4-dimethylphenylsulfonyl)-4,4-diphenylpyrrolidine (50) $_{\rm mV}$

 $\label{eq:mv} Enantioenriched \ 2-allyl-1-(2,4-dimethylphenylsulfonyl)-4,4-diphenylpyrrolidine \ \textbf{(50)} \ catalyzed \ by \ 5\% \ catalyst \ mv$

Enantioenriched 2-allyl-1-(2,4-dimethylphenylsulfonyl)-4,4-diphenylpyrrolidine (50) catalyzed by 10% catalyst mV

Enantioenriched 2-allyl-1-(2,4-dimethylphenylsulfonyl)-4,4-diphenylpyrrolidine (50) catalyzed by 20% catalyst ${\tt mV}$

Racemic 2-allyl-1-(2,4-dimethylphenylsulfonyl)-5,5-diphenylpiperidine (**5p**) $_{mV}$

Enantioenriched 2-allyl-1-(2,4-dimethylphenylsulfonyl)-5,5-diphenylpiperidine ($\mathbf{5p}$) mV

Racemic 2-allyl-1-(2,4-dimethylphenylsulfonyl)-2-methyl-4,4-diphenylpyrrolidine (5q) mV

Enantioenriched 2-allyl-1-(2,4-dimethylphenylsulfonyl)-2-methyl-4,4-diphenylpyrrolidine (5q) mV

Racemic 7-allyl-6-(2,4-dimethylphenylsulfonyl)-6-azaspiro[3.4]octane (**5r**)

Enantioenriched 7-allyl-6-(2,4-dimethylphenylsulfonyl)-6-azaspiro[3.4]octane (5r) mV

Peak	Retention Time / min	Area	Area %
1	19.119	51432716	66.550
2	20.930	25851928	33.450
ee			33.1

Racemic

3-allyl-2-(2,4-dimethylphenylsulfonyl)-2-azaspiro3-allyl-2-(2,4-dimethylphenylsulfonyl)-2-azaspiro[4.5]decane (5w)nonane (5s)

Enantioenriched 3-allyl-2-(2,4-dimethylphenylsulfonyl)-2-azaspiro[4.4]nonane (5s) $_{\rm mV}$

Racemic 3-allyl-2-(2,4-dimethylphenylsulfonyl)-2-azaspiro[4.5]decane (5t)

Enantioenriched 3-allyl-2-(2,4-dimethylphenylsulfonyl)-2-azaspiro[4.5]decane (5t) $_{\rm mV}$

Racemic 3-allyl-2-(2,4-dimethylphenylsulfonyl)-2-azaspiro[4.6] undecane (5u)

Enantioenriched 3-allyl-2-(2,4-dimethylphenylsulfonyl)-2-azaspiro[4.6] undecane (5u) mV

ee

36.4

Racemic benzyl 1-vinylisoindoline-2-carboxylate (5v) mV

 $\label{eq:Enantioenriched benzyl 1-vinylisoindoline-2-carboxylate~(5v)$

mV

6. Crystal Data for Complex 50

Table S2. Summary of Crystallographic Details for Complexes 50

Bond precision:	C - C = 0.0054 Å	Wavelength $= 1.54184$		
Cell:	a = 10.9708(4)	b = 8.8036(3)	c = 11.9111(5)	
	alpha = 90	beta = 101.686(4)	gamma = 90	
Temperature:	171 K			
	Calculated	Reported		
Volume	1126.56(8)	1126.55(7)		
Space group	P n	P 1 n 1		
Hall group	P -2yac	P-2yac		
Moiety formula	$\mathrm{C_{27}H_{29}NO_2}\mathrm{S}$	$\mathrm{C}_{27}\mathrm{H}_{29}\mathrm{NO}_2~\mathrm{S}$		
Sum formula	$\mathrm{C_{27}H_{29}NO_2}\mathrm{S}$	C ₂₇ H ₂₉ NO ₂ S		
Mr	431.57	431.57		
Dx, g cm ⁻³	1.272	1.272		
Z	2	2		
$Mu (mm^{-1})$	1.455	1.455		
F000	460.0	460.0		
F000'	461.85			
h,k,lmax	13,10,14	13,10,14		
Nref	4052[2031]	3414		
Tmin, Tmax	0.703,0.748	0.729,1.000		
Tmin'	0.634			
Correction method = MULTI- SCAN				
Data completeness= 1.68/0.84		Theta $(max) = 67.320$		
R (reflections) = 0.0517(3140)		wR2 (reflections)= 0.1417(34	14)	
S = 1.033		Npar = 282		