A Microwave-Assisted Multicomponent Synthesis of Substituted 3,4-Dihydroquinazolinones

Marc Y. Stevens, Krzysztof Wieckowski, Peng Wu, Rajiv T. Sawant and Luke R. Odell*

Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala Biomedical

Centre, Uppsala University, P. O. Box 574, SE-751 23 Uppsala, Sweden

To whom correspondence should be addressed. Luke Odell, Phone: +46-18-4714297, Fax: +46-18-4714474. E-mail: luke.odell@orgfarm.uu.se

SUPPORTING INFORMATION

Contents

Experimental Section	2
I. General Information	2
II. NMR spectra of new compounds	3
III. Detection of iminium ion <i>via</i> LC/UV/MS and NMR and subsequent cyclization to	0
give compound 2d	. 53

Experimental Section

I. General Information

Analytical thin-layer chromatography was performed on silica gel 60 F-254 plates and visualized by UV light or ninhydrin stain. Flash column chromatography was performed using silica gel (60, particle size 40-63 nm). ¹H NMR spectra were recorded at 400 MHz and ¹³C NMR spectra at 100 MHz. The chemical shifts for ¹H NMR and ¹³C NMR were referenced to TMS via residual solvent signals (¹H, CDCl₃ at 7.26 ppm; ¹³C, CDCl3 at 77.36 ppm; ¹H, DMSO-*d*₆ at 2.45 ppm; ¹³C, DMSO-*d*₆ at 39.43 ppm, ¹H, CD₃OD at 3.31 ppm; ¹³C, CD₃OD at 49.0 ppm). Microwave reactions were performed in an Initiator single mode reactor producing controlled irradiation at 2450 MHz and the temperature was monitored using the built in online IR sensor. LC/MS was performed on an instrument equipped with a CP-Sil 8 CB capillary column (50 x 3.0 mm, particle size 2.6 µm, pore size 100 Å) operating at an ionization potential of 70 eV using a CH₃CN/H₂O gradient (0.05% HCOOH). Accurate mass values were determined on a mass spectrometer equipped with an electrospray or electron impact ion source and 7-T hybrid ion trap (LTQ) or TOF detector, respectively. All reactions were performed in sealed Pyrex microwave-transparent process vials designed for 0.5-2 mL reaction volumes. Reagents were purchased at the highest commercial quality and were used without further purification. Solvents used for extraction and silica gel chromatography (EtOAc, hexanes, *n*-pentane and dichloromethane) were used without purification or removal of water.

 13 C NMR spectrum of **1c** (100 MHz, 25 °C, CD₃Cl)

 13 C NMR spectrum of **1d** (100 MHz, 25 °C, CD₃Cl)

¹³C NMR spectrum of **1e** (100 MHz, 25 °C, CD₃Cl)

 13 C NMR spectrum of **1f** (100 MHz, 25 °C, CD₃Cl)

 13 C NMR spectrum of **1g** (100 MHz, 25 °C, CD₃Cl)

 ^{13}C NMR spectrum of **1h** (100 MHz, 25 °C, CD₃Cl)

¹³C NMR spectrum of **1i** (100 MHz, 25 °C, CD₃Cl)

¹³C NMR spectrum of **1j** (100 MHz, 25 °C, CD₃Cl)

¹³C NMR spectrum of **1k** (100 MHz, 25 °C, CD₃Cl)

¹H NMR spectrum of **1m** (400 MHz, 25 °C, CD₃Cl)

 ^{13}C NMR spectrum of **1m** (100 MHz, 25 °C, CD₃Cl)

¹H NMR spectrum of **1n** (400 MHz, 25 °C, CD₃Cl)

 ^{13}C NMR spectrum of **1n** (100 MHz, 25 °C, CD₃Cl)

¹H NMR spectrum of **1o** (400 MHz, 25 °C, CD₃Cl)

 ^{13}C NMR spectrum of **10** (100 MHz, 25 °C, CD₃Cl)

 13 C NMR spectrum of **1p** (100 MHz, 25 °C, CD₃Cl)

¹³C NMR spectrum of **2a** (100 MHz, 25 °C, DMSO- d_6)

¹³C NMR spectrum of **2b** (100 MHz, 25 °C, DMSO-*d*₆)

¹³C NMR spectrum of **2c** (100 MHz, 25 °C, DMSO- d_6)

¹³C NMR spectrum of **2d** (100 MHz, 25 °C, DMSO- d_6)

¹³C NMR spectrum of **2e** (100 MHz, 25 °C, DMSO- d_6)

¹³C NMR spectrum of **2i** (100 MHz, 25 °C, CD₃Cl)

¹³C NMR spectrum of **3a** (100 MHz, 25 °C, DMSO- d_6)

¹³C NMR spectrum of **3b** (100 MHz, 25 °C, DMSO-*d*₆)

¹³C NMR spectrum of **3c** (100 MHz, 25 °C, DMSO- d_6)

¹³C NMR spectrum of **3d** (100 MHz, 25 °C, DMSO- d_6)

¹³C NMR spectrum of **3e** (100 MHz, 25 °C, DMSO- d_6)

¹³C NMR spectrum of **3f** (100 MHz, 25 °C, DMSO- d_6)

¹³C NMR spectrum of **3g** (100 MHz, 25 °C, DMSO- d_6)

¹H NMR spectrum of **4a** (400 MHz, 25 °C, DMSO-*d*₆), 0.7:1 mixture of diastereomers

¹³C NMR spectrum of **4a** (100 MHz, 25 °C, DMSO-*d*₆), 0.7:1 mixture of diastereomers

¹H NMR spectrum of **4b** (400 MHz, 25 °C, DMSO-*d*₆), 1:1 mixture of diastereomers

¹³C NMR spectrum of **4b** (100 MHz, 25 °C, DMSO-*d*₆), 1:1 mixture of diastereomers

¹³C NMR spectrum of **4c** (100 MHz, 25 °C, DMSO- d_6)

¹³C NMR spectrum of **4e** (100 MHz, 25 °C, DMSO- d_6)

¹³C NMR spectrum of **4f** (100 MHz, 25 °C, DMSO- d_6)

¹H NMR spectrum of **4g** (400 MHz, 25 °C, DMSO- d_6), 0.8:1 mixture of diastereomers

¹³C NMR spectrum of **4g** (100 MHz, 25 °C, DMSO-*d*₆), 0.8:1 mixture of diastereomers

¹³C NMR spectrum of **5a** (100 MHz, 25 °C, CDCl₃)

 13 C NMR spectrum of **5b** (100 MHz, 25 °C, CDCl₃)

¹H NMR spectrum of **5e** (400 MHz, 25 °C, CDCl₃)

¹³C NMR spectrum of **5e** (100 MHz, 25 °C, CDCl₃)

¹³C NMR spectrum of **5g** (100 MHz, 25 °C, CDCl₃)

 13 C NMR spectrum of **6** (100 MHz, 25 °C, CD₃OD)

¹³C NMR spectrum of **7** (100 MHz, 25 °C, CD₃OD)

80

70 60

50

40 30

20

10

ò

110 100 90 f1 (ppm)

190

200

180 170

160

150

140

130 120

 13 C NMR spectrum of **8** (100 MHz, 25 °C, CD₃OD)

¹H NMR spectrum of **9** (400 MHz, 25 $^{\circ}$ C, CD₃OD)

 13 C NMR spectrum of **9** (100 MHz, 25 °C, CD₃OD)

¹H NMR spectrum of **10** (400 MHz, 25 °C, CD₃OD)

 13 C NMR spectrum of **10** (100 MHz, 25 °C, CD₃OD)

III. Detection of iminium ion via LC/UV/MS and NMR

S54