Rapid access to glycopeptide antibiotic precursor peptides coupled with Cytochrome P450-mediated catalysis: towards a biomimetic synthesis of glycopeptide antibiotics

Clara Brieke, Veronika Kratzig, Kristina Haslinger, Andreas Winkler and Max J. Cryle*

Supplementary Information

<u>Content</u>

1. Characterization of the effect of MPAA oxidation on peptide thioester yields					
2. Characterization of peptide MPAA and CoA conjugates (peptides ${f 1}$ – ${f 5}$ -MPAA/ CoA)					
3. Primers used in the cloning of $OxyB_{van}$ and PCP domains					
4. CD spectra and melting temperature determination of GB1-PCP7 $_{\rm cep}$, Trx-PCP7 $_{\rm sta}$ and					
Trx-PCP7 _{com}	S16				
5. Alignment of the PCP domains used in this study					
6. <i>In vitro</i> studies					
4.1 Sfp-catalyzed loading of PCP domains					
4.2 Results of turnover assays					
4.3 ESI-MS/MS analysis of peptides from turnover assays					
7. NMR spectra of peptides 1 - 5 -CoA	S32				
8. References					

1. Characterization of the effect of MPAA oxidation on peptide thioester yields

Figure S1. A) Analytical reverse-phased HPLC traces of commercially available MPAA. B) Mass spectra of oxidized MPAA in negative mode: 667 corresponds to a dimer of oxidized MPAA-disulfide (MW = 334.4). C) HPLC traces of crude synthesis mixture of peptide-**1**-MPAA after MPAA displacement under oxidizing conditions. D) HPLC trace of crude synthesis mixture of peptide-**1**-MPAA after MPAA after MPAA displacement under reducing conditions (Argon, PBu₃). HPLC-gradient: 0 – 2 min 95 % solvent A, 2 – 25 min up to 25 % solvent B, flow rate 1 mL/min.

2. Characterization of peptides 1 - 5

Peptide	Mol. Weight [g/mol]	Mass found [g/mol]	retention time t_{R}^{*}
Peptide-1-MPAA	1020.11	1020.25 (M+H)+, 510.95 (M+2H) ²⁺	16.01 min
Peptide-1-CoA	1619.43	1618.60 (M-H) ⁻ , 808.50 (M-2H) ²⁻	13.37 min
Peptide-2-MPAA	993.04	993.35 (M+H)⁺	15.67 min
Peptide-2-CoA	1592.37	1591.50 (M-H) ⁻	12.74 min
Peptide-3-MPAA	1089.17	1089.65 (M+H)+	17.42 min
Peptide-3-CoA	1688.49	1687.70 (M-H) ⁻ , 842.60 (M-2H) ²⁻	16.06 min
Peptide-4-MPAA	1091.15	1091.50 (M+H)+	16.53 min
Peptide-4-CoA	1690.47	1689.25 (M-H) ⁻ , 844.00 (M-2H) ²⁻	13.98 min
Peptide-5-MPAA	1128.21	1128.70 (M+H)+	17.39 min
Peptide-5-CoA	1727.53	1726.60 (M-H) ⁻ , 862.50 (M-2H) ²⁻	15.37 min

Table S1. Summary of analytical data for peptides 1 – 5

* Analytical reversed-phase HPLC; Gradient: 0 – 2 min 95 % solvent A, 2 – 25 min up to 25 % solvent B, flow rate 1 mL/min.

Peptide-1-MPAA

¹H-NMR (400 MHz, 1H-1H-COSY, DMSO-d₆): $\delta = 8.81$ (m, 2H, Hpg^{NH}, Tyr₆^{NH}), 8.40 (d, 1H, ³*J* = 7.0 Hz, Leu₁^{NH}), 8.18 (d, 1H, ³*J* = 6.9 Hz, Asn^{NH}), 7.64 (d, 1H, ³*J* = 6.7 Hz, Hpg^{NH}), 7.47 – 7.37 (m, 3H, H_{ar}, Tyr₂^{NH}), 7.32 – 7.22 (m, 4H, H_{ar}), 7.13 – 7.04 (m, 6H, H_{ar}), 6.97 – 6.83 (m, 8H, H_{ar}), 5.36 (d, 1H, ³*J* = 6.8 Hz, Hpg^{α}), 5.08 (d, 1H, ³*J* = 7.3 Hz, Hpg^{α}), 4.59 (m, 1H, Asn^{α}), 4.37 (m, 1H, Tyr₂^{α}), 4.24 (m, 1H, Tyr₆^{α}), 3.66 (m, under water peak, Leu₁^{α}), 3.49 (s, under water peak, CH₂-MPAA), 3.09 – 3.04 (m, 1H, Tyr₂^{β a}), 2.89 – 2.82 (m, 1H, Tyr₂^{β b}), 2.70 – 2.62 (m, 2H, Tyr6^{β}), 2.47 – 2.43 (m, 1H, Asn₃^{β a}), 2.35 – 2.27 (m, 1H, Asn₃^{β b}), 1.50 – 1.36 (m, 1H, Leu₁^{γ}), 1.35 – 1.21 (m, 2H, Leu₁^{β}), 0.78 (d, 3H, ³*J* = 6.3 Hz, Leu₁^{δ 1}), 0.66 (m, 3H, ³*J* = 6.4 Hz, Leu₁^{δ 2}) ppm.

HRMS (ESI): m/z calc. for C₅₂H₅₈N₇O₁₃S (M+H)⁺ 1020.38078, found: 1020.38015, Δ = 0.6 ppm; calc. mass for C₅₂H₅₇N₇NaO₁₃S (M+Na)⁺ 1042.36273, found: 1042.36194, Δ = 0.8 ppm.

Figure S2. A) Analytical reversed-phase HPLC trace and (B) MS spectra of crude peptide-**1**-MPAA. C) Analytical reversed-phase HPLC trace and (D) HRMS spectra of HPLC-purified peptide-**1**-MPAA.

Peptide-1-CoA

¹H-NMR (400 MHz, 1H-1H-COSY, DMSO-d₆): $\delta = 8.84$ (m, 1H, Tyr₆^{NH}), 8.78 (d, 1H, ³*J* = 8.3 Hz, Hpg^{NH}), 8.65 (m, 1H, Tyr₂^{NH}), 8.43 – 8.35 (m, 2H, H8-CoA, Asn₃^{NH}), 8.24 – 8.09 (m, 4H, H2-CoA Glu^{NH}, N**H**CH₂CH₂S-CoA, NH₂), 7.93 (d, 1H, ³*J* = 7.5 Hz, Hpg^{NH}), 7.79 (m, 1H, N**H**CH₂CH₂CO-CoA), 7.29 (bs, 2H, NH₂), 7.20 – 7.15 (m, 2H, H_{ar}), 7.05 – 6.96 (m, 4H, H_{ar}), 6.89 – 6.83 (m, 2H, H_{ar}), 6.71 – 6.52 (m, 8H, H_{ar}), 5.94 (d, 1H, ³*J* = 5.3 Hz, H1'-CoA), 5.55 – 5.46 (m, 2H, 2 x Hpg^{\alpha}), 4.89 (m, 1H, H3'-CoA), 4.71 (m, 1H, H2'-CoA), 4.62 (m, 1H, Asn₃^{\alpha}), 4.48 (m, Tyr₂^{\alpha}), 4.39 – 4.31 (m, 2H, H4'-CoA, Tyr₆^{\alpha}), 4.11 (m, 2H, H5'-CoA), 3.86 – 3.79 (m, under water peak, {3.80} OC*H*₂^{\alpha}C(CH₃)₂-CoA, Leu₁^{\alpha}), 3.62 (m, under water peak, C*H*(OH)CO-CoA), 3.49 – 3.47 (under water peak, OC*H*₂^{\beta}C(CH₃)₂-CoA), 3.22 (under water peak, NHC*H*₂CH₂CO-CoA), 3.15 – 3.02 (m, NHC*H*₂CH₂S-CoA), 2.93 – 2.60 (m, 6H, NHCH₂C*H*₂S-CoA, Tyr₆^{\beta}, Tyr₂^{\beta}), 2.51 - 2.27 (m, under DMSO signal, Asn₃^{\beta}, NHCH₂C*H*₂CO-CoA), 1.65 – 1.54 (m, 1H, Leu₁^{\alpha}), 1.54 – 1.46 (m, 2H, Leu₁^{\beta}), 0.94, 0.75 (s, 2 x 3H, 2 x gem-CH₃-CoA), 0.87 – 0.81 (m, 6H, 2 x Leu₁^{\beta}) ppm.

HRMS (ESI): m/z calc. for C₆₅H₈₃N₁₄O₂₇P₃S (M-2H)²⁻ 808.22483, found: 808.22371, Δ = 1.4 ppm; calc. mass for C₆₅H₈₂N₁₄NaO₂₇P₃S (M-3H+Na)²⁻ 819.21580, found: 819.21462, Δ = 1.4 ppm; calc. mass for C₆₅H₈₂KN₁₄O₂₇P₃S (M-3H+K)²⁻ 827.20277, found: 827.19704, Δ = 6.9 ppm.

Figure S3. A) Structure of peptide-**1**-CoA, the observed MS fragmentation pattern is marked. B) Analytical reversed-phase HPLC trace, (C) HRMS spectra of HPLC-purified peptide-**1**-CoA (ions are doubly charged and correspond to the protonated, sodiated and potasiated species).

Peptide-2-MPAA

¹H-NMR (400 MHz, 1H-1H-COSY, DMSO-d₆): $\delta = 8.81$ (d, 1H, ³*J* = 7.4 Hz, Hpg^{NH}), 8.76 (d, 1H, ³*J* = 7.0 Hz, Tyr₆^{NH}), 8.48 (d, 1H, ³*J* = 6.7 Hz, Ala₁^{NH}), 8.29 (d, 1H, ³*J* = 6.6 Hz, Glu^{NH}), 7.64 (d, 1H, ³*J* = 7.0 Hz, Hpg^{NH}), 7.48 – 7.44 (m, 2H, H_{ar}), 7.30 – 7.24 (m, 3H, H_{ar}, Tyr₂^{NH}), 7.10 – 6.95 (m, 6H, H_{ar}), 6.89 – 6.84 (m, 2H, H_{ar}), 6.67 – 6.57 (m, 8H, H_{ar}), 5.36 (d, 1H, ³*J* = 6.8 Hz, Hpg^α), 5.11 (d, 1H, ³*J* = 7.41 Hz, Hpg^α), 4.40 (m, 1H, Tyr₂^α), 4.22 – 4.11 (m, 2H, Glu₃^α, Tyr₆^α), 3.94 (m, 1H, Ala₁^α), 3.55 (s, 2H, CH₂-MPAA), 3.01 – 2.91 (m, 1H, Tyr₂^{βa}), 2.88 – 2.80 (m, 1H, Tyr₂^{βb}), 2.74 – 2.63 (m, 2H, Tyr6^β), 2.23 – 2.02 (m, 2H, Glu₃^γ), 1.81 – 1.69 (m, 2H, Glu₃^β), (d, 3H, ³*J* = 7.3 Hz, Ala₁^β) ppm.

HRMS (ESI): m/z calc. for C₅₀H₅₃N₆O₁₄S (M+H)⁺ 993.33350, found: 993.33359, Δ = 0.1 ppm; calc. mass for C₅₀H₅₂N₆NaO₁₄S (M+Na)⁺ 1015.31544, found: 1015.31681, Δ = 1.3 ppm.

Figure S4. A) Analytical reversed-phase HPLC trace and (B) MS spectra of crude peptide-**2**-MPAA. C) Analytical reversed-phase HPLC trace and (D) HRMS spectra of HPLC-purified peptide-**2**-MPAA.

Peptide-2-CoA

¹H-NMR (400 MHz, 1H-1H-COSY, DMSO-d₆): $\delta = 8.88$ (d, 1H, ³*J* = 7.8 Hz, Tyr₆^{NH}), 8.75 (d, 1H, ³*J* = 8.3 Hz, Hpg^{NH}), 8.54 (d, 1H, ³*J* = 7.4 Hz, Tyr₂^{NH}), 8.41 (s, 1H, H8-CoA), 8.28 – 8.19 (m, 3H, Glu^{NH}, Hpg^{NH}, N**H**CH₂CH₂S-CoA), 8.17 (s, 1H, H2-CoA), 8.09 (bs, 2H, NH₂), 7.79 (m, 1H, N**H**CH₂CH₂CO-CoA), 7.32 (bs, 2H, NH₂), 7.22 – 7.14 (m, 2H, H_{ar}), 7.10 – 6.93 (m, 4H, H_{ar}), 6.91 – 6.83 (m, 2H, H_{ar}), 6.73 – 6.53 (m, 8H, H_{ar}), 5.94 (d, 1H, ³*J* = 5.3 Hz, H1'-CoA), 5.55 (d, 1H, ³*J* = 7.8 Hz, Hpg^α), 5.50 (d, 1H, ³*J* = 8.6 Hz, Hpg^α), 4.88 (m, 1H, H3'-CoA), 4.71 (m, 1H, H2'-CoA), 4.52 (m, Tyr₂^α), 4.39 – 4.32 (m, H4'-CoA, Glu₃^α, Tyr₆^α), 4.15 – 4.09 (m, H5'-CoA), 3.86 – 3.76 (m, under water peak, OC**H**₂^aC(CH₃)₂-CoA, {3.77} Ala₁^α), 3.62 (m, under water peak, C**H**(OH)CO-CoA), 3.50 – 3.48 (m, under water peak, OC**H**₂CC+C₂CO-CoA), 2.10 – 2.01 (m, 2H, Glu₃ γ), 1.85 – 1.76 (m, 1H, Glu₃^{βa}), 1.71 – 1.62 (m, 1H, Glu₃^{βb}), 1.33 (d, 3H, ³*J* = 6.7 Hz, Ala₁^β), 0.94, 0.75 (s, 2 x 3H, 2 x gem-CH₃-CoA) ppm.

HRMS (ESI): m/z calc. for C₆₃H₇₈N₁₃O₂₈P₃S (M-2H)²⁻ 794.70119, found: 794.69846, Δ = 3.4 ppm; calc. mass for C₆₃H₇₇N₁₃NaO₂₈P₃S (M-3H+Na)²⁻ 805.69216, found: 805.69386, Δ = 2.1 ppm; calc. mass for C₆₃H₇₇KN₁₃O₂₈P₃S (M-3H+K)²⁻ 813.67913, found: 813.67634, Δ = 3.4 ppm.

Figure S5. A) Structure of peptide-**2**-CoA, the observed MS fragmentation pattern is marked. B) Analytical reversed-phase HPLC trace, (C) HRMS spectra of HPLC-purified peptide-**2**-CoA (ions are doubly charged and correspond to the protonated, sodiated and potasiated species).

Peptide-3-MPAA

¹H-NMR (400 MHz, 1H-1H-COSY, DMSO-d₆): 8.95 (d, 1H, ${}^{3}J$ = 7.0 Hz, Phe₃^{NH}), 8.86 (d, 1H, ${}^{3}J$ = 8.0 Hz, Hpg^{NH}), 8.73 (d, 1H, ${}^{3}J$ = 6.1 Hz, Tyr₆^{NH}), 8.58 (d, 1H, ${}^{3}J$ = 7.3 Hz, Hpg^{NH}), 8.38 (d, 1H, ${}^{3}J$ = 6.4 Tyr₂^{NH}), 7.39 – 7.09 (m, 8H, H_{ar}), 7.06 – 6.82 (m, 6H, H_{ar}), 6.70 – 6.39 (m, 11H, H_{ar}), 6.63(d, 1H, ${}^{3}J$ = 7.3 Hz, Hpg^{α}), 5.55 (d, 1H, ${}^{3}J$ = 8.0 Hz, Hpg^{α}), 4.46 (m, 2H, Phe^{α}, Tyr₂^{α}), 4.32 (m, 1H, Tyr₆^{α}), 3.61 (s, under water peak, CH₂-MPAA), 2.98 – 2.86 (m, 2H, 2 x Tyr^{β a}), 2.79 – 2.62 (m, 2H, 2 x Tyr^{β b}), 2.53 – 2.37 (m, under DMSO peak, Phe₃^{β}) ppm.

HRMS (ESI): m/z calc. for C₅₉H₅₇N₆O₁₃S (M+H)⁺ 1089.36988, found: 1089.36925, Δ = 0.6 ppm; calc. mass for C₅₉H₅₆N₆NaO₁₃S (M+Na)⁺ 1111.35183, found: 1111.35144, Δ = 0.3 ppm.

Figure S6. A) Analytical reversed-phase HPLC trace and (B) MS spectra of crude peptide-**3**-MPAA. C) Analytical reversed-phase HPLC trace and (D) HRMS spectra of HPLC-purified peptide-**3**-MPAA.

Peptide-3-CoA

¹H-NMR (400 MHz, 1H-1H-COSY, DMSO-d₆): $\delta = 8.86$ (d, 1H, ³*J* = 7.6 Hz, Tyr₆^{NH}), 8.76 (d, 1H, ³*J* = 8.3 Hz, Hpg^{NH}), 8.50 (d, 1H, ³*J* = 7.8 Hz, Hpg^{NH}), 8.40 (s, 1H, H8-CoA), 8.38 – 8.20 (m, 5H, Tyr₂^{NH}, Phe₃^{NH}, NH₂, N*H*CH₂CH₂CS-CoA), 8.17 (s, 1H, H2-CoA), 7.77 (m, 1H, N*H*CH₂CH₂CO-CoA), 7.27 – 7.04 (m, 10H, H_{ar}), 7.02 – 6.83 (m, 3H, H_{ar}), 6.81 – 6.72 (m, 3H, H_{ar}), 6.73 – 6.59 (m, 5H, H_{ar}), 6.58 – 6.51 (m, 4H, H_{ar}), 5.94 (d, 1H, ³*J* = 5.4 Hz, H1'-CoA), 5.57 - 5.52 (m, 2H, 2 x Hpg^{α}), 4.89 (m, 1H, H3'-CoA), 4.74 – 4.63 (m, 2H, H2'-CoA, Tyr₂^{α}), 4.46 (m, 1H, Phe₃^{α}), 4.41 – 4.31 (m, 2H, H4'-CoA, Tyr₆^{α}), 4.15 – 4.07 (m, 2H, H5'-CoA), 3.89 – 3.77 (m, under water peak, OC*H*₂*^{<i>a*}C(CH₃)₂-CoA, Hpg₁^{α}), under water peak (C*H*(OH)CO-CoA, OC*H*₂*^b*C(CH₃)₂-CoA), 3.34 – 3.27 (m, under water peak, NHC*H*₂CH₂CO-CoA), 3.10 – 3.08 (m, 2H, NHC*H*₂CH₂CO-CoA), 0.94, 0.75 (s, 2 x 3H, 2 x gem-CH₃-CoA) ppm.

Numbering of Coenzyme A accords to reference [1].

HRMS (ESI): m/z calc. for C₇₂H₈₂N₁₃O₂₇P₃S (M-2H)²⁻ 842.71938, found: 842.719581, Δ = 0.2 ppm; calc. mass for C₇₂H₈₂N₁₃NaO₂₇P₃S (M-3H+Na)²⁻ 853.71035, found: 853.70514, Δ = 6.1 ppm; calc. mass for C₇₂H₈₂KN₁₃O₂₇P₃S (M-3H+K)²⁻ 861.69732, found: 861.69375, Δ = 4.1 ppm.

Figure S7. A) Structure of peptide-**3**-CoA, the observed MS fragmentation pattern is marked. B) Analytical reversed-phase HPLC trace, (C) HRMS spectra of HPLC-purified peptide-**3**-CoA (ions are doubly charged and correspond to the protonated, sodiated and potasiated species).

Peptide-4-MPAA

¹H-NMR (400 MHz, 1H-1H-COSY, DMSO-d₆): 8.96 (d, 1H, ³*J* = 6.7 Hz, Hpg^{NH}), 8.68 (d, 1H, ³*J* = 7.0 Hz, Tyr₆^{NH}), 8.64 (d, 1H, ³*J* = 6.9 Hz, Hpg^{NH}), 8.47 (d, 1H, ³*J* = 6.7 Hz, Hpg^{NH}), 7.77 (d, 1H, ³*J* = 7.0 Hz, Hpg^{NH}), 7.48 – 7.44 (m, 2H, H_{ar}, Tyr₂^{NH}), 7.33 – 7.14 (m, 3H, H_{ar}), 7.10 – 6.94 (m, 8H, H_{ar}), 6.90 – 6.78 (m, 4H, H_{ar}), 6.72 – 6.53(m, 13H, H_{ar}), 5.39 (d, 1H, ³*J* = 7.0 Hz, Hpg^α), 5.35 (d, 1H, ³*J* = 6.8 Hz, Hpg^α), 5.05 (d, 1H, ³*J* = 7.0 Hz, Hpg^α), 4.99 (d, 1H, ³*J* = 6.8 Hz, Hpg^α), 4.65 (m, 1H, Tyr₂^α), 4.32 (m, 1H, Tyr₆^α), 3.54 (s, under water peak, CH₂-MPAA), 2.92 – 2.80 (m, 2H, Tyr₂^β), 2.78 – 2.60 (m, 2H, Tyr₆^β), ppm.

HRMS (ESI): m/z calc. for C₅₈H₅₅N₆O₁₄S (M+H)⁺ 1091.34915, found: 1091.34881, Δ = 0.3 ppm; calc. mass for C₅₈H₅₅N₆NaO₁₄S (M+Na)⁺ 1113.33109, found: 1113.33073, Δ = 0.3 ppm; calc. mass for C₅₈H₅₅KN₆O₁₄S (M+K)⁺ 1129.30503, found: 1129.30455, Δ = 0.4 ppm.

Figure S8. A) Analytical reversed-phase HPLC trace and (B) MS spectra of crude peptide-**4**-MPAA. C) Analytical reversed-phase HPLC trace and (D) HRMS spectra of HPLC-purified peptide-**4**-MPAA.

Peptide-4-CoA

¹H-NMR (400 MHz, 1H-1H-COSY, DMSO-d₆): $\delta = 8.86$ (d, 1H, ³*J* = 7.8 Hz, Tyr₆^{NH}), 8.74 (d, 1H, ³*J* = 8.3 Hz, Hpg^{NH}), 8.57 (d, 1H, ³*J* = 7.5 Hz, Hpg^{NH}), 8.47 – 8.32 (m, 5H, {8.44} Tyr₂^{NH}, {8.40} H8-CoA, Hpg^{NH}, NH₂), 8.23 (m, 1H, N*H*CH₂CH₂S-CoA), 8.17 (s, 1H, H2-CoA), 7.81 (m, 1H, N*H*CH₂CH₂CO-CoA), 7.34 – 7.20 (m, 4H, H_{ar}), 7.07 – 6.94 (m, 7H, H_{ar}), 6.87 (m, 2H, H_{ar}), 6.79 (m, 2H, H_{ar}), 6.66 – 6.53 (m, 9H, H_{ar}), 5.94 (d, 1H, ³*J* = 5.3 Hz, H1'-CoA), 5.56 – 5.48 (m, 3H, 3 x Hpg^α), 4.89 (m, 1H, H3'-CoA), 4.70 (m, 1H, H2'-CoA), 4.65 (m, Tyr₂^α), 4.37 – 4.29 (m, 2H, H4'-CoA, Tyr₆^α), 4.11 (m, 2H, H5'-CoA), 3.87 – 3.78 (m, under water peak, {3.85} OC*H₂^a*C(CH₃)₂-CoA, Hpg₁^α), 3.59 (m, under water peak, C*H*(OH)CO-CoA), 3.15 – 3.07 (m, 2H, NHC*H₂*CH₂S-CoA), 2.94 – 2.62 (m, 6H, NHCH₂C*H₂*S-CoA), Tyr₆^β, Tyr₂^β), 2.34 – 2.26 (m, 2H, NHCH₂C*H₂*CO-CoA), 0.94, 0.75 (s, 2 x 3H, 2 x gem-CH₃-CoA) ppm.

Numbering of Coenzyme A accords to reference [1].

HRMS (ESI): m/z calc. for C₇₁H₈₀N₁₃O₂₈P₃S (M-2H)²⁻ 843.70901, found: 843.70823, Δ = 0.9 ppm; calc. mass for C₇₁H₇₉N₁₃NaO₂₈P₃S (M-3H+Na)²⁻ 854.69999, found: 854.69979, Δ = 0.2 ppm; calc. mass for C₇₁H₇₈N₁₃Na₂O₂₈P₃S (M-3H+K)²⁻ 865.69096, found: 865.69083, Δ = 0.1 ppm.

Figure S9. A) Structure of peptide-**4**-CoA, the observed MS fragmentation pattern is marked. B) Analytical reversed-phase HPLC trace, (C) HRMS spectra of HPLC-purified peptide-**4**-CoA (ions are doubly charged and correspond to the protonated, sodiated and potasiated species).

Peptide-5-MPAA

¹H-NMR (400 MHz, 1H-1H-COSY, DMSO-d₆): $\delta = 10.76$ (s, 1H, Trp₂^{IndolNH}), 8.96 (d, 1H, ${}^{3}J = 8.0$ Hz, Tyr₆^{NH}), 8.72 (d, 1H, ${}^{3}J = 8.2$ Hz, Hpg^{NH}), 8.60 (d, 1H, ${}^{3}J = 8.0$ Hz, Hpg^{NH}), 8.56 (d, 1H, ${}^{3}J = 7.7$ Hz, Hpg^{NH}), 8.50 (m, 1H, Trp₂^{NH}), 7.64 (d, 1H, ${}^{3}J = 7.7$ Hz, Trp₂^{IndolH4}), 7.36 – 7.30 (m, 3H, H_{ar}, Trp₂^{IndolH7}), 7.27 – 7.18 (m, 6H, H_{ar}), 7.14 (s, 1H, Trp₂^{IndolH2}), 7.06 – 6.89 (m, 8H, H_{ar}, Trp₂^{IndolH6}, Trp₂^{IndolH5}), 6.70 – 6.55 (m, 10H, H_{ar}), 5.64 (d, 1H, ${}^{3}J = 7.7$ Hz, Hpg^{α}), 5.55 (d, 1H, ${}^{3}J = 8.0$ Hz, Hpg^{α}), 5.52 (d, 1H, ${}^{3}J = 8.5$ Hz, Hpg^{α}), 4.76 (m, 1H, Trp₂^{α}), 4.48 (m, 1H, Tyr₆^{α}), 3.68 (bs, 1H, Tyr₆^{α}), 3.63 (s, 2H, CH₂-MPAA), 3.19 – 3.12 (m, 1H, Trp₂^{β a}), 3.03 – 2.89 (m, 3H, 2 x Tyr ^{β a}, Trp₂^{β b}), 2.78 – 2.61 (m, 2H, 2 x Tyr ^{β b}) ppm.

HRMS (ESI): m/z calc. for C₆₁H₅₈N₇O₁₃S (M+H)⁺ 1128.38078, found: 1128.38111, Δ = 0.3 ppm; calc. mass for C₆₁H₅₇N₇NaO₁₃S (M+Na)⁺ 1150.36273, found: 1150.36331, Δ = 0.5 ppm.

Figure S10. A) Analytical reversed-phase HPLC trace and (B) MS spectra of crude peptide-**5**-MPAA. C) Analytical reversed-phase HPLC trace and (D) HRMS spectra of HPLC-purified peptide-**5**-MPAA.

Peptide-5-CoA

¹H-NMR (400 MHz, 1H-1H-COSY, DMSO-d₆): $\delta = 10.82$ (s, 1H, Trp2^{Ind0INH}), 8.86 (d, 1H, $^{3}J = 8.0$ Hz, Tyr6^{NH}), 8.76 (d, 1H, $^{3}J = 8.2$ Hz, Hpg^{NH}), 8.66 (d, 1H, $^{3}J = 7.5$ Hz, Trp2^{NH}), 8.60 (d, 1H, $^{3}J = 8.0$ Hz, Hpg^{NH}), 8.56 (d, 1H, $^{3}J = 7.7$ Hz, Hpg^{NH}), 8.39 (s, 1H, H8-CoA), 8.26 – 8.21 (m, 1H, N**H**CH2CH2S-CoA), 8.16 (s, 1H, H2-CoA), 8.00 (bs, 2H, NH2), 7.84 – 7.79 (m, 1H, N**H**CH2CH2CO-CoA), 7.60 (d, 1H, $^{3}J = 8.0$ Hz, Trp2^{Ind0IH4}), 7.32 (d, 1H, $^{3}J = 8.1$ Hz, Trp2^{Ind0IH7}), 7.26 (bs, 2H, NH2), 7.12 (s, 1H, Trp2^{Ind0IH2}), 7.07 – 6.94 (m, 10 H, Har, {6.94} Trp2^{Ind0IH5}, {7.04} Trp2^{Ind0IH6}), 6.89 – 6.85 (m, 2H, Har), 6.72 – 6.68 (m, 2H, Har), 6.64 – 6.58 (m, 6H, Har), 6.57 – 6.52 (m, 2H, Har), 5.93 (d, 1H, $^{3}J = 5.4$ Hz, H1'-CoA), 5.54 – 5.49 (m, 3H, 3 x Hpg^α), 4.91 (m, 1H, H3'-CoA), 4.82 (m, 1H, Trp2^α), 4.70 (m, 1H, H2'-CoA), 4.37 – 4.31 (m, 3H, H4'-CoA, Tyr6^α), 4.15 – 4.08 (m, 2H, H5'-CoA), 3.87 – 3.79 (m, under water peak, OC*H*2^{*a*}C(CH3)2-CoA, Tyr1^{*a*}), 3.45 (m, under water peak, OC*H*2^{*b*}C(CH3)2-CoA) 3.34 – 3.31 (m, under water peak, C*H*(OH)CO-CoA, NHC*H*2CH2CO-CoA), 3.12 – 3.00 (m, under water peak, NHC*H*2CH2S-CoA, Trp2^{βa}), 2.98 – 2.63 (m, NHCH2C*H*2S-CoA, Tyr ^{βa,b}, Trp2^{βb}), 2.33 – 2.78 (m, 2H, NHCH2C*H*2CO-CoA), 0.94, 0.74 (s, 2 x 3H, 2 x gem-CH3-COA) ppm.

Numbering of Coenzyme A accords to reference [1].

HRMS (ESI): m/z calc. for $C_{74}H_{83}N_{13}O_{27}P_3S$ (M-2H)²⁻ 862.22483, found: 862.22339, Δ = 1.7 ppm; calc. mass for $C_{74}H_{82}N_{13}NaO_{27}P_3S$ (M-3H+Na)²⁻ 873.21580, found: 873.20838, Δ = 8.5 ppm; calc. mass for $C_{74}H_{82}KN_{13}O_{27}P_3S$ (M-3H+K)²⁻ 881.20277, found: 881.19707, Δ = 6.5 ppm.

Figure S11. A) Structure of peptide-5-CoA, the observed MS fragmentation pattern is marked.B) Analytical reversed-phase HPLC trace, (C) HRMS spectra of HPLC-purified peptide-5-CoA (ions are doubly charged and correspond to the protonated, sodiated and potasiated species).

Protein	Protein	Gene	Selected	MW	Primer 5' to 3' (restriction sites underlined)			
	ID	name	sequence	[kDa]				
			range					
OxyB _{van}	Q8RN04	охуВ	1-398	47.7	for	CGGCAGC <u>CATATG</u> AGCGAGGACGACCCG		
					rev	CAGTC <u>GCTAGC</u> CCAAGCAACCATCAGCTCGGTC		
GB1-	052821	-	963-	18.9	for	TAT <u>CCATGG</u> CGAGCGAGAAAGCGCCCGAGAACG		
PCP7 _{cep}			1041		rev	ATAA <u>CTCGAG</u> GGATTTGGCGGCCAGAGCAC		
Trx-	Q8KLL6	-	966-	22.9	for	GCTA <u>CCATGG</u> CAACCAGCGAAAAAGCAC		
PCP7 _{sta}			1041		rev	GCTA <u>CTCGAG</u> GCTTGCTTTTGCTGCCAGTGCACG		
Trx-	Q93N86	-	954-	23.5	for	ATATT <u>CCATGG</u> TTGCAGGTCGTGCACCG		
PCP7 _{com}			1029		rev	AATTA <u>CTCGAG</u> ACCAGTCTCGGGCAGGCTTGCTTTTGCTG		
						CCAGAAC		

Table S2. Overview of primers used for cloning.

Figure S12. Electrophoretic analysis of proteins used in this study resolved using a 4-20% gradient SDS-PAGE gel (4–20% Mini-PROTEAN® TGX[™] Gel (Bio-Rad)). Conditions: 2.5 µg of OxyB_{van} and HaPuR, 5 µg of HaPuX, GB1-PCP7_{cep}, Trx-PCP7_{sta}, Trx-PCP7_{com}, Sfp R4-4. As marker "Precision Plus Protein[™] All Blue Standards" (Bio-Rad) was used; staining was performed using Instant Blue (Expedeon).

4. CD spectra and melting temperature determination of GB1-PCP7_{cep}, Trx-PCP7_{sta} and Trx-PCP7_{com}

Figure S13. CD spectra of GB1-PCP7_{cep}, Trx-PCP7_{sta} and Trx-PCP7_{com}. Data was recorded from λ =205 – 260 nm.

Figure S14. Melting curves of GB1-PCP7_{cep}, Trx-PCP7_{sta} and Trx-PCP7_{com}. Data was recorded at λ =222 nm from 20 – 95 °C with a rate of 1 °C/min. Data was analyzed using Boltzmann sigmoidal fit and melting temperatures were obtained (GB1-PCP7_{cep}: T_m = 64.88 °C, Trx-PCP7_{sta}: T_m = 55.35 °C, Trx-PCP7_{com}: T_m = 53.95 °C). Melting curves are shown in black, refolding curves in blue.

5. Alignments of the PCP domains used in this study

Α

Figure S15. A) Sequence alignment of carrier protein domains used in this study (without fusion partners). The Ser residue which bears the posttranslational phosphopantetheine-derived modification is highlighted in yellow. Predicted helical segments (from Jpred) are underlined. B) Sequence alignment of PCP7_{van} (VpsC protein, Uniprot: G4V4R2) and PCP7_{cep} exhibiting 94.94% sequence identity; differing amino acids are highlighted in red.

6. In vitro studies

6.1 Sfp-catalyzed loading of PCP domains

	GI	B1-PCP7 _{cep}		Trx-PCP7 _{sta}			Trx-PCP7 _{com}		
	MH+	mass	Da	MH+	mass	Da	MH+	mass	?a
	calc.	observed	<u>.</u>	calc.	observed	<u> </u>	calc.	observed	
apo-PCP	18854	18827	-27	22804	22782	-22	23354	23334	-20
Peptide-1	20046	20021	-25	23996	23987	-9	24547	24536	-11
Peptide-2	20019	20008	-11	23969	23962	-7	24520	24512	-8
Peptide-3	20115	20093	-24	24065	24047	-18	24616	24597	-19
Peptide-4	20117	20096	-21	24067	24044	-23	24618	24593	-25
Peptide-5	20154	20134	-20	24104	24120	+16	24655	24667	+12

Table S3. MALDI results of peptide-loaded PCPs.

^a Mass differences can be attributed to the presence of salt in each sample (50 mM Hepes, 50 mM NaCl, 10 mM MgCl₂) and to deviations due to the 3-point calibration of the mass spectrometer.

6.2 Results of turnover assays

Figure S16. Representative HPLC-MS traces of linear (peptides 1-5-Z) and crosslinked peptides (peptides 6-10-R) isolated from turnover assays with peptides 1-5. Through methylhydrazine

cleavage peptide-methylhydrazides (R², Z²) as well as hydrolyzed peptides (R¹, Z¹) are generated; the later due to a concomitant rise in pH on methylhydrazine addition. For the peptide methylhydrazides two peaks are detected due to the generation of two regioisomers of the methylhydrazides. For the crosslinked peptides additional peaks can be detected, which can be ascribed to diastereomer formation due to enhanced racemization of crosslinked C-terminal tyrosine (such an observation has been previously reported).^{2,3}

6.3 ESI-MS/MS characterization of peptides from turnover assays

Figure S17. ESI-MS/MS of peptide **1**-Z²: *m*/*z* 898.41, calc. mass (C₄₅H₅₆N₉O₁₁) 898.41 (M+H)⁺.

Figure S18. ESI-MS/MS of peptide 2-Z²: *m*/*z* 871.36, calc. mass (C₄₃H₅₁N₈O₁₂) 871.36 (M+H)⁺.

Figure S19. ESI-MS/MS of peptide **3**-Z²: *m*/*z* 967.40, calc. mass (C₅₂H₅₅N₈O₁₁) 967.40 (M+H)⁺.

Figure S20. ESI-MS/MS of peptide **4**-Z²: *m*/*z* 969.38, calc. mass (C₅₁H₅₃N₈O₁₂) 969.38 (M+H)⁺.

Figure S21. ESI-MS/MS of peptide **5**-Z²: *m*/*z* 1006.41, calc. mass (C₅₄H₅₆N₉O₁₁) 1006.41 (M+H)⁺.

Figure S22. Typical fragments observed for the C-*O*-D part of all crosslinked peptides.

Figure S23. ESI-MS/MS of peptide **6**-Z²: *m*/*z* 896.40, calc. mass (C₄₅H₅₄N₉O₁₁) 896.39 (M+H)⁺.

Figure S24. ESI-MS/MS of peptide 7-Z²: *m*/*z* 869.40, calc. mass (C₄₅H₄₉N₈O₁₁) 869.35 (M+H)⁺.

Figure S25. ESI-MS/MS of peptide 8-Z²: *m*/*z* 965.38, calc. mass (C₅₂H₅₃N₈O₁₁) 965.38 (M+H)⁺.

Figure S26. ESI-MS/MS of peptide **9**-Z²: *m*/*z* 967.36, calc. mass (C₅₁H₅₁N₈O₁₂) 967.36 (M+H)⁺.

Figure S27. ESI-MS/MS of peptide **10**-Z²: *m*/*z* 1004.39, calc. mass (C₅₄H₅₄N₉O₁₁) 1004.39 (M+H)⁺.

7. NMR spectra of peptides 1 – 5-CoA

Figure S28. ¹H-NMR of peptide-1-CoA in DMSO-d₆ (400 MHz).

Figure S28. ¹H-NMR of peptide-2-CoA in DMSO-d₆ (400 MHz).

Figure S28. ¹H-NMR of peptide-3-CoA in DMSO-d₆ (400 MHz).

Figure S28. ¹H-NMR of peptide-4-CoA in DMSO-d₆ (400 MHz).

Figure S28. ¹H-NMR of peptide-5-CoA in DMSO-d₆ (400 MHz).

8. References

- 1. Dordine, R. L.; Paneth, P.; Anderson, V. E.; *Bioorg. Chem.* **1995**, *23*, 169 181.
- 2. K. Woithe, N. Geib, K. Zerbe, D. B. Li, M. Heck, S. Fournier-Rousset, O. Meyer, F. Vitali, N. Matoba, K. Abou-Hadeed and J. A. Robinson, *J. Am. Chem. Soc.*, 2007, **129**, 6887-6895.
- Geib, N.; Woithe, K., Zerbe, K.; Li, D. B., Robinson, J. A.; *Bioorg. Med. Chem. Lett.* 2008, 18, 3081 3084.