Synthesis and biological studies of the thiols-triggered anticancer prodrug for more effective cancer therapy

Yuanzhen Xu,^a Jianjun Chen,^a Ya Li,^a Shoujiao Peng,^a Xueyan Gu,^b Meng Sun,^a Kun Gao*^a

and Jianguo Fang*a

^aState Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China ^bGansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China

Table of Contents

HPLC analysis Figures and schemes NMR and mass spectral data of **1** and **5** **General information:** ¹H NMR and ¹³C NMR spectra were recorded on a Varian Mercury Plus-400 (400 MHz) spectrometer with TMS as the internal standard. Chemical shifts were reported as δ values relative to the internal standard. HRMS-ESI spectra were determined on a Bruker Daltonics APEXII 47e spectrometer.

HPLC analysis

HPLC analysis were performed on Waters 1525-2998 series HPLC system (C18 column, Sun Fire, 5 μ m, 4.6 mm×150 mm, UV wavelength, maximal absorbance at 274 nm; temperature, ambient; injection volume, 10 μ L). To separate adducts, solvents A (H₂O) and B (MeOH) were used, delivered at a flow rate of 0.8 mL/min with the following gradient: A, 95% for 5 min; A from 95% to 60% in 1 min; A 60% for 6 min; A from 60% to 40% in 1 min; A, 40% for 5 min; A from 40% to 0% in 1 min; B 100% for 3 min.

Figure S1. HPLC analysis: (a) 4-hydroxybenzyl alcohol; (b) reaction of 1 and L-Cys.

Figure S2. MS spectra of the mixture for the reaction of 1 with L-Cys.

Figure S3. ¹H NMR analysis of the activation of 1 by L-Cys in deuterated monopotassium phosphate buffer at different pH: (a) 5.5; (b) 6.8; (c) 7.4; (d) 8.2; (e) ¹H NMR of 8 in D₂O at pH 5.5; (f) ¹H NMR of mechlorethamine with equivalent H⁺ in D₂O at pH 5.5. The mixture was incubated at r.t. for 24 h.

Figure S4. ¹H NMR analysis of the activation of 1 by L-Cys in deuterated monopotassium phosphate buffer at pH 7.4: (a) the mixture was incubated for 7 h; (b) the detailed information between δ 4.3 and δ 3.1 in (a); (c) ¹H NMR of mechlorethamine in alkaline condition; (d) ¹H NMR of mechlorethamine in neutral condition.

Figure S5. ¹H NMR analysis of the stability of **1** in deuterated monopotassium phosphate buffer at r.t.: (a) pH 5.5, incubated for 24 h; (b) pH 7.4, incubated for 7 h; (c) ¹H NMR of **1** in D_2O .

Figure S6. ¹H NMR analysis of the inducible activity of **1** in deuterated monopotassium phosphate buffer at pH 5.5 toward: (a) GSH; (b) L-arginine; (c) L-proline; (d) β - alanine; (e) glycine; (f) L-valine. The solution was incubated at r.t. for 24 h.

Figure S7. Effect of **5** on cancer cells. Time matched control samples are set up concurrently (without **5**). Data are expressed as the mean \pm SE of three independent experiments. (red bar, 26 μ M; blue bar, 52 μ M). PG: percentage of growth.

Scheme S1: the synthesis and reaction mechanism of fluorescent probe.

Scheme S2: cross-linking Formation Induced by 1 upon GSH Activation.

¹H NMR, ¹³C NMR and HRMS-ESI spectra of **1**

S11

