Electronic Supporting Information for

Highly efficient synthesis of novel methyl $\mathbf{1 3}^{\mathbf{2}}$-methylene mesopyropheophorbide a by pH-dependent regionselective condensation with formaldehyde and its stereoselective Michael addition reaction

Jiazhu Li, ${ }^{a}$ Yang Liu, ${ }^{a}$ Xi-Sen Xu, ${ }^{a}$ Yan-Long Li, ${ }^{a}$ Shan-Guo Zhang, ${ }^{a}$ Il Yoon, ${ }^{b}$ Young Key Shim, ${ }^{b}$ Jin-Jun Wang*a and Jun-Gang Yin* ${ }^{*}$
${ }^{a}$ College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
${ }^{b}$ PDT Research Institute, School of Nano System Engineering, Inje University, Gimhae, 621-749, Korea
${ }^{c}$ College of Life Sciences, Yantai University, Yantai, 264005, China.
*E-mail addresses: wjj1955@163.com; jungangyin@163.com

Table of Contents

1. Supporting Tables and Figures
2. General Information
3. Experimental Procedure and characterization of products
4. NMR (1D, 2D, $\left.{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ and MS (ESI) spectrum of products
5. References

1. Supporting Tables and Figures

Table S1. The reaction of methyl mesopyropheophorbide a 5 with formaldehyde sources (40% formalin or paraformaldehyde) in various conditions.

entry	reagent 1 (eq.)	reagent 2 (eq.)	time (h)	yield (6) ${ }^{a}$	yield (6a) ${ }^{\text {a }}$	yield (7) ${ }^{\text {a }}$
1	40\% formalin (1.2)	NaOMe (5.0)	6	15\%	10\%	1
2	40\% formalin (5.0)	NaOMe (10.0)	6	47\%	24\%	1
3	40\% formalin (5.0)	NaOMe (10.0)	12	45\%	24\%	1
4	40\% formalin (10.0)	NaOMe (10.0)	6	49\%	30\%	1
5	40\% formalin (10.0)	NaH (2.5)	6	30\%	13\%	1
6	40\% formalin (10.0)	NaH (5.0)	6	48\%	25\%	1
7	40\% formalin (10.0)	NaH (10.0)	6	48\%	25\%	1
8	paraformaldehyde ${ }^{\text {b }}$	NaOMe (5.0)	6	71\%	12\%	1
9	paraformaldehyde ${ }^{b}$	NaOMe (10.0)	6	85\%	6\%	1
10	paraformaldehyde ${ }^{b}$	NaOMe (20.0)	6	80\%	5\%	1
11	40\% formalin (10.0)	TsOH (10.0)	96	${ }^{\text {c }}$	1	1
12	40\% formalin (10.0)	TFA	96	1	1	1
13	40\% formalin (10.0)	conc. HCl	96	1	1	5\%
14	40\% formalin (10.0)	combined acid	72	1	1	65\%
15	40\% formalin (10.0)	combined acid	>96	1	1	64\%

${ }^{a}$ After standard treatment with $5 \% \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{MeOH} .{ }^{b}$ Equal-weight was used as methyl mesopyropheophorbide $a 5$. ${ }^{c}$ No product was observed.

Fig. S1. The comparative ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ in the region $\delta 2.8-11.0 \mathrm{ppm}$ of methyl 13^{2} - methylene mesopyropheophorbide $a \mathbf{6}$ and its Michael reaction adducts 8a-8c.

Fig. S2. NOE interactions (selected) observed in 2D/NOESY ${ }^{1} \mathrm{H}$ NMR spectra of Michael reaction adducts $\mathbf{8 a} \mathbf{- 8 c}$.

2. General Information

All reactions were monitored by TLC using 0.20 mm silica gel plates with or without UV indicator (60F-254). Silica gel 60 (230-400 mesh, Merck) was used for flash column chromatography. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured at 400 and 101 MHz , respectively, on a Bruker Advance II spectrometer. COSY and NOESY techniques were used to assign the NMR peak. Chemical shifts (δ) are given in ppm relative to tetamethylsilane (TMS, 0 ppm) unless otherwise indicated. Electronic absorption spectra were measured on a AOE A560 UV-Vis spectrophotometer. The absorption maxima $\lambda_{\max }$ are given in nm and molar absorbance coefficient (ε) or relative intensity. MS(ESI) were obtained on a AB SCIEX API 4000 LC/MS System at Yantai University. Materials obtained from commercial suppliers were used without further purification. Methyl mesopyropheophorbide a 5 was prepared according to the procedure described in the literature ${ }^{[1]}$.

3. Experimental Procedure and characterization of products

Synthesis of methyl 13²-methylene mesopyropheophorbide a 6 and methyl 13²-dihydromethyl mesopyropheophorbide a 6a

Methyl mesopyropheophorbide a $5(300 \mathrm{mg}, 0.545 \mathrm{mmol})$ and paraformaldehyde (300 mg) was dissolved in THF (50 mL), and a solution of sodium methoxide in methanol $(1 \mathrm{~mol} / \mathrm{L}, 5.45 \mathrm{~mL})$ was added under N_{2} atmosphere, then the reaction mixture was stirring at room temperature under N_{2} atmosphere for 6 h , monitoring the progress spectroscopically. pH value of the reaction mixture was adjusted to 4-6 by adding diluted hydrochloric acid and extracted with dichloromethane. The combined organic layers were washed with water, dried over sodium sulfate, and evaporated in vacuum. The residue was dissolved in 100 mL methanol containing $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and allowed to stir at room temperature under N_{2} atmosphere overnight to recover the 17^{3}-methyl ester structure. The mixture was diluted with water and extracted with dichloromethane. The combined organic layers were washed with water, dried over sodium sulfate, and evaporated in vacuum. The residue was separated on silica gel (eluent: dichloromethane-acetone, gradient $2-4 \%$ acetone) to give 261 mg ($0.463 \mathrm{mmol}, 85 \%$) of the title compound $\mathbf{6}$ as dark green solid and $20 \mathrm{mg}(0.033 \mathrm{mmol}, 6 \%)$ of $\mathbf{6 a}$ as a byproduct. 6: UV-VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max } 409$ (relative intensity, 0.90), 427 (1.00), 520 (0.10), 556 (0.08), 609 (0.07), 664 (0.41) nm. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.46(\mathrm{~s}, 1 \mathrm{H}, 10-\mathrm{H}), 9.24(\mathrm{~s}, 1 \mathrm{H}, 5-$
H), $8.61(\mathrm{~s}, 1 \mathrm{H}, 20-\mathrm{H}), 6.81\left(\mathrm{~s}, 1 \mathrm{H}, 13^{2 \mathrm{a}}-\mathrm{H}\right), 6.50\left(\mathrm{~s}, 1 \mathrm{H}, 13^{2 \mathrm{a}}-\mathrm{H}\right), 4.62(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, 17-\mathrm{H})$, $4.53(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{H}), 3.81\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 3^{1}-\mathrm{CH}_{2}\right), 3.66,3.64,3.30,3.20$ (each s, each $3 \mathrm{H}, \mathrm{OCH}_{3}+\mathrm{CH}_{3}$), $3.64-3.56\left(\mathrm{~m}, 2 \mathrm{H}, 8^{1}-\mathrm{CH}_{2}\right), 2.72-2.60,2.36-2.27,2.07-1.96$ (each m, total $\left.4 \mathrm{H}, 17^{1}+17^{2}-\mathrm{CH}_{2}\right), 1.83\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right), 1.71\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, 3^{2}-\mathrm{CH}_{3}\right), 1.65(\mathrm{t}, J=$ $\left.7.5 \mathrm{~Hz}, 3 \mathrm{H}, 8^{2}-\mathrm{CH}_{3}\right), 0.08,-1.96$ (each brs, each $\left.1 \mathrm{H}, 2 \times \mathrm{NH}\right) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 187.13$, $173.53,171.43,161.88,154.78,150.44,149.65,149.10,145.00,142.01,141.90,136.91,136.51$, $135.97,131.15,128.63,128.46,112.82,106.64,104.52,97.04,93.31,51.69,51.43,49.79,31.24$, 29.31, 23.54, 19.47, 19.42, 17.50, 17.01, 12.20, 11.29, 10.99. MS (ESI): calcd for $\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{3} 562.3$; found $m / z 563.7\left(\mathrm{MH}^{+}\right)$. Anal. calcd for $\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{C} 74.71, \mathrm{H} 6.81, \mathrm{~N} 9.96$. Found C 74.75, H 6.84, N 10.01. 6a: UV-VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max } 408$ (relative intensity, 1.0), 504 (0.09), 536 (0.09), 603 (0.08), $658(0.35) \mathrm{nm} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.35(\mathrm{~s}, 1 \mathrm{H}, 10-\mathrm{H}), 9.06(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 8.41(\mathrm{~s}$, $1 \mathrm{H}, 20-\mathrm{H}), 5.06\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, 13^{2 \mathrm{a}}-\mathrm{CH}_{2}\right), 4.84\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, 13^{2 \mathrm{a}}-\mathrm{CH}_{2}\right), 4.73(\mathrm{~d}, J=$ $\left.11.4 \mathrm{~Hz}, 1 \mathrm{H}, 13^{2 \mathrm{a}}-\mathrm{CH}_{2}\right), 4.55\left(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, 13^{2 \mathrm{a}}-\mathrm{CH}_{2}\right), 4.42-4.32(\mathrm{~m}, 2 \mathrm{H}, 17+18-\mathrm{H}), 3.76$ $\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 3^{1}-\mathrm{CH}_{2}\right), 3.64-3.53\left(\mathrm{~m}, 2 \mathrm{H}, 8^{1}-\mathrm{CH}_{2}\right), 3.58,3.26,3.18,2.85$ (each s, each 3 H , $\mathrm{OCH}_{3}+\mathrm{CH}_{3}$), 2.51-2.35, 2.28-2.20, 2.13-2.01 (each m, total 4H, $\left.\left.17^{1}+17^{2}-\mathrm{CH}_{2}\right)\right), 1.72(\mathrm{t}, \mathrm{J}=$ $\left.7.6 \mathrm{~Hz}, 3 \mathrm{H}, 3^{2}-\mathrm{CH}_{3}\right), 1.67-1.61\left(\mathrm{~m}, 6 \mathrm{H}, 8^{2}+18-\mathrm{CH}_{3}\right), 0.03,-1.19($ each brs, each $1 \mathrm{H}, 2 \times \mathrm{NH})$. MS (ESI): calcd for $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{5} 610.3$; found $\mathrm{m} / \mathrm{z} 611.7\left(\mathrm{MH}^{+}\right)$. Anal. calcd for $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{C} 70.80$, H 6.93 , N 9.17. Found C 70.83, H 6.91, N 9.20.

Synthesis of methyl 20-hydroxymethyl mesopyropheophorbide a 7

Methyl mesopyropheophorbide a $5(200 \mathrm{mg}, 0.363 \mathrm{mmol})$ and aqueous formalin ($10 \mathrm{~mL}, 40 \%$) was dissolved in a mixture of glacial acetic acid (10 $\mathrm{mL})$, phosphoric acid (8 mL) and concentrated hydrochloric acid and allowed to stir at room temperature for 3 days. The reaction mixture was diluted with water and extracted with dichloromethane. The combined organic layers were washed with water, dried over sodium sulfate, and evaporated in vacuum. The residue was dissolved in 100 mL methanol containing $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and allowed to stir at room temperature under N_{2} atmosphere overnight to recover the 17^{3}-methyl ester structure. The mixture was diluted with water and extracted with dichloromethane. The combined organic layers were washed with water, dried over sodium sulfate, and evaporated in vacuum. The residue was separated on silica gel (eluent: dichloromethane-methanol, gradient $2-4 \%$ methanol) to give the unreacted
starting material 5 ($52 \mathrm{mg}, 0.094 \mathrm{mmol}, 26 \%$) as the fast-moving band and the title compound 7 as dark green solid ($137 \mathrm{mg}, 0.236 \mathrm{mmol}, 65 \%$). UV-VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max } 412$ (relative intensity, 1.00), 511 (0.11), 544 (0.12), $609(0.08), 666(0.35) \mathrm{nm} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.43(\mathrm{~s}, 1 \mathrm{H}, 10-$ H), $9.32(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 6.36\left(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}, 20^{1}-\mathrm{H}\right), 6.01\left(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}, 20^{1}-\mathrm{H}\right), 5.19(\mathrm{~d}, J$ $\left.=19.8 \mathrm{~Hz}, 1 \mathrm{H}, 13^{2}-\mathrm{H}\right), 5.13\left(\mathrm{~d}, J=19.8 \mathrm{~Hz}, 1 \mathrm{H}, 13^{2}-\mathrm{H}\right), 4.80(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{H}), 4.20(\mathrm{dd}, J$ $=8.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}, 17-\mathrm{H}), 3.90-3.82\left(\mathrm{~m}, 2 \mathrm{H}, 3^{1}-\mathrm{CH}_{2}\right), 3.63,3.54,3.45,3.27\left(\right.$ each s, each $3 \mathrm{H}, \mathrm{OCH}_{3}$ $\left.+\mathrm{CH}_{3}\right), 3.66\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 8^{1}-\mathrm{CH}_{2}\right), 2.52-2.32,2.23-2.11\left(\right.$ each m, total $\left.4 \mathrm{H}, 17^{1}+17^{2}-\mathrm{CH}_{2}\right)$, $1.71\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, 3^{2}-\mathrm{CH}_{3}\right), 1.68\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, 8^{2}-\mathrm{CH}_{3}\right), 1.50\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right)$, 0.70, -1.34 (each brs, each $1 \mathrm{H}, 2 \times \mathrm{NH}$). MS (ESI): calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{4} 580.3$; found $\mathrm{m} / \mathrm{z} 581.3$ $\left(\mathrm{MH}^{+}\right)$. Anal. calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{C} 72.39, \mathrm{H} 6.94, \mathrm{~N} 9.65$. Found C 72.28, H 6.84, N 9.69.

General procedure for the Michael reaction of compound 6 and the synthesis of compounds 8a8c:

Methyl 13^{2}-methylene mesopyropheophorbide a $\mathbf{6}(200 \mathrm{mg}, 0.355 \mathrm{mmol})$ and corresponding reactive methylene compound (1 mL , acetylacetone for compound $\mathbf{8 a}$; dimethyl malonate for compound 8b and ethyl acetoacetate for compound 8c) was dissolved in THF (20 mL), and a solution of sodium methoxide in methanol $(1 \mathrm{~mol} / \mathrm{L}, 3.55 \mathrm{~mL})$ was added under N_{2} atmosphere, then the reaction mixture was stirring at room temperature under N_{2} atmosphere for 3 h , monitoring the progress spectroscopically. pH value of the reaction mixture was adjusted to $4-6$ by adding diluted hydrochloric acid and extracted with dichloromethane. The combined organic layers were washed with water, dried over sodium sulfate, and evaporated in vacuum. The residue was separated on silica gel (eluent: dichloromethane-acetone, gradient $0.5-2.0 \%$ acetone) to give the desired compound $\mathbf{8 a - 8 c}$ as dark green solids (yield: 90-94\%).

8a: Yield: 94%. UV-VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max } 410$ (relative intensity, 1.00), 504 (0.10), 535 (0.09), 603 (0.08), 656 (0.35) nm. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.47(9.48)(\mathrm{s}, 1 \mathrm{H}, 10-\mathrm{H}), 9.15(9.17)(\mathrm{s}, 1 \mathrm{H}, 5-\mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}$, $20-\mathrm{H}), 5.25(5.38)\left(\mathrm{dd}, J=8.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}, 13^{2}-\mathrm{H}\right), 4.49(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}, 17-\mathrm{H}), 4.45\left(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, 13^{2 \mathrm{~b}}-\mathrm{H}\right), 4.39(\mathrm{q}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 18-$ H), $3.79\left(\mathrm{q}, ~ J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 3^{1}-\mathrm{CH}_{2}\right), 3.66\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 8^{1}-\mathrm{CH}_{2}\right), 3.68,3.54(3.58), 3.27,3.21$ (each s, each $3 \mathrm{H}, \mathrm{OCH}_{3}+\mathrm{CH}_{3}$), $3.37-3.31\left(\mathrm{~m}, 1 \mathrm{H}, 13^{2 \mathrm{a}}-\mathrm{H}\right), 3.04-2.96\left(\mathrm{~m}, 1 \mathrm{H}, 13^{2 \mathrm{a}}-\mathrm{H}\right), 2.65-$ 2.51, $2.26-2.11\left(\right.$ each m, total $\left.4 \mathrm{H}, 17^{1}+17^{2}-\mathrm{CH}_{2}\right), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.98(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}$,
$\left.18-\mathrm{CH}_{3}\right), 1.71\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}, 3^{2}-\mathrm{CH}_{3}\right), 1.68\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}, 8^{2}-\mathrm{CH}_{3}\right), 1.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right)$, $0.53,-1.60(-1.64)$ (each brs, each $1 \mathrm{H}, 2 \times \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.0,203.6,198.8$, $180.0,173.6,172.4(172.3), 161.6,155.9,150.5,149.0,145.3,142.6,141.8,137.5(137.3), 135.9$, $131.6(131.5), 128.7,127.7,108.7,104.3(104.2), 96.0,92.7(92.5), 64.5,55.6,51.6(51.7), 50.6(50.7)$, $50.5(50.1), 31.0,30.9,30.1(30.0), 30.0(29.9), 29.6(29.7), 23.5(23.3), 19.5,19.4,17.5,16.9,12.1$, 11.3, 11.0. MS (ESI): calcd for $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{5} 662.4$; found $\mathrm{m} / \mathrm{z} 663.9\left(\mathrm{MH}^{+}\right)$. Anal. calcd for $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{C} 72.48, \mathrm{H} 7.00, \mathrm{~N} 8.45$. Found C 72.46, H 6.98, N 8.49.
 8b: Yield: 90%. UV-VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max } 410$ (relative intensity, 1.00), 504 (0.10), 535 (0.08), $603(0.07), 657(0.36) \mathrm{nm} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.48(\mathrm{~s}, 1 \mathrm{H}, 10-\mathrm{H}), 9.17(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}, 20-\mathrm{H}), 5.38$ (dd, $\left.J=8.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}, 13^{2}-\mathrm{H}\right), 4.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 17-\mathrm{H}), 4.40(\mathrm{q}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{H}), 4.06\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, 13^{2 \mathrm{~b}}-\mathrm{H}\right), 3.79(\mathrm{q}, J=7.4$ $\left.\mathrm{Hz}, 2 \mathrm{H}, 3^{1}-\mathrm{CH}_{2}\right), 3.77,3.67,3.55,3.28,3.22,2.36$ (each s, each $\left.3 \mathrm{H}, \mathrm{OCH}_{3}+\mathrm{CH}_{3}\right), 3.67(\mathrm{q}, \mathrm{J}=7.3$ $\left.\mathrm{Hz}, 2 \mathrm{H}, 8^{1}-\mathrm{CH}_{2}\right), 3.47-3.41\left(\mathrm{~m}, 1 \mathrm{H}, 13^{2 \mathrm{a}}-\mathrm{H}\right), 3.19-3.08\left(\mathrm{~m}, 1 \mathrm{H}, 13^{2 \mathrm{a}}-\mathrm{H}\right), 2.66-2.52,2.26-2.13$ (each m, total $\left.4 \mathrm{H}, 17^{1}+17^{2}-\mathrm{CH}_{2}\right), 1.98\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right), 1.72\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}, 3^{2}-\right.$ CH_{3}), $1.69\left(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}, 8^{2}-\mathrm{CH}_{3}\right), 0.46,-1.64$ (each brs, each $\left.1 \mathrm{H}, 2 \times \mathrm{NH}\right) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.36,173.60,172.13,170.02,169.99,161.46,155.60,150.45,149.10,145.22$, $142.41,141.77,137.48,137.26,135.77,131.48,128.91,127.86,108.24,104.34,96.01,92.51,55.34$, $52.67,51.64,51.63,51.61,50.64,50.39,48.64,31.25,30.97,30.06,23.28,19.49,19.37,17.47$, 16.91, 12.11, 11.28, 10.96. MS (ESI): calcd for $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{7} 694.3$; found $m / z 695.9\left(\mathrm{MH}^{+}\right)$. Anal. calcd for $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{C} 69.15, \mathrm{H} 6.67, \mathrm{~N} 8.06$. Found C 69.21, H 6.65, N 8.09.

8c: Yield: 93%. UV-VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max } 410$ (relative intensity, 1.00), 504 (0.09), 534 (0.09), 601 (0.08), 657 (0.40) nm. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.50(9.49)(\mathrm{s}, 1 \mathrm{H}, 10-\mathrm{H}), 9.18(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 8.50(8.49)(\mathrm{s}, 1 \mathrm{H}$, $20-\mathrm{H}), 5.30\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 13^{2}-\mathrm{H}\right), 4.57(4.49)(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$, $17-\mathrm{H}), 4.40(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{H}), 4.33-4.19\left(\mathrm{~m}, 3 \mathrm{H}, 13^{2 \mathrm{~b}}-\mathrm{H}+13^{2 \mathrm{~b}}-\right.$ $\left.\mathrm{CO}_{2} \underline{\mathrm{CH}_{2}} \mathrm{CH}_{3}\right), 3.81\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 3^{1}-\mathrm{CH}_{2}\right), 3.68\left(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 8^{1}-\mathrm{CH}_{2}\right), 3.69,3.56(3.54)$, 3.29, 3.24, 2.38(1.47) (each s, each $\left.3 \mathrm{H}, \mathrm{OCH}_{3}+\mathrm{CH}_{3}\right), 3.48-3.34\left(\mathrm{~m}, 1 \mathrm{H}, 13^{2 \mathrm{a}}-\mathrm{H}\right), 3.06-2.92(\mathrm{~m}$, $\left.1 \mathrm{H}, 13^{2 \mathrm{a}}-\mathrm{H}\right), 2.78-2.51,2.25-2.16$ (each m, total $\left.4 \mathrm{H}, 17^{1}+17^{2}-\mathrm{CH}_{2}\right), 1.97(1.96)(\mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}$, $\left.3 \mathrm{H}, 18-\mathrm{CH}_{3}\right), 1.77-1.67\left(\mathrm{~m}, 6 \mathrm{H}, 3^{2}+8^{2}-\mathrm{CH}_{3}\right), 1.29\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 13^{2 \mathrm{~b}}-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.49,-$
$1.61(-1.63)$ (each brs, each $1 \mathrm{H}, 2 \times \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.3(203.1), 198.9,173.6$, $172.2,169.8,169.5,161.5(161.4), 155.7(155.6), 150.5,149.0(148.9), 145.2(145.1), 142.4$, $141.8(141.7), 137.4,137.3,135.8(135.7), 131.6(131.5), 128.8(128.7), 127.7,104.24,95.95$, $92.66(92.54), \quad 61.59,60.64,56.29(56.04), 55.39(55.32), 51.62(51.58), 50.65(50.44), 31.03(30.99)$, $30.39(30.15), 30.04(29.54), 23.44(23.27), 19.48,19.36,17.47,16.91,14.11,12.89,12.11,11.28$, 10.96. MS (ESI): calcd for $\mathrm{C}_{41} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{6} 692.4$; found $\mathrm{m} / \mathrm{z} 693.6\left(\mathrm{MH}^{+}\right)$. Anal. calcd for $\mathrm{C}_{41} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{6}$ C 71.08, H 6.98, N 8.09. Found C 71.12, H 7.00, N 8.05.

Synthesis of 20-formyl meso pyropheophorbide a 9

Compound $7(100 \mathrm{mg}, 0.172 \mathrm{mmol})$ was dissolved in 10 mL dry dichloromethane containing NMO ($26 \mathrm{mg}, 0.258 \mathrm{mmol}$). After stirring the mixture for $10 \mathrm{~min}, \operatorname{TPAP}(10 \mathrm{mg}, 0.028 \mathrm{mmol})$ was added and allowed to stir at room temperature for 1 h . The reaction mixture was diluted with dichloromethane and then washed with sodium sulphite solution and brine. The organic layer was dried over sodium sulfate, and evaporated in vacuum. The residue was separated on silica gel (eluent: dichloromethane-acetone, gradient $0.5-2.0 \%$ acetone) to give the the title compound 9 as dark green solid ($68 \mathrm{mg}, 0.117 \mathrm{mmol}, 68 \%$). UV-VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max } 412$ (relative intensity, 1.00), 513 (0.07), 549 (0.13), 631 (0.08), 689 (0.29) nm. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 11.80(\mathrm{~s}, 1 \mathrm{H}, 20-\mathrm{CHO}), 9.27(\mathrm{~s}, 1 \mathrm{H}, 10-\mathrm{H}), 9.21(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 5.18(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 18-$ H), $5.05\left(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}, 13^{2}-\mathrm{H}\right), 4.98\left(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}, 13^{2}-\mathrm{H}\right), 4.03(\mathrm{dd}, J=9.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}$, $17-\mathrm{H}), 3.74\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 3^{1}-\mathrm{CH}_{2}\right), 3.55\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 8^{1}-\mathrm{CH}_{2}\right), 3.61,3.52,3.24,3.14$ (each s, each $3 \mathrm{H}, \mathrm{OCH}_{3}+\mathrm{CH}_{3}$), 2.65-2.57, 2.50-2.42, 2.34-2.27, 2.17-2.06 (each m, total 4H, $\left.17^{1}+17^{2}-\mathrm{CH}_{2}\right), 1.66\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, 3^{2}-\mathrm{CH}_{3}\right), 1.63\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, 8^{2}-\mathrm{CH}_{3}\right), 1.42(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}$), $0.88,0.04$ (each brs, each $1 \mathrm{H}, 2 \times \mathrm{NH}$). MS (ESI): calcd for $\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{4} 578.3$; found $m / z 579.3\left(\mathrm{MH}^{+}\right)$. Anal. calcd for $\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{C} 72.64$, H 6.62, N 9.68. Found C 72.68, H 6.67, N 9.70.

4. NMR (1D, 2D, $\left.{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ and MS (ESI) spectrum of products

6
6

6 +Q1: 238 MCA scans from Sample 3 (TuneSampleID002) of lijilazhu10.10 wiff (Turbo Spray)

+Q1: 238 MCA scans from Sample 7 (132) of lijiazhu10.10 . wiff (Turbo Spray)
Max. $6.0 e 8 \mathrm{cps}$.
6a

8a

¢

+Q1: 238 MCA scans from Sample 4 (TuneSampleID1416) of lijiazhu10.10 .wiff (Turbo Spray)
Max. 5.0 e 7 cps .
8a

8b

風

[^0]Max. 1.2 e 7 cps.
8b

$$
\sqrt{-}
$$

+Q1: 238 MCA scans from Sample 6 (TuneSampleID19) of lijiazhu10.10 .wiff (Turbo Spray)
Max. 2.0 e 8 cps .
8c

5. References

[1] K. M. Smith, D. A. Goff and D. J. Simpson, J. Am. Chem. Soc., 1985, 107, 4946-4954.

[^0]: +Q1: 238 MCA scans from Sample 5 (TuneSampleID17) of lijiazhu10.10 wiff (Turbo Spray)

