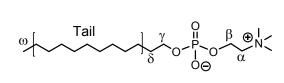

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015


## **Supporting information**

## Primary Amine Recognition in Water by a Calix[6]aza-cryptand Incorporated in Dodecylphosphocholine Micelles

Emilio Brunetti, Alex Inthasot, Flore Keymeulen, Olivia Reinaud, Ivan Jabin<sup>\*</sup> and Kristin Bartik<sup>\*</sup>

| SI1. 2D DOSY experiment (298K, 600MHz, $D_2O$ ) with <b>1.Zn<sup>2+</sup></b> in DPC                                                                  | 2                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| SI2. NMR PRE experiment (298K, 600MHz, $D_2O$ ) with <b>1.Zn<sup>2+</sup></b> in DPC                                                                  | 3                      |
| SI3. <sup>1</sup> H NMR (298K, 300MHz, $D_2O$ ) spectrum of <b>1.nH</b> <sup>+</sup> in DPC                                                           | 4                      |
| SI4. Determination of the <i>pseudo</i> $pK_a$ for $PrNH_2$ with <b>1.Zn<sup>2+</sup></b> in DPC                                                      | 5                      |
| SI5. <sup>1</sup> H NMR (298K, 600MHz, D <sub>2</sub> O) spectra of $1.Zn^{2+}$ , in the absence and presence of EtNH <sub>2</sub> in DPC- <i>d38</i> | 6                      |
| SI6. <sup>1</sup> H NMR (298K, 600MHz, $D_2O$ ) spectra of $1.Zn^{2+}$ , in the absence and presence of HeptylNE DPC                                  | I <sub>2</sub> in<br>7 |
| SI7. Experimental conditions for titrations of $1.Zn^{2+}$ with amines, alcohols and aminoalcohols in (298 K, D <sub>2</sub> O)                       | DPC<br>8               |



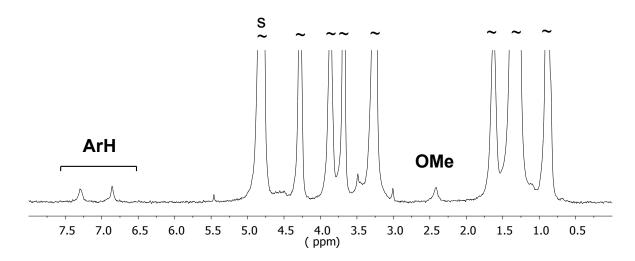



The x- and y- axis represent the regular <sup>1</sup>H chemical shift and the diffusion coefficient, respectively. DCM: residual dichloromethane; HDO: solvent signal chosen as reference for diffusion coefficient determination (D =  $19.02 \times 10^{-10} \text{ m}^2/\text{s}$  at 298 K).

## SI2. PRE NMR experiments (298K, 600MHz, $D_2O$ ) with $1.Zn^{2+}$ in DPC

Normalized relaxivity (measured relaxivity divided by relaxivity of  $\alpha$ CH<sub>2</sub> protons of the surfactant;  $\phi$ ; mM<sup>-1</sup>s<sup>-1</sup>; error < 15%): values for the nuclei of DPC (20 mM) and for the nuclei of the incorporated complex **1.Zn<sup>2+</sup>** (0.5 mM).






DPC

1.Zn<sup>2+</sup>⊃nH<sub>2</sub>O

| <sup>+</sup> N(CH <sub>3</sub> ) <sub>3</sub> | α | β    | γ    | δ    | Tail | ω    | ArH <sup>cap</sup> | ArH2 <sup>OMe</sup> | tBu <sup>OMe</sup> |
|-----------------------------------------------|---|------|------|------|------|------|--------------------|---------------------|--------------------|
| 0.89                                          | 1 | 0.51 | 0.29 | 0.18 | 0.08 | 0.06 | 0.18               | 0.14                | 0.05               |

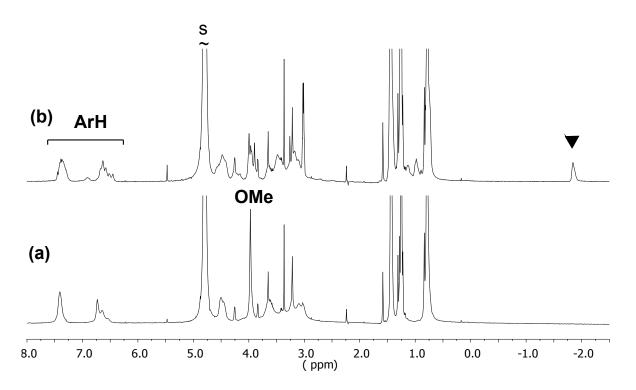
SI3. <sup>1</sup>H NMR (298K, 300MHz,  $D_2O$ ) spectrum of  $1.nH^+$  in DPC



<sup>1</sup>H NMR spectrum (300 MHz, 298 K) of  $1.nH^+$  in DPC (20 mM in D<sub>2</sub>O at pH ~3.1); s: solvent.

SI4. Determination of the pseudo pKa shift for PrNH<sub>2</sub>

The formation constant K and  $K'_{pH}$  are defined according to the following equilibrium:


$$1.Zn^{2+}(H_2O) + PrNH_3^+ \hat{a} \ddagger CE1.Zn^{2+}(PrNH_2) + H_3O^+$$

$$K = \frac{\left[1.Zn^{2+}(PrNH_{2})\right]\left[H_{3}O^{+}\right]}{\left[1.Zn^{2+}(H_{2}O)\right]\left[PrNH_{3}^{+}\right]}$$

$$K'_{pH} = \frac{\left[1.Zn^{2+}(PrNH_2)\right]}{\left[1.Zn^{2+}(H_2O)\right]\left[PrNH_3^+\right]}$$

From analysis and signal integration in the <sup>1</sup>H NMR spectra (see experimental section of article for details). *K* was found to be ~  $5x10^{-5}$  at pH ~8 and  $K'_{pH}$  ~5000 M<sup>-1</sup>. From these data, we can estimate a *pseudo* pK<sub>a</sub> (-log*K*) of ~4.3.

SI5. <sup>1</sup>H NMR (298K, 600MHz, D<sub>2</sub>O) spectra of  $1.Zn^{2+}$  in the absence and presence of EtNH<sub>2</sub> in DPC-*d38* 



<sup>1</sup>H NMR spectra (600 MHz, 298 K) of (a) **1.Zn<sup>2+</sup>** in DPC-*d38* (20 mM in D<sub>2</sub>O at pH ~7.6); (b) **1.Zn<sup>2+</sup>** in DPC*d38* (20 mM in D<sub>2</sub>O) after the addition of ~3 equiv. of EtNH<sub>2</sub>.  $\checkmark$ : EtNH<sub>2</sub> in; s: solvent.

SI6. <sup>1</sup>H NMR (298K, 600MHz,  $D_2O$ ) spectra of  $1.Zn^{2+}$  in the absence and presence of HeptylNH<sub>2</sub> in DPC micelles.



<sup>1</sup>H NMR spectra (600 MHz, 298 K) of (a)  $1.Zn^{2+}$  in DPC (20 mM in D<sub>2</sub>O at pH ~7.6); (b)  $1.Zn^{2+}$  in DPC (20 mM in D<sub>2</sub>O) after the addition of ~7 equiv. of HeptylNH<sub>2</sub>. s: solvent; a: acetone.

SI7. Experimental conditions for titrations of  $1.Zn^{2+}$  with amines, alcohols and aminoalcohols in DPC

The potential binding of different **guests** was monitored via <sup>1</sup>H NMR titration experiments at room temperature with ~0.5 mM solutions of  $1.Zn^{2+}$  in DPC (20 mM in D<sub>2</sub>O). Progressive additions of the investigated potential guest, until the final concentration indicated below, were undertaken (pH monitored are also indicated). No signals for included guest were observed in the <sup>1</sup>H NMR spectra for the following molecules:

- (i)  $tBuNH_2$  up to 6 mM (pH ~7.8, ~10.4 and 11);
- (ii) (Et)<sub>2</sub>NH up to 15 mM (pH ~7.8 and 11). This amine added after the experiment undertaken in (i);
- (iii) ethanol up to 365 mM (pH  $\sim$ 7.6);
- (iv) propanol up to 340 mM (pH  $\sim$ 7.6);
- (v) butanol up to 18 mM (pH ~7.6). This alcohol added after the experiment undertaken in (iv);
- (vi) octanol up to 50 mM (pH ~7.6);
- (vii) ethanolamine up to 25 mM (pH ~7.6);
- (viii) ( $\pm$ )-1-amino-2-propanol up to 3.5 mM (pH ~6.0 and pH ~10.4);
- (xi) ( $\pm$ )-2-amino-1-propanol up to 3.7 mM (pH ~5.5 and pH ~10.5);
- (x) 6-amino-1-hexanol up to 10 mM (no pH value available);